Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Sustainable Ecological Systems and Urban Development in New Zealand: a Wetlands Case Study

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Ecology

at Massey University, New Zealand.

Karen Thelma Palmer

2013
Abstract

The destiny of urban wetlands lies largely in the hands of the urban planners. The results of this study suggest that planners are underestimating the importance of the urban wetland with irreversible consequences. The ecological integrity of natural systems like wetlands is inevitably compromised when they occur in urban environments. The Resource Management Act 1991 altered the approach to urban development from being entirely anthropocentric to one of consideration of the environment in which such developments were planned. Supposedly, adherence to the Act has resulted in a more focused approach to environmental outcomes in district and regional plans. However, this research into the effects of urban development on urban wetland riparian areas identifies a lack of appreciation of their structure and function.

Eight palustrine wetlands were assessed for health and riparian function. They comprised two non-urban wetlands that provided the best-available ecological data on wetland health and six urban wetlands. Ecological indicators and urbanisation data were incorporated into a multi-metric model (named the Urban Wetland Health Index) to evaluate the biological health of urban wetlands.

A key finding of this research is that the urban wetlands have poor ecological health and functioning indicated by excessive nutrients and algal blooms. Other key findings included the inadequate structure and function of the wetland riparian areas; the loss of riparian habitat associated with a lack of indigenous vegetation; the minimal cultural values given to the urban wetlands; and the negative impacts of urban imperviousness and inadequate stormwater infrastructure on wetland health. Notably, older residential areas that had poor stormwater connections to appropriate drainage also had the least healthy urban wetlands. The role of stormwater runoff in compromising the health of the urban wetlands was not addressed in the 2010 Kapiti Coast District Plan Review documents regarding Landscape and Biodiversity. These documents guide the development of the ‘second generation’ district plan.

The Urban Wetland Health Index was found to be robust and reliable with this research. It was designed to address a gap in the tools available to planners, ecologists and other professionals seeking to assess the impacts of urban development on urban wetland ecosystem health. This Index is an important tool for use by councils in reviewing their district plans and undertaking plan changes. The incorporation of ecosystem services science into their policies and plans, and the understanding of the value of urban wetland ecosystem services, is needed to foster urban sustainability.
Acknowledgements

My thanks go to my supervisors, Dr Michael Joy, Associate Professor John Holland and Associate Professor Christine Cheyne. They have been forever patient and encouraging with their ‘second career’ student. Also to the Massey Ecology Group technical staff, Paul Barrett and Tracy Harris, who made sure that I had appropriate laboratory materials and equipment.

Special thanks go to the people who allowed me access to their wetlands – Lorraine and Ian Jensen at Te Hapua; Bruce Benseman and staff at Nga Manu Nature Sanctuary; David Blair and Wendy Huston of the Sevenoaks Midlands Gardens Retirement Village Trust and the Ferndale Trust administrator and staff. Emily Thomson, Kapiti Coast District Council (KCDC) helped me with maps and documents and Brian Phillips, a neighbour of Tower Lake No 1, Chris Horne, Wellington Botanical Society, Rob Cross, Biodiversity Officer KCDC and Jonathan Smith, Owner of Ngarara Farm, Waikanae, were generous with their time and information.

Many others have contributed to the work-in-progress, not the least my family Penny and Mark, John and Jenny, and Mark and Megan, who have been required to listen and read my efforts, and even accompany me on sampling trips. My Wednesday tramping group have withstood my highs and lows as we walked the Wellington hills. My close friends have lent an ear to my frustrations and shared my excitement. My thanks to them all.
Table of Contents

Title page i
Abstract ii
Acknowledgements iii
Table of Contents viii
Tables viii
Figures ix
Abbreviations used in text ix

Chapter 1 Introduction

1.1 Introduction 1
1.2 Problem Statement 2
1.3 Aim and Objectives 2
1.4 Contribution to Knowledge 3
1.5 Limitations to research 3
1.6 Research Approach 3
1.7 Format of Thesis 4

Chapter 2 Urban Development Processes in New Zealand

2.1 Introduction 7
2.2 Land–use Transformation 7
2.3 History of Urban Development 8
2.4 Urbanisation and the Environment 8
2.5 Urban Development in New Zealand 9
2.6 Indigenous Biodiversity versus Urban Development 10
2.7 The Resource Management Act 11
2.8 Role of Central Government and the RMA 12
 2.8.1 Ministry for the Environment 12
 2.8.2 Department of Conservation 13
 2.8.3 The Parliamentary Commissioner for the Environment 14
2.9 RMA and Urban Development 15
 2.9.1 Regional Council Responsibilities 15
2.10 The Local Government Act 2002 16
2.11 District Councils and District Plans 17
2.12 Resource Consents 17
2.13 Managing the Impacts of Development 18
2.14 Urban Design, Standards and New Developments 19
2.15 Conclusion 20
Chapter 3 Ecosystem Modification Associated with Urbanisation

3.1 Introduction
3.2 Intact Ecosystems
3.3 International Studies of Impacts of Urbanisation on Ecosystems
3.4 Global Ecosystem Awareness
3.5 Global Response
3.6 Global Failure
3.7 The Impact of Urban Development on Ecosystems
3.8 Landscape Fragmentation
3.9 The New Zealand’s Ecosystem Experience 1250-1800
3.10 Ecosystem Modification and Urbanisation post 1800
3.11 Planned Colonies and Unplanned Results
3.12 New Zealand’s Environmental Legislation post 1840
3.13 Grasslands, Forests and Conflicts 1920-1960
3.14 The Conservation Movement – from 1960
3.15 The Urban–Rural Gradient
3.16 Valuation of Ecosystems
3.17 Urban Ecosystems
3.18 Landscape Mosaics – Culture, Restoration and Recovery
3.19 Conclusion

Chapter 4 Wetland Riparian area Ecosystems

4.1 Introduction
4.2 New Zealand Wetlands Defined
4.2.1 Wetland Classification
4.2.2 Wetland Functions
4.3 Ecological Metrics for Wetland Condition
4.3.1 Wetland Riparian Areas
4.4 Wetlands and Urbanisation
4.5 Urban Wetland Sustainability
4.6 Hydrological Compromise
4.7 Infrastructure and Species Loss/Extinction
4.8 Wetland Riparian Areas Defined
4.9 Wetland Riparian Functions
4.9.1 Urban Wetland Riparian areas
4.9.2 Connectivity
4.10 Riparian area Value
4.11 The Kapiti Coast Case Study
4.11.1 Regional Geomorphology
4.11.2 Kapiti Coast History
4.11.3 Regional Ecology
4.11.4 Social and Cultural Values
4.12 Conclusion

Chapter 5 Research Design and Methods
5.1 Introduction
5.2 A Wetland Case Study – Loss of Wetland Ecosystems
5.3 Choosing Study Sites
 Site Descriptions:
5.4 A New Assessment Index – Filling the Gap
5.5 Ecological Assessment Methods
5.6 Metrics Measuring Urban Wetland Condition
 Metric 1: Hydrology
 Metric 2: Physicochemical Parameters
 Metric 3: Riparian Ecosystem Intactness and Habitat
 Metric 4: Native Avifauna
 Metric 5: Ecological, Cultural and Social Values
 Metric 6: Urban Development and Infrastructure Impacts
 Metric 7: Stormwater and Imperviousness
5.7 Data Analysis
5.8 Macroinvertebrate Indicators: Use of WMCI and QWMCI
5.9 The Proposed Urban Wetland Health Index

Chapter 6 Research Results
6.1 Introduction
6.2 Results of Urban Wetland Assessment
 Metric 1: Hydrology
 Metric 2: Physicochemical Parameters
 Metric 3: Riparian Ecosystem Intactness and Habitat
 Metric 4: Native Fauna Abundance
 Metric 5: Ecological, Cultural and Social Values
 Metric 6: Urban Development and Infrastructure Impacts
 Metric 7: Stormwater Impacts and Imperviousness
6.3 Proposed Urban wetland Health Index
6.4 Data Analysis
6.5 Macroinvertebrates and the South Island WMCI and QWMCI
6.6 Conclusion

Chapter 7 Discussion of Results
7.1 Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Urban Wetland Health Index</td>
<td>131</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Wetlands and Regulatory Controls</td>
<td>133</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Wetland Ecological Assessment</td>
<td>134</td>
</tr>
<tr>
<td>Metric 1:</td>
<td>Catchment, Wetland and Riparian Hydrology</td>
<td>135</td>
</tr>
<tr>
<td>Metric 2:</td>
<td>Physicochemical parameters</td>
<td>138</td>
</tr>
<tr>
<td>Metric 3:</td>
<td>Riparian Ecosystem Intactness and Habitat</td>
<td>139</td>
</tr>
<tr>
<td>Metric 4:</td>
<td>Native Avifauna</td>
<td>142</td>
</tr>
<tr>
<td>Metric 5:</td>
<td>Ecological, Cultural and Social Values</td>
<td>142</td>
</tr>
<tr>
<td>Metric 6:</td>
<td>Urban Development and Infrastructure Impacts</td>
<td>143</td>
</tr>
<tr>
<td>Metric 7:</td>
<td>Stormwater Impacts and Imperviousness</td>
<td>144</td>
</tr>
<tr>
<td>7.7</td>
<td>Urban Wetland Health Index Assessments</td>
<td>145</td>
</tr>
<tr>
<td>7.8</td>
<td>Kapiti Coast Plan Review 2010 and the RMA</td>
<td>146</td>
</tr>
<tr>
<td>7.9</td>
<td>Conclusion</td>
<td>147</td>
</tr>
</tbody>
</table>

Chapter 8 Conclusions and Recommendations

8.1 Introduction | 149 |
8.2 The Rhetoric and the Reality | 149 |
8.3 Key Recommendations of this Research | 150 |
8.3.1 Urban Wetland Health and Regulatory Controls | 150 |
8.3.2 Wetland Health and Riparian Function | 151 |
8.3.3 Wetland Riparian Function and the UWH Index | 151 |
8.3.4 Urbanisation Impacts | 153 |
8.4 Sustainable New Zealand Ecosystems and Urban Development | 154 |
8.5 Future Directions | 155 |
8.6 Limitations to this research | 155 |
8.7 Sustainable Urban Wetland Health – Whose Responsibility is it? | 156 |

Bibliography | 163 |

Appendices

1. Background Information About the Study Sites | 191 |
2. Protocols for Sampling Aquatic Macroinvertebrates | 196 |
3. Worksheet for Assessment of Wetlands and Riparian areas | 198 |
4. Riparian Vegetation Composition of study wetlands | 207 |
5. Avifauna List and Distribution | 210 |
6. Kapiti Coast Urban Wetland Aquatic Macroinvertebrate Assembly | 211 |
7. Spreadsheet of Urban Wetland Health Index Results | 213 |
8. Wetland riparian areas defined | 215 |
Tables

4.1 A wetland classification system 55
4.2 Impacts of urbanisation on wetland hydrology 62
4.3 Impacts of urbanisation on wetland ecology 63
4.4 Impacts of urban development on riparian area 68
4.5 Value of riparian area 69
5.1 UWH Index components and their scores 91
5.2 Resource consents for urban development Kapiti Coast 100
5.3 Indicative ISC% imperviousness Kapiti Coast 102
5.4 Indication of soil porosity on Kapiti Coast 102
5.5 Connective Impervious Areas (CIA%) of Kapiti Coast 103
6.1 Catchment, wetland and riparian hydrology scores 107
6.2 Physicochemical data 108
6.3 Physicochemical scores 109
6.4 Riparian ecosystem intactness and habitat 114
6.5 Avifauna distribution 115
6.6 Ecological, Cultural, and Social values 116
6.7 Urban development and infrastructure impacts within the riparian zones 118
6.8 ISC% calculation 119
6.9 Urban stormwater impact on wetland water and riparian areas 119
6.10 Proposed Urban Wetland Health Index results for Kapiti Coast 120
6.11 False Discovery Rates 123
6.12 Independent parameters for NMDS 128
7.1 Relationship between catchment hydrology scores and CIA% and ISC% 135
8.1 Central and local government oversight of urban wetlands 157
8.2 Ecological needs for Kapiti Coast urban wetlands 160
Figures

1. Lake, Wetland, Estuary, Lagoon or Natural Body of standing Water 59
2. Map 1: The Great Swamp Kapiti Coast 1840 and 1993 71
3. Development of Tower Lakes 1982 78
4. Lake Ngarara development 2010 78
5. Map 2: Study sites on Kapiti Coast (Google Earth .jpg) 79
6. Te Hapua Wetlands, Shoveler Lagoon (Google Earth .jpg) 81
7. Nga Manu top pond (Google Earth .jpg) 81
8. Te Hapua Wetlands, Shoveler Lagoon west end. 82
9. Nga Manu Nature Reserve top pond 82
10. Waimeha Lagoon (Google Earth .jpg) 83
11. Lake Ngarara (Google Earth .jpg) 83
12. Waimeha Lagoon western end 84
13. Lake Ngarara north end 84
14. Tower Lake No 1 (Google Earth .jpg) 85
15. Midlands Gardens north pond (Google earth .jpg) 85
16. Tower Lake No 1 86
17. Midlands Gardens top pond 86
18. Lake Kotuku (Google Earth .jpg) 87
19. Lake Kotuku stormwater collection pond 88
20. Ferndale stormwater collection pond outlet 88
21. Algal bloom, Lake Kotuku, May 2010 110
22. Swan nest, Tower Lake No 1 110
23. Vegetated swale, Ferndale 113
24. Midlands Gardens riparian lawn 113
25. Spearman Rank-order Correlations 122
26. Cluster Dendrogram of metric components 124
27. Five-Clusters Dendrogram 125
28. NMDS of scoring parameters 126
29. NMDS of non-scoring parameters 127
30. Relative positions of the wetlands catchments imperviousness. 135
Abbreviations used in the text

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Before present time</td>
</tr>
<tr>
<td>CIA</td>
<td>Connected Impervious Areas</td>
</tr>
<tr>
<td>CMS</td>
<td>Conservation Management Strategy</td>
</tr>
<tr>
<td>CRC</td>
<td>Canterbury Regional Council</td>
</tr>
<tr>
<td>CSD</td>
<td>Commission for Sustainable Development</td>
</tr>
<tr>
<td>DOC</td>
<td>Department of Conservation</td>
</tr>
<tr>
<td>EDS</td>
<td>Environment Defence Society</td>
</tr>
<tr>
<td>EERNZ</td>
<td>Ecological Economics Research New Zealand</td>
</tr>
<tr>
<td>EMAP (US)</td>
<td>Environment Monitoring Assessment Program - Wetlands</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Authority</td>
</tr>
<tr>
<td>EPT</td>
<td>Ephemoptera, Plecoptera, Tricoptera</td>
</tr>
<tr>
<td>ERE</td>
<td>Environment Result Expected</td>
</tr>
<tr>
<td>ERMA</td>
<td>Environment Risk Management Authority</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GPS</td>
<td>Geographic Positioning System</td>
</tr>
<tr>
<td>GWRC</td>
<td>Greater Wellington Regional Council</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>HERCULES</td>
<td>High Ecological Resolution Classification for Urban Landscapes and Environmental Systems</td>
</tr>
<tr>
<td>HGM</td>
<td>Hydrogeomorphic Classification Method</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISC</td>
<td>Impervious Surface Cover</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature and Natural Resources</td>
</tr>
<tr>
<td>KCDC</td>
<td>Kapiti Coast District Council</td>
</tr>
<tr>
<td>LGA</td>
<td>Local Government Act</td>
</tr>
<tr>
<td>LINZ</td>
<td>Land Information New Zealand</td>
</tr>
<tr>
<td>LIUDD</td>
<td>Low Impact Urban Design and Development</td>
</tr>
<tr>
<td>LUC</td>
<td>Land Use Capability</td>
</tr>
<tr>
<td>MA</td>
<td>Millennium Ecosystem Assessment</td>
</tr>
<tr>
<td>MCI</td>
<td>Macroinvertebrate Community Index</td>
</tr>
<tr>
<td>MED</td>
<td>Ministry of Economic Development</td>
</tr>
<tr>
<td>MfE</td>
<td>Ministry for the Environment</td>
</tr>
<tr>
<td>MUL</td>
<td>Metropolitan Urban Limit</td>
</tr>
<tr>
<td>NES</td>
<td>National Environmental Standard</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organisations</td>
</tr>
<tr>
<td>NIWA</td>
<td>National Institute for Water and Atmospheric Research</td>
</tr>
<tr>
<td>NPS</td>
<td>National Policy Statement</td>
</tr>
<tr>
<td>NPSFM</td>
<td>National Policy Statement for Freshwater Management</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>NWI (US)</td>
<td>US Fish and Wildlife Service’s National Wetlands Inventory Program</td>
</tr>
<tr>
<td>NZBS</td>
<td>New Zealand Biodiversity Strategy</td>
</tr>
<tr>
<td>NZS</td>
<td>Standards New Zealand</td>
</tr>
<tr>
<td>PCE</td>
<td>Parliamentary Commissioner for the Environment</td>
</tr>
<tr>
<td>QP</td>
<td>Quality Planning</td>
</tr>
<tr>
<td>QV</td>
<td>Quotable Value (of property)</td>
</tr>
<tr>
<td>REC</td>
<td>River Environment Classification</td>
</tr>
<tr>
<td>RMA</td>
<td>Resource Management Act</td>
</tr>
<tr>
<td>RMC</td>
<td>Riparian Management Classification</td>
</tr>
<tr>
<td>RPS</td>
<td>Regional Policy Statement</td>
</tr>
<tr>
<td>SOE</td>
<td>State Owned Enterprise</td>
</tr>
<tr>
<td>TAG</td>
<td>Technical Advisory Group</td>
</tr>
<tr>
<td>TEV</td>
<td>Total economic Value</td>
</tr>
<tr>
<td>UNCED</td>
<td>United Nations Conference on Environment and Development</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Program</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Changer</td>
</tr>
<tr>
<td>UWHI</td>
<td>Urban Wetland Health Index</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>Vol</td>
<td>Volume</td>
</tr>
<tr>
<td>WCC</td>
<td>Wellington City Council</td>
</tr>
<tr>
<td>WCED</td>
<td>World Commission on Environment and Development</td>
</tr>
<tr>
<td>WET</td>
<td>Wetland Evaluation Technique</td>
</tr>
<tr>
<td>WMCI</td>
<td>Wetland Macroinvertebrate Community Index</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organisation</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wildlife Fund</td>
</tr>
</tbody>
</table>