Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECT OF SUPPLEMENTARY HAY FED TO NON-LACTATING COWS

OFFERED TWO ALLOWANCES OF PASTURE

A thesis presented in partial fulfilment
of the requirements for the degree of
Master of Agricultural Science in
Animal Science at Massey University
Palmerston North, New Zealand.

GUSTAVO ALVARO WILLS FRANCO
1988
ABSTRACT

In New Zealand, the system of production of the seasonal supply farms is based on grazed pasture and small quantities of conserved herbage throughout the year. The efficiency with which that conserved pasture is utilized by the animal and its effect on the sward will affect the profitability of the system. The objective of the present study was to assess the effect of hay supplementation at two different herbage allowances during the winter. Pregnant, non-lactating Friesian cows were randomly allocated to four treatments in a 2x2 factorial design. The four treatments were: Low herbage allowance with hay (LA+) or without hay (LA), and high herbage allowance with hay (HA+) or without hay (HA). Hay was fed at 5 kgDM/cow/daily, and the two pasture herbage allowances were 9.1 and 13.4 kgDM/cow/daily.

Higher herbage allowance increased the herbage dry matter (DM) intake, total DM intake, total metabolizable energy (ME) intake and residual herbage mass.

Supplementing with hay resulted in increases in total DM intake and ME intake, despite the low concentration of the hay compared with the herbage, and decreases in herbage DM intake at both herbage allowances. The decreases in herbage intake were 0.28 and 0.40 kg herbage DM eaten per kg hay DM eaten, at the lower and higher herbage allowances respectively. The corresponding values, expressed as MJME, were decreases of 0.44 and 0.65 MJME from herbage per MJME eaten as hay. The decreases in herbage intake resulted in increases in residual herbage mass at both allowances.

The final liveweight and body condition were increased by the higher herbage allowance and by Hay supplementation. However, maternal liveweight gain was higher for HA than for HA+ cows.
There were large increases in water drunk (by 2.1 and 1.5 fold) by the supplemented cows. However, supplementation did not increase the total water consumed. The ‘extra’ water drunk per kg hay DM eaten was higher at the low than at the high allowance.

Hay supplementation reduced the time the cows spent grazing and increased the ruminating time during the daytime.

The results of the present study emphasize the importance of hay as a supplement during the winter. It is important to consider the reported effects when planning the use of hay as a supplement for non-lactating cows.
ACKNOWLEDGEMENTS

The author wishes to thank the following people:

To my supervisor: Dr. C.W. Holmes for invaluable guidance, assistance, advice and encouragement throughout his studies.

Many post-graduate students and staff members of the Animal Science Department, for their personal and professional interest in this study.

Prof. J. Hodgson, Dr. A.C.P. Chu, Dr. C. Hoogendoorn for helpful discussion with various aspects of the study.

R.A. McClenaghan and A. Ortega for their technical assistance while carrying out the experiment.

J.M. Rendel for helpful suggestions and guidance with statistical procedures.

C.A. Butts and R.A. Watson for their help with chemical analyses.

The personnel of the Dairy Research Unit and the Animal Physiology Unit for their assistance during the experiment.

Mr. R. Rangel and Mrs. D. Beatson for their suggestions and reading of the manuscript.

The New Zealand Government for the scholarship that allowed the author to carry out his studies and The Universidad Nacional de Colombia for allowing him to study in New Zealand.

Lastly, but the most important to Maria Jose, for her patience, comprehension, support and encouragement throughout all the time of his post-graduate studies.
TABLE OF CONTENTS

1 INTRODUCTION.. 1

2 REVIEW OF LITERATURE... 3
 2.1 MANAGEMENT OF FEEDS AND FEEDING DURING THE WINTER............ 3
 2.1.1 Level of Feeding in Early Lactation............................ 4
 2.1.2 Liveweight, Body Condition at Calving and its Effect on Milk Production.. 5
 2.1.3 Winter Management.. 7
 2.1.3.1 Winter rotation... 7
 2.1.3.2 Herbage allowance... 10
 2.1.3.3 Drying off date... 10
 2.1.3.4 Calving date and pattern................................ 11
 2.1.3.5 Supplementary feeding during the winter............. 11
 2.2 SUPPLEMENTATION.. 13
2.2.1 Level of Feeding ... 14
2.2.2 Type of Supplement 15
2.2.3 Quality and Quantity of the Supplement 17
2.2.4 Physiological State 18
2.2.5 Other Factors ... 19
2.3 VOLUNTARY FEED INTAKE 19
2.3.1 Regulation of Food Intake 20
2.3.2 Physical Factors 22
2.3.3 Behavioural Factors 25
2.4 FACTORS AFFECTING FOOD INTAKE BY GRAZING ANIMALS 27
2.4.1 Animal Characteristics and Environmental Factors 27
2.4.2 Animal Size, Liveweight, Body Condition, Age and
Genotype .. 27
2.4.3 Effect of Lactation 28
2.4.4 Effect of Pregnancy 29
2.5 SWARD CHARACTERISTICS 30
2.5.1 Diet Selection ... 30
2.5.2 Nutritive Value .. 31
2.5.3 Sward Density and Herbage Height 32
2.5.4 Herbage Mass ... 32
2.5.5 Herbage Allowance 33
2.6 WATER CONSUMPTION 34
2.7 OBJECTIVES OF THE STUDY 39

3 MATERIALS AND METHODS 40
3.1 GENERAL PRE-EXPERIMENTAL CONDITIONS 42
3.1.1 Pastures and Hay 42
3.1.2 Animals and Treatments 42
3.2 MEASUREMENTS .. 45
3.2.1 Pasture .. 45
3.2.2 Hay ... 46
3.2.3 Sward Measurements 48
3.2.4 Animal Measurements..49
3.2.5 Water Measurements......................................50
3.2.6 Animal Behaviour...50
3.3 STATISTICAL ANALYSIS.......................................51

4 RESULTS..54
4.1 SWARD CHARACTERISTICS......................................54
 4.1.1 Pregrazing Conditions.....................................54
 4.1.2 Herbage Intake..58
 4.1.3 Effect of Supplement on Intake of Pasture..............62
 4.1.4 Residual Herbage Mass....................................63
4.2 ANIMAL CHARACTERISTICS.....................................65
 4.2.1 General..65
 4.2.2 Liveweight Gain..65
 4.2.3 Body Condition...67
 4.2.4 Water Intake...72
 4.2.5 Animal Behaviour...78

5 DISCUSSION..83
5.1 THE FEEDS AND FEEDING LEVELS.............................83
 5.1.1 Pregrazing Herbage Mass..................................83
 5.1.2 Herbage and Total DM Allowance..........................84
 5.1.3 Digestibilities of Feeds...................................84
 5.1.4 Herbage and Total ME Allowance..........................85
5.2 EFFECT OF HERBAGE ALLOWANCE..............................86
 5.2.1 Residual Herbage Mass....................................86
 5.2.2 Herbage Intake..88
 5.2.3 Total DM Intake..91
 5.2.4 Total ME Intake..91
5.3 EFFECTS OF HAY SUPPLEMENTATION...........................93
 5.3.1 Residual Herbage Mass....................................93
 5.3.2 Herbage Intake..96
5.3.3 Total DM Intake ... 99
5.3.4 ME Intake .. 100
5.4 SUBSTITUTION BETWEEN FEEDS 100
5.5 PREDICTION OF DM INTAKE ... 106
5.6 CHANGES IN LIVESTOCK AND CONDITION SCORE 108
 5.6.1 Effect of Herbage Allowance 108
 5.6.2 Effect of Hay Supplementation 110
 5.6.3 Interaction between Herbage Allowance and Hay Supplementation ... 111
 5.6.4 Relationship between Liveweight gain and Condition Score ... 113
 5.6.5 Estimates of Maintenance Requirements 113
5.7 WATER INTAKE .. 116
 5.7.1 Water Drunk ... 116
 5.7.2 Water Ingested with Pasture 117
 5.7.3 Total Apparent Water Consumed 118
 5.7.4 Relationship between Water and DM Intake 119
 5.7.5 Environmental Conditions ... 121
5.8 ANIMAL BEHAVIOUR ... 123
 5.8.1 Rate of Biting ... 123
 5.8.2 Herbage Intake per Bite and Total Herbage Intake during the First Hour ... 125
 5.8.3 Grazing Behaviour during Daytime 126
5.9 CONCLUSIONS .. 130

APPENDICES ... 132

BIBLIOGRAPHY .. 134
LIST OF TABLES

3.1 Common Abbreviations 41

3.1.1. Pre-experimental age, days of gestation, fasted liveweight and body condition score of the animals allocated to the different treatments 43

3.1.2. Details of the pasture DM and hay planned to offered to the different treatments 44

4.1.1. Mean values and results of ANOVA for the quantities of Pregrazing Herbage Mass (KgDM/ha) and Concentration of the Dry Matter (%) for the four treatments 55

4.1.2. Mean values and results of ANOVA for the quantities of Herbage Allowance, Hay, and Total DM offered per cow daily (KgDM/cow/day) for the four treatments .. 56

4.1.3. Data for the in vivo digestibility of the hay, for the Dry Matter, Energy, and Organic Matter (%) 57

4.1.4. Mean values and results of ANOVA for the quantities of Metabolizable Energy offered from the Herbage, Hay and Total Energy Allowance (MJME/cow/day) for the four treatments 57

4.1.5. Mean values and results of ANOVA for the quantities of DM consumed from the Pasture, Hay, and Total apparent DM intake (KgDM/cow/day), Fresh Matter Intake (kg/cow/day), and Concentration of the DM in the whole diet (grDM/kg eaten) for the four treatments 59

4.1.6. Mean values and results of ANOVA for the quantities of calculated ME consumed from the Pasture, Hay, and Total apparent ME intake (MJME/cow/day) for the four treatments 61

4.1.7. Mean values and results of ANOVA for the changes in total intake of DM or ME caused by the consumption of hay (1kgDM or 1MJME) at the two herbage allowances in the six paddocks 62

4.1.8. Mean values and results of ANOVA for the quantities of Residual Herbage Mass of the paddocks (kgDM/ha), and Degree of Defoliation+ (%) for the four treatments 64
4.2.1. Mean values and results of ANOVA for the Final Live weight (kg/cow) and Live weight Gain and Net Live weight Gain during 42 days of experimental period for the four treatments

4.2.2. Mean values and results of ANOVA for the Final Body Condition Score (units) and Body Condition Score Gain during the 42 days of experimental period for the four treatments

4.2.3. Mean values for the quantities of Water Drunk (litres/cow/day) in each paddock and mean values and results of ANOVA for the Water Drunk, Water ingested with the Pasture and with the Hay, and Total Apparent Water consumed (water drunk and ingested with feed) for the four treatments

4.2.4. Mean values and results of ANOVA for various measures of Water Consumption in relation to DM Intake. Water Drunk and Total DM Intake (litres/kgDM), Extra Water Drunk and Hay DM Intake (litres/kg hay DM) and Total Apparent Water Consumed and Total DM intake (litres/kgDM) for the four treatments

4.2.5. Mean values and range of the Environmental Conditions during the experimental period

4.2.6. Correlation Coefficients between environmental conditions and quantities of Water Drunk during the experimental period

4.2.7. Mean values and results of ANOVA for the Rate of Biting during the First, Second and Third Hour (bites/minute/cow) after the cows were allocated to fresh pasture for the four treatments

4.2.8. Mean values and results of the ANOVA for the Intake per Bite (gr/bite) and Apparent Total DM Intake (kgDM) during the first hour after the areas of fresh pasture were offered each day for the four treatments

4.2.9. Mean values and results of ANOVA for the Total Periods of Time Spent in the various Types of Behaviour during the hours of Daylight (minutes) for the four treatments

5.2.1. Comparison of the calculated total ME consumed using three different methods of calculation
5.3.1. Effect of Supplementation on Residual Herbage Mass (KgDM/ha). .. 94

5.4.1. Reduction in Intake of Pasture per Unit of Additional Supplements expressed in kg/kgDM or MJME/MJME given to different grazing animals 102-105

5.6.1. Estimated requirements of Maintenance 114

5.6.2. Comparison between Total Apparent ME Intakes calculated from the Measurement of Herbage Masses, and Theoretical ME Intakes calculated from the animal performance measurements 115

5.8.1. Effect of Supplementation on change in Grazing Time (GT) expressed in minutes per kgDM consumed as supplement 128, 129
LIST OF FIGURES

2.2.1. Factors affecting the Animal Response to Supplementation.................................. 13

4.2.1 Relationship between Liveweight gains and Changes in Body Condition Score............... 71

5.2.1 Relationship between Residual Herbage Mass and Pasture Intake (kgDM/cow/day)........... 87

5.2.2 Relationship between Herbage Allowance and Pasture Intake (kgDM/cow/day).............. 89

5.2.3 Relationship between ME Allowance and ME Intake... 92

5.6.1 Gains in Body Condition over 42 days (Score/cow)... 109

5.6.2 Relationship between Changes in Maternal Liveweight and in Body Condition Score.......... 112

5.8.1 Behaviour during Daytime... 127
LIST OF APPENDICES

4.2.1 Individual change in Liveweight and Body Condition Score over 42 days of the Experimental Period...............132

4.2.2 Regression equation between Maternal Liveweight Gains and Body Condition Score............133