Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PC-Based Aviation Training Devices for Pilot Training in Visual Flight Rules Procedures; Development, Validation and Effectiveness

A thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aviation

at Massey University, Palmerston North, New Zealand

Savern Reweti

2014
Abstract

Flying is a difficult and complex activity that requires a significant level of attention from the pilot as well as a lengthy training period to gain sufficient competency. For issues of both cost and safety, flight simulation has been an integral part of flight training from its earliest beginnings. There have been a number of technological developments and improvements in both the level of fidelity and the training effectiveness of flight simulators. As a result, flight simulators in use today are the result of this technological, psychological, and engineering evolution. Indeed, simulator cockpits can now accurately replicate all of the functions of flight controls and instrumentation found in real aircraft. Furthermore, the development of high-resolution display systems utilising computer-generated imagery (CGI), means that flight simulators can now display very realistic terrain and environmental effects.

The high cost of modern full motion flight simulators (FFSs) has meant that their use has generally been restricted to commercial airlines, military forces, and government agencies. More recently, rapid advances and decreasing costs in PC-based computer technology has enabled flight-training organisations to conduct more training with less expensive fixed-base flight training devices (FTDs). That said, the first study in this thesis indicated that in NZ, even the cost of certified FTDs is still beyond the reach of most flight training schools and their students.

The central tenet of this thesis is that a cost effective strategy for smaller flight training schools could be the utilisation of low-cost personal computer based aviation-training devices (PCATDs) for flight instruction and procedural training tasks. Although a number of studies have indicated that the fidelity of PCATDs may be quite low when compared to FTDs, especially in control loading and flight dynamics, there is some evidence of a positive transfer of training from the PCATD to the aircraft.
Significant research has been conducted on the effective use of PCATDs to reduce Instrument Flight Rules (IFR) training time in the aircraft. Conversely, few studies have examined the use of PCATDs for Visual Flight Rules (VFR) training. This lack of research is likely due to the limited fidelity of most PCATDs, especially in the critical area of visual displays. Customised PCATDs were developed to address these fidelity issues by utilising innovative and cost effective software and hardware technologies.

The aim of this study was to investigate potential training benefits and cost effectiveness of utilising low cost PCATDs, to improve pilot proficiency in performing VFR procedures. A quasi-transfer study was undertaken to ascertain whether a customised low cost PCATD was as effective as a Civil Aviation Authority certified FTD at improving pilot proficiency in the performance of a standard VFR traffic pattern operation.

1. There was no evidence of a difference in VFR task performance between participants trained on the PCATD and the FTD when tested on the FTD. In addition, there were significant improvements in VFR task performance compared to a control group that received no simulator training.

2. A follow-up study compared VFR task performance of two groups with significantly different levels of aviation experience that were trained and tested on the PCATD. Again, there was no evidence of any significant differences in VFR performance between these two groups of pilot trainees and this demonstrated that the PCATD could impart equal training benefits to both experienced and ab-initio pilots.

The Civil Aviation Authority certification of two of the PCATDs developed in this study provided formal recognition of the training potential of these devices. In addition, the study has demonstrated that small to medium sized flight schools could enhance their training programmes significantly by deploying low cost PCATDs.
Acknowledgements

I would like to thank a number of people who have helped me through the duration of this study. My principal supervisor, Associate Professor Lynn Jeffrey for her patience, encouragement, and guidance. Dr. Andrew Gilbey for his expert assistance in statistical analysis. I would also like to thank professional colleagues who have provided support and advice for me as I completed this journey. They include Ashok Poudval General Manager, Massey University School of Aviation; Frank Sharp, Director of Professional Programmes, Massey University School of Aviation; Craig Hunter, General Manager, Ardmore Flying School; John Parker & Carlton Campbell, CAANZ; Dave Walley, Chief Pilot Auckland Rescue Helicopter Trust; Sqn Ldr Nick Pedley, PTS RNZAF; Capt. Rowland Harrison, NZ Army; Steve Hall, B747 Pilot, AIR NZ; Colin Brown, CEO TracMap; Mike Speekman, CEO Melbourne Flight Simulators; Chris Kasapis, CEO CKAS; Hubert Roth, CEO TRC Simulators; Michael Zyskowski Microsoft Research Connections; Mike Zeff Microsoft NZ; Jim Rhoads, CEO Flight 1 Aviation Technologies; Lawrence Schultz, CEO Anyscape Ltd; Alan Gibson; Deane Baunton; Ian Warren; Robin Corn; Lawrie Roche; my cousin Milton Hartley for his technical advice; and many other dedicated enthusiasts who were involved in this PCATD development research.

Most of all I would like to thank my family. My wife Darlene, and my children, Wade, Kemp, and Kathleen, and daughters-in-law, Kristy and Angelique for their tremendous love and support. Also my mother Laura, my sister Judy, my late sister Dixie, and my brothers Adrian and Julian for their love and support.

Dedication

I would like to dedicate this thesis to my grandchildren

Taylor, Raiatea, Kauri, and Isaiah Reweti

who represent the future and all its possibilities
Table of Contents

Abstract ... ii
Acknowledgements ... iv
Table of Contents .. v
List of Tables ... xi
List of Figures .. xiii
List of Equations ... xvi

Chapter 1. Introduction .. 1
1.1 Introduction ... 1
1.2 Statement of the Problem .. 3
1.3 Purpose of the Study .. 5
1.4 Research Objectives .. 5

Chapter 2. The Emergence of PCATDs .. 8
2.1 Introduction ... 8
2.2 PCATD Software .. 10
 2.2.1 X-Planes .. 11
 2.2.2 Microsoft Flight Simulator .. 12
 2.2.3 Microsoft Flight Simulator Visual Display .. 15
 2.2.4 Microsoft Flight Simulator Terrain Synthesis ... 15
 2.2.5 New Zealand Terrain Mesh ... 17
 2.2.6 Land Class .. 18
 2.2.7 Photo-Realistic Scenery ... 19
 2.2.8 Development of Local Airport Scenery ... 19
2.3 PCATD Hardware .. 20
 2.3.1 Precision Flight Controls Inc. .. 21
 2.3.2 Go Flight Avionics ... 21
 2.3.3 SimKits .. 22
2.4 Flight Simulator Standards and Regulatory Approval ... 22
 2.4.1 Introduction .. 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2</td>
<td>The International Regulatory Situation</td>
<td>22</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Regulatory Approval of PCATDs in the USA</td>
<td>25</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Regulatory Approval of PCATDs in Australia and New Zealand</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>The Effect of Fidelity on Flight Simulation</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Physical and Functional Fidelity</td>
<td>32</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Face Fidelity</td>
<td>33</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Psychological Fidelity</td>
<td>34</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Motion Fidelity</td>
<td>34</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Fidelity & Training Performance</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Transfer of Training Theory</td>
<td>38</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Transfer of Training Model</td>
<td>38</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Training Transfer Design</td>
<td>40</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Motor Skill Acquisition</td>
<td>42</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Cognitive Mapping</td>
<td>43</td>
</tr>
<tr>
<td>2.7</td>
<td>Assessment of Transfer of Training</td>
<td>45</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Introduction</td>
<td>45</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Measurement of Transfer of Training from PCATD to Aircraft</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>PCATDs and Transfer of Training</td>
<td>49</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Using PCATDs with Microsoft Flight Simulator</td>
<td>50</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Using PCATDs for Instrument Flight Rules Training</td>
<td>54</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Using PCATDs for Instrument Currency Training</td>
<td>57</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Using PCATDs for Ab-Initio Pilot Training</td>
<td>58</td>
</tr>
<tr>
<td>2.8.6</td>
<td>Using PCATDs for Visual Flight Rules Training</td>
<td>61</td>
</tr>
<tr>
<td>2.8.7</td>
<td>Using PCATDs for Crew Resource Management Training</td>
<td>63</td>
</tr>
<tr>
<td>2.8.8</td>
<td>Using PCATDs for Scenario Based Training</td>
<td>65</td>
</tr>
<tr>
<td>2.8.9</td>
<td>Using PCATDs and Negative Transfer of Training Effects</td>
<td>68</td>
</tr>
<tr>
<td>2.8.10</td>
<td>Using PCATDs for Classroom Instruction</td>
<td>70</td>
</tr>
<tr>
<td>2.9</td>
<td>Conclusions</td>
<td>72</td>
</tr>
</tbody>
</table>
Chapter 3. Flight Training In New Zealand ...75
3.1Introduction..75
3.2Part 61 vs. Part 141 Flight Training Schools ..77
3.3Demand for Flight Training in NZ ...78
3.4Multi Crew Pilot License Training ...79
3.5Flight Training Utilising Synthetic Flight Training Devices80
 3.5.1.....Utilisation of FTDs & PCATDs in the USA ..81
 3.5.2.....Utilisation of FTDs & PCATDs in Australia ...82
 3.5.3.....Utilisation of Synthetic Flight Training Devices in NZ83
 3.5.4.....Utilisation of FTDs & PCATDs in NZ Flight Training Schools85

Chapter 4. Methodology ..86
4.1Action Research ...86
4.2Simulation Design ...89
4.3Research Questions ...94

Chapter 5. Survey of NZ Flight Training Organisations ..95
5.1Introduction ...95
5.2Methodology ..95
5.3Results ...97
 5.3.1.....NZ FTOs with FTDs & PCATDs ..104
 5.3.2.....Summary ...107
 5.3.3.....Discussion ..109

Chapter 6. PCATD Projects ...113
6.1Stage 1: Development of the RNZAF Pilot Training Squadron PCATD113
 6.1.1.....Introduction ..113
 6.1.2.....Background ..114
 6.1.3.....Literature Review ..115
 6.1.4.....Development of RNZAF PTS IFR/VFR PCATD117
 6.1.5.....Initial PCATD Evaluation ..117
 6.1.6.....Preliminary Evaluation of the RNZAF PCATD Prototype121
 6.1.7.....Introduction into Training Curriculum ...123
 6.1.8.....Evaluation of RNZAF PCATD by Pilot Trainees124
6.5.3. Participants ... 217
6.5.4. Apparatus ... 220
6.5.5. Experimental Procedure ... 229
6.5.6. Collection of Data – Frasca TruFlite & Stage 4 SAV2 PCATD 234
6.5.7. Initial Trial (Pilot) ... 244
6.5.8. Results of Stage 4 PCATD Comparative Study ... 251
6.5.9. Discussion ... 280
6.6. Stage 5: Development of Massey School of Aviation Diamond DA 40 PCATD 286
6.6.1. Introduction ... 286
6.6.2. Literature Review ... 287
6.6.3. The Development of a Diamond DA 40 (Glass Cockpit) IFR/VFR 297
6.6.4. PCATD Motion Platform Technology .. 298
6.6.5. Software Engine – Microsoft Flight Simulator FSX Gold Accelerated 301
6.6.6. PCATD Graphic Display Technologies ... 302
6.6.7. Garmin 1000 (G1000) Simulation ... 305
6.6.8. Evaluation of the Diamond DA 40 PCATD ... 310
6.6.9. Results .. 313
6.6.10. Discussion ... 320

Chapter 7. Overall Discussion .. 324
7.1. Introduction .. 324
7.2. How much fidelity is needed in a PCATD for effective transfer of training of IFR/VFR skills to the aircraft? .. 325
 7.2.1. Flight Control Fidelity .. 327
 7.2.2. Depiction of Terrain and 3D Scenery Objects ... 335
 7.2.3. Dynamic Flight Model Fidelity .. 338
 7.2.4. Instrument Panel Fidelity .. 340
 7.2.5. Visual Display Fidelity .. 342
7.3. How much of the IFR /VFR task can be effectively simulated in a PCATD?.......... 346
7.4. How does the effectiveness of a PCATD compare to a CAANZ certified FTD when used for training VFR tasks? ... 352
7.5. Conclusions .. 358
List of Tables

2-1. MSFS Versions ... 13
2-2. Level of Detail vs. Resolution... 18
3-1. Part 61 vs. Part 141 Schools.. 77
3-2. Pilot License Statistics ... 78
3-3. Sample of Australian FTOs with FTDs & PCATDs ... 83
3-4. Full Flight Simulators operated by NZ FTOs. ... 84
5-1. NZ FTOs with FTDs & PCATDs ... 105
6-1. PCATD Continuous Improvement Cycle (Action Research) .. 120
6-2. PTS Simulator Instrument Flight Rules Training Sorties .. 124
6-3. Aircraft & PCATD Training Experience ... 125
6-4. Trainee Pilot Ratings for Practical Evaluation of IFR VFR Tasks 131
6-5. Stage 1 PCATD Krippendorff’s Alpha Coefficient (95% Confidence Interval) 132
6-6. Comparison of PCATD Visual Displays ... 148
6-7. ARHT Pilots - Aircraft & PCATD Currency Training Experience 160
6-8. Pilot Ratings for Practical Evaluation of IFR/VFR Tasks .. 164
6-9. Stage 2 PCATD Krippendorff’s Alpha Coefficient (95% Confidence Interval) 164
6-10. ARHT Pilots Evaluation vs.US Army Instructors Evaluation 166
6-11. Spearman Rank Correlation - .. 166
6-12. Cost Comparison of Operating Helicopter vs. PCATD .. 170
6-13. Ratings for Practical Evaluation of VFR Tasks ... 189
6-14. Stage 3 PCATD Krippendorff’s Alpha Coefficient (95% Confidence Interval) 190
6-15. Participants Previous Aviation Experience (Aircraft, FTD, PCATD) 220
6-16. Sample Visor 2000 Printout of PCATD Flight Variables .. 228
6-17. Experimental Procedure ... 230
6-18. Definition of ICAO International Standard Atmosphere ... 235
6-19. NIFA Scoring System ... 236
6-20. Overhead Rejoin Pattern Scale .. 243
6-21. NIFA Error Rating Score per Second .. 247
6-22. Initial Study Pilots – Aircraft, FTD & PCATD Training Experience 248
List of Figures

2-1. Terrain Mesh Simulation (Facsimile) ... 17
2-2. New ICAO FSTD Standards (Facsimile) ... 24
2-3. Relationship between Degree of Fidelity and Learning Stage (Facsimile) 36
2-4. Model of Transfer Process (Facsimile) ... 39
2-5. Cycle of Experiential Learning and Transfer from Simulations (Facsimile) 44
4-1: The Action Research Cycle (Facsimile) ... 87
5-1. Distribution of Trainees in Large FTO’s in NZ (Total 1100 Students) 98
5-2. Distribution of Trainees in Small FTO’s in NZ (Total 230 Trainees)............................ 98
5-3. Comparison of Ownership of SFTDs between Large FTOs and Small FTOs 108
5-4. Comparison of Survey Responses between Large FTOs vs. Small FTOs 108
6-1. RNZAF CT4-E Airtrainer .. 115
6-2. PTS IFR/VFR PCATDs .. 118
6-3. CT-4E Airtrainer. – RNZAF Base Ohakea Custom Aircraft & Scenery 120
6-4. Desk Top Simulators L.L.C. Helicopter PCATD Visual Display (Facsimile) 141
6-5. AHRT HELISIM PCATD Cockpit Construction .. 146
6-6. Example of Auckland Rescue BK 117 Helicopter Visual Repaint 152
6-7. Completed ARHT PCATD .. 155
6-8. ARHT PCATD Custom Trailer .. 157
6-9. Synthetic Runway Scenes (Facsimile) .. 182
6-10. Stage 3 SAV1 PCATD VFR Trainer & Instructor Station ... 183
6-11. Example of Visual Navigation Chart Segment of Auckland (Facsimile) 192
6-12. Stage 3 PCATD Screenshot Auckland NZ ... 192
6-13. Massey School of Aviation Piper Warrior ... 209
6-14. FS2004 Compatible Piper Warrior Flight Model & Visual Model 209
6-15. Massey School of Aviation Piper Warrior Instrument Panel 210
6-16. Example of Microsoft Flight Simulator Compatible Piper Warrior Instrument Panel ... 210
6-17. Stage 4 SAV2 PCATD Multiple Screens ... 212
6-18. Massey Aviation TruFlite FTD & Ardmore Flight School TruFlite FTD 222
6-19. Frasca FNPT II STD Single engine Mode .. 222
6-20. Frasca TruFlite FNPT II GISt Instructor Station ... 223
6-21. Map Display Module .. 224
6-22. Parameter Graph Plot ... 225
6-23. GISt Record/Replay Module ... 225
6-24. NIFA Scoring Editor ... 226
6-25. SAV2 PCATD Instructor Station & Visor 2000 Software .. 227
6-26. Visor 2000 Printout of PCATD Maximum Flight Variables 228
6-27. Overhead Rejoin Manoeuvre .. 229
6-28. Diagram of Glideslope Angle ... 242
6-29. Frasca Map Display Module Printout ... 245
6-30. Frasca Parameter Plot Module Printout ... 245
6-31. Frasca TruFlite NIFA Scoring Module Printout .. 246
6-32. Aviation Experience Means Plot Graph ... 253
6-33. Means Plot Pitch Performance ... 256
6-34. Post Hoc Pitch Change Scores Means Plot .. 257
6-35. Means Plot Bank Performance .. 258
6-36. Post Hoc Bank Change Scores Means Plot .. 259
6-37. Means Plot Altitude Performance ... 260
6-38. Means Plot Indicated Airspeed Performance .. 261
6-39. Means Plot Heading Performance ... 262
6-40. Means Plot Total Variable Score Performance ... 263
6-41. Post Hoc Total Variable Score Means Plot .. 264
6-42. Means Plot Glide Slope Score Performance ... 265
6-43. Means Plot Overhead Rejoin Pattern Score Performance 266
6-44. Aviation Experience Mean Plots .. 270
6-45 Means Plot Pitch Performance .. 272
6-46. Means Plot Bank Performance .. 273
6-47. Means Plot Altitude Performance ... 274
6-48. Means Plot IAS Performance ... 275
6-49. Means Plot Heading Performance .. 276
6-50. Means Plot Total Score Performance ... 277
6-51. Means Plot Glide Slope Performance .. 278
6-52. OZ Glass Cockpit Display (Facsimile) ... 291
6-53. Diamond DA 40 PCATD Glass and Analogue Cockpits 294
6-54. Example of RNAV Approach (Simplified Facsimile) 308
List of Equations

2-1. Percentage Transfer ... 47
2-2. Cumulative Transfer Effectiveness ... 47
2-3. Incremental Transfer Effectiveness ... 48
6-1. NIFA Score ... 237
6-2. True Air Speed .. 240
6-3. Angle of Bank ... 240
6-4. Angle of Bank Approximation .. 241
6-5. Glideslope ... 242