Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECTS OF UNDERFEEDING IN EARLY LACTATION

ON THE YIELD AND COMPOSITION OF MILK PRODUCED

BY HIGH AND LOW BREEDING INDEX COWS

A thesis presented in partial fulfilment
of the requirements for the degree of
Master of Agricultural Science
in Animal Science
at Massey University

KRISTINA DAWN MITCHELL

1985
ABSTRACT

A grazing trial was carried out to examine the interactive effects of underfeeding in early lactation and cow breeding index on milk yield and composition.

From the fifth week of lactation, 16 high and 16 low breeding index cows were fed at a restricted or ad libitum feeding level. Digestible organic matter intakes were estimated directly using the herbage cutting technique and indirectly using the chromic oxide technique. Intake was reduced due to underfeeding by approximately 45%. In comparison to cows on the ad libitum feeding level, underfed cows showed reductions in milk, milkfat and milk protein yields, milk protein concentration, long chain fatty acid concentration in the milkfat and liveweight gain. Milkfat concentration, short chain fatty acid concentration in the milkfat and loss in body condition were increased.

Following the return of all cows to a generous feeding level, previously underfed cows produced lower daily yields of milk, milkfat and milk protein for three to five weeks and gained more liveweight and condition over mid-lactation. The residual effect of underfeeding on milkfat production was 1.0 times the immediate effect. There appeared to be no effects of previous underfeeding on milk composition, concentrations of short chain or long chain fatty acids in the milkfat or digestible organic matter intake.

Cow breeding index interacted with the effects of underfeeding in that high vesus low breeding index cows showed (a) a smaller residual effect of underfeeding on milkfat production (0.8 versus 2.0 times the immediate effects, respectively) and (b) a greater immediate reduction in milk protein concentration due to underfeeding.
I am most grateful to my supervisor Dr Colin Holmes for his encouragement while carrying out the experiment and helpful advice during writing up. Dr Duncan MacKenzie and others in the Animal Science Department also kindly contributed their advice and ideas.

Dutch student, Kaas de Lange excellently assisted me with the experimental work. I am also very grateful to Yvonne Moore for her careful work in the preparation and analysing of herbage and faeces samples (the analysis of herbage samples was continued in Yvonne's absence by Karen Garrick). The work of Janice Rumbal and Janis Bridges in collecting and analysing milk samples is also much appreciated.

Farm staff, Martyn Chesterfield and Bruce Perkins, milked the experimental cows with a cheerful and patient attitude.

With regard to statistical methods and use of the computer package REG, invaluable advice was received from Dr Hugh Blair, Sirimathie Wewala and fellow students Sheryl-Anne Newman, John Rendel and Coby Hoogendoorn. Coby also contributed much encouragement and ideas in other areas.

Funding was generously provided by the Massey University Agricultural Research Foundation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER ONE

REVIEW OF LITERATURE

1.1 The Response of Dairy Cows to their Level of Feeding

1.1.1 General Theory of Milk Yield Response to Level of Feeding.

1.1.2 Immediate (Short Term) Effects of Feeding in Early Lactation on Milk Production

1.1.3 Residual (Long Term) Effects of Feeding in Early Lactation on Milk Production

1.1.4 Feeding in Early Lactation and Milk Composition

1.1.5 The Influence of Pre-Partum Nutrition on the Effects of Feeding in Early Lactation

1.2 Genetic Quality of the Dairy Cow and its Influence on Milk Production

1.2.1 Introduction

1.2.2 Genetic Quality in New Zealand

1.2.3 The Effect of Genetic Quality on Aspects of Productivity

1.2.4 Metabolic and Physiological Differences between Cows of High or Low Genetic Potential

1.2.5 The Interaction between the Effects of Genetic Quality and Level of Feeding on Milk Production

1.3 Voluntary Food Intake by Grazing Cows

1.3.1 Introduction

1.3.2 Intake Regulation

1.3.3 The Restriction of Intake by Rumen Fill

1.3.3.1 Animal Factors

1.3.3.2 Food Characteristics

1.3.4 The Control of Intake by Energy Demand
1.3.5 Herbage Allowance and its Relationship with Herbage Intake 33
1.3.6 The Influence of Sward Characteristics on Herbage Intake 37

CHAPTER TWO

METHODS AND MATERIALS
2.1 Aims of the Experiment 40
2.2 Experimental Environment 40
2.3 Outline of the Experiment 40
2.3.1 Statistical Design 40
2.3.2 Cow Selection and Relevant Data 41
2.3.3 Feeding Levels 41
2.3.4 Experimental Periods 42
2.4 Management of the Experimental Cows and Paddocks 42
2.5 Measurements of Animal Production Responses 44
2.5.1 Milk Production, Composition and Fatty Acid Composition of the Milkfat 44
2.5.2 Cow Liveweight and Condition Score 45
2.6 Estimation of Herbage Digestible Organic Matter (DOM) Intake 45
2.6.1 The Herbage Cutting Technique (HCT) 45
2.6.2 The Chromic Oxide Technique (COT) 46
2.7 Determination of Herbage OM Concentration, OM Digestibility, Nitrogen Concentration and Nitrogen Digestibility 48
2.8 Statistical Analysis 50
2.8.1 Multivariate Analysis of Variance 50
2.8.2 Univariate Analysis of Variance 52

CHAPTER THREE

RESULTS
3.1 Animal Production Responses 54
3.1.1 Milk Production 54
3.1.1.1 Pre-Experimental Milk Production 54
3.1.1.2 Experimental and Post-Experimental Milk Yield 54
3.1.1.3 Experimental and Post-Experimental Milkfat Yield 55
3.1.1.4 Experimental and Post-Experimental Milk Protein Yield 55
3.1.1.5 Experimental and Post-Experimental Milkfat Concentration
3.1.1.6 Experimental and Post-Experimental Milk Protein Concentration
3.1.2 Fatty Acid Composition of the Milkfat
3.1.3 Cow Liveweight and Condition Score
3.2 Herbage Digestible Organic Matter (DOM) Intake (kg/cow/day)
3.2.1 Experimental
3.2.1.1 DOM Allowance (HCT)
3.2.1.2 DOM Intake (HCT and COT)
3.2.2 Post-Experimental
3.2.2.1 DOM Allowance (HCT)
3.2.2.2 DOM Intake (HCT and COT)
3.3 Herbage Digestibility, Nitrogen Concentration and Nitrogen Digestibility

CHAPTER FOUR

4.1 Reliability of Methods Used
4.1.1 The Measurement of DOM Intake
4.1.2 The Determination of Fatty Acid Composition of the Milkfat
4.2 The Effects of Underfeeding in Early Lactation
4.2.1 Immediate Effects on Milk Production
4.2.1.1 Milk, Milkfat and Milk Protein Yields
4.2.1.2 The Availability of Energy for Milk Production
4.2.2 Residual Effects on Milk Production
4.2.3 Immediate and Residual Effects on Milk Composition
4.3 The Effects of Cow Breeding Index on Aspects of Productivity
4.3.1 Milkfat Yield, Change in Liveweight and Condition Score
4.3.2 Milk Protein Yield
4.3.3 Milk Yield and Composition
4.3.4 Level of Voluntary Intake
4.4 The Interactive Effects of Cow Breeding Index and Underfeeding in Early Lactation
4.4.1 Immediate Effects on Milk Production
4.4.2 Residual Effects on Milk Production
APPENDIX 1 The method of calculating one day's area of pasture

APPENDIX 2 Differences between treatment groups (days in lactation, milk production, cow liveweight and condition score) at the beginning of the experiment

APPENDIX 3 The liveweights and condition scores of high (H) versus low (L) breeding index (BI) cows grazed at restricted or ad libitum feeding levels during early lactation (raw data means)

APPENDIX 4 Nitrogen concentrations (NC), in vivo (predicted) organic matter digestibilities (OMD) and organic matter concentrations (OM%) of the herbage quadrat samples before grazing (BG) and after grazing (AG) (raw data means)

APPENDIX 5 Differences between cow breeding index groups in liveweight and condition score at the beginning (12/9/83), end (10/10/83) and two weeks following the experiment (24/10/83)

APPENDIX 6 The effect of cow liveweight on milk yield (kg/cow/day) for week four of lactation

APPENDIX 7 The calculation of total immediate and residual effects of underfeeding in early lactation on milkfat yield
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Summary of Immediate Effects on Milkfat Yields and Liveweight (LW) Change from Australasian Experiments where Cows in Early Lactation were Grazed on Contrasting Amounts of Pasture (from Bryant and Trigg, 1982)</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>The Effects upon Mean Daily Milk Yield and Cow Liveweight of Herbage Restriction and Supplementation Treatments Relative to a Control Treatment, both during the Treatment Periods and during the Period Following Return to Control Herbage Allowances (adapted from Le Du and Newberry, 1981; 1982)</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Effects of Underfeeding in Early Lactation on Immediate (I) and Subsequent (S) Yields of Milk and Milkfat (from Bryant and Trigg, 1982)</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>The Effect of Feeding Level during the First Five Weeks of Lactation on Milkfat Production and Body Condition Score for Cows Calving at Condition Score (CS) 5 (adapted from Grainger et al., 1982)</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>The Effect of Feeding Level during Three Weeks in Early Lactation (Weeks 8-10) on Milkfat Production and Body Condition Score (CS) (adapted from Ngarmaks, 1984)</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Summary of Immediate Effects of Underfeeding in Early Lactation on Milk Composition (from Bryant and Trigg, 1982)</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Production of High and Low BI Cows (from Bryant, 1981)</td>
<td>18</td>
</tr>
<tr>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Daily Intake, Fat Yield and Gross Efficiency of High (HBI) and Low (LBI) Breeding Index Cows in Early Lactation (n=16) (from Bryant, 1981)</td>
<td>21</td>
</tr>
<tr>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>The Effect of Three Weeks of Underfeeding in Early Lactation on the Milkfat Production (kg/cow) of High Versus Low Breeding Index (BI) Cows (adapted from Ngarmaks, 1984)</td>
<td>24</td>
</tr>
<tr>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>Definitions of Terms Used in Relation to</td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>Grazing Animals (based on Hodgson, 1979)</td>
</tr>
<tr>
<td>3.1</td>
<td>The Milk Yields (kg/cow/day) of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels during Early Lactation (least square means and their standard errors)</td>
</tr>
<tr>
<td>3.2</td>
<td>Levels of Significance of Treatment Effects (Cow BI, Feeding Level during Early Lactation and their Interaction) on Milk Yield</td>
</tr>
<tr>
<td>3.3</td>
<td>The Milkfat Yields (kg/cow/day) of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels during Early Lactation (least square means and their standard errors)</td>
</tr>
<tr>
<td>3.4</td>
<td>Levels of Significance of Treatment Effects (Cow BI, Feeding Level during Early Lactation and their Interaction) on Milkfat Yield</td>
</tr>
<tr>
<td>3.5</td>
<td>The Milk Protein Yields (kg/cow/day) of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels during Early Lactation (least square means and their standard errors)</td>
</tr>
<tr>
<td>3.6</td>
<td>Levels of Significance of Treatment Effects (Cow BI, Feeding Level during Early Lactation and their Interaction) on Milk Protein Yield</td>
</tr>
<tr>
<td>3.7</td>
<td>The Milkfat Concentrations (%) of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels during Early Lactation (least square means and their standard errors)</td>
</tr>
<tr>
<td>3.8</td>
<td>Levels of Significance of Treatment Effects (Cow BI, Feeding Level during Early Lactation and their Interaction) on Milkfat Concentration</td>
</tr>
<tr>
<td>3.9</td>
<td>The Milk Protein Concentrations (%) of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels during Early Lactation (least square means and their standard errors)</td>
</tr>
</tbody>
</table>
3.10 Levels of Significance of Treatment Effects (Cow BI, Feeding Level during Early Lactation and their Interaction) on Milk Protein Concentration

3.11 The Concentrations (% by Weight) of Short Chain Fatty Acids (SCFA) and Long Chain Fatty Acids (LCFA) in the Milkfat of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels during Early Lactation (least square means and their standard errors)

3.12 The Changes in Liveweight (ΔLW) and Condition Score (ΔCS) of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels during Early Lactation (least square means and their standard errors)

3.13 The Digestible Organic Matter (DOM) Allowances and Intakes (kg/cow/day) of High (H) Versus Low (L) Breeding Index (BI) Cows when Grazed at Restricted or Ad libitum Feeding Levels for Weeks 5-8 of Lactation (least square means and their standard errors)

3.14 The Digestible Organic Matter (DOM) Allowances and Intakes (kg/cow/day) of High (H) Versus Low (L) Breeding Index (BI) Cows when Grazed at Generous Feeding Levels for Weeks 9-10 of Lactation (least square means and their standard errors)

4.1 The Yields of Milk and Milkfat (kg/cow/day) for Cows Grazed at Restricted (R) or Ad libitum (AL) Feeding Levels during Early Lactation (least square means and their standard errors)

4.2 Milk and Milkfat Responses (kg/cow/day) to Changing DOM Intake (I) (kg/cow/day) during the Experimental Period (intake, milk yield and milkfat yield data are derived from least square means)

4.3 The Milkfat Yields (kg/cow/day) of High (H) Versus Low (L) Breeding Index (BI) Cows (least square means and their standard errors averaged
4.4 The DOM Intakes of High (H) Versus Low (L) Breeding Index (BI) Cows (least square means averaged across the restricted and ad libitum feeding levels) Expressed Per Unit of Metabolic Liveweight
\(^\#\) (g/kg\(^{0.75}\)) during Weeks 5-8 and 9-10 of Lactation

4.5 The Milkfat Yields (kg/cow/day) of High (H) Versus Low (L) Breeding Index (BI) Cows Following Underfeeding in Early Lactation (least square means and their standard errors)
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>22</td>
</tr>
<tr>
<td>1.3</td>
<td>28</td>
</tr>
<tr>
<td>1.4</td>
<td>29</td>
</tr>
<tr>
<td>1.5</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>66</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

1.1 Simplified Model to Describe the Relationship of Food to Milk and Liveweight in Dairy Cows According to Response to Level of Intake (from Broster, 1976)

1.2 Effect of Cows of High (HBI) or Low (LBI) Breeding Index on Fat Production (from Bryant, 1984)

1.3 The Relationship between Digestibility of the Diet Selected (OMD%) and the Herbage Intake (g OM/kg liveweight) of Lactating Cows (-----) and Growing Calves (-----) (from Hodgson, 1977)

1.4 Composite Diagram of Relationships between Voluntary Intake and Animal and Food Factors in Ruminants (from Forbes, 1983)

1.5 Data from New Zealand Experiments in which Cows Grazed on Pasture or Lucerne (from Holmes and Macmillan, 1982)

3.1 The Milk Yields of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels in Early Lactation (least square means)

3.2 The Milkfat Yields of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels in Early Lactation (least square means)

3.3 The Milk Protein Yields of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels in Early Lactation (least square means)

3.4 The Milkfat Concentrations of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels in Early Lactation (least square means)

3.5 The Milk Protein Concentrations of High (H) Versus Low (L) Breeding Index (BI) Cows Grazed at Restricted or Ad libitum Feeding Levels in Early Lactation (least square means)
List of Plates

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Herbage mass before and after grazing at the ad libitum feeding level</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>Herbage mass before and after grazing at the restricted feeding level</td>
<td>2</td>
</tr>
</tbody>
</table>