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Abstract 
 

A designed series of novel boron-difluoride chelated aza-dipyrromethenes with particular 

physical properties have been synthesized for the purpose of exploring their usefulness as 

donors in organic photovoltaic (OPV) cells. Boron-difluoride chelated aza-dipyrromethenes 

are commonly referred in the literature as aza-BODIPYs, and this convention has been 

adopted in this thesis. The aza-BODIPYs synthesised were symmetrically substituted with 

aryl groups on the pyrrole rings. The synthesised aza-BODIPYs were: terthiophene-BF2-

aza-dipyrromethene (87), methoxy-terthiophene-BF2-aza-dipyrromethene (88), 

triphenylamine-BF2-aza-dipyrromethene (100), thiophene-triphenylamine-BF2-aza-

dipyrromethene (106), benzothiadiazole-BF2-aza-dipyrromethene (111), 

benzothiadiazole-thiophene-BF2-aza-dipyrromethene (112), benzothiadiazole-

triphenylamine-BF2-aza-dipyrromethene (113), ethylenedioxythiophene-BF2-aza-

dipyrromethene (125), thiophene-phenothiazine-BF2-aza-dipyrromethene (132), 

thiophene-methylpyrrole-BF2-aza-dipyrromethene (139), thiophene-carbazole-BF2-aza-

dipyrromethene (145), fluorenone-BF2-aza-dipyrromethene (150), and thiophene-

fluorenone-BF2-aza-dipyrromethene (151). The numbers are used to refer to individual 

compounds in this thesis. Ruthenium dyes, terthiophene monomers and silicon quantum 

dots were also synthesised, again with a view to discovering novel donors for OPV cells. 

The aza-BODIPYs were characterized spectroscopically by ultraviolet-visible (UV-VIS) 

absorption spectroscopy, fluorescence and time-correlated single-photon counting 

(TCSPC). Benzothiadiazole-triphenylamine-BF2-aza-dipyrromethene (referred to as 

compound (113) in this thesis) was found to exhibit significant red-shifts in absorption 

(λmax=855 nm) and emission (λem=953 nm). This compound showed a large bathochromic 

shift (205 nm) in absorption, in comparison with the standard BF2-tetra-aryl aza-

dipyrromethene (compound (4), λmax=650 nm). Evidence has been found of strong 

intramolecular-charge-transfer (ICT) character in the excited state. It has been 

demonstrated how absorption and emission of aza-BODIPYs can be fine-tuned by 

manipulating the ICT between variously electronic donating and withdrawing substituents 

in the aza-BODIPY structure. Fluorescence and time-correlated single-photon counting 

(TCSPC) on the aza-BODIPYs in the presence of fullerenes supported the conclusion that 

there were charge transfer processes.  
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Time-dependent density functional theory (TD-DFT) has been successfully used to provide 

a guide to the structure-property relationships and electronic structures of the aza-

BODIPYs. Absorption energies, calculated for the aza-BODIPYs using the B3LYP 

(Becke, three-parameter, Lee-Yang-Parr) exchange-correlation functional with a split-

valence basis set of 6-311++G (2d, P). The B3LYP/6-311++G (2d, P) level of 

calculation delivered reasonable estimates of the absorption wavelengths for a number 

of the aza-BODIPYs, although the calculations did give poor estimates for the 

absorption wavelengths of others. 

Photovoltaic devices were fabricated, using primarily carbon-60 fullerene as acceptor in 

conjunction with the aza-BODIPYs as donors, and successfully generated current on 

exposure to simulated solar radiation. Using a xenon arc lamp as a solar simulator, 

external photon-to-current quantum efficiencies (EQE) and overall power conversion 

efficiencies (η) were measured for these devices with a variety of layer structures, film 

compositions and film-processing conditions. Compound (106) and compound (113) 

gave EQEs of 3.89% and 3.01%, and overall power conversion efficiencies of 0.88% 

and 0.031% respectively. Current density-voltage (J-V) curves exhibit a significant 

inflection, which was reflected in the low fill factors (FF). The low values of EQE and η 

are attributed to low open-circuit voltage (VOC) (0.32 V and 0.55 V in compounds (106) 

and (113)) and low fill factors (FF) (0.312 and 0.0147 in compounds (106) and (113)). 

The low VOC and FF are possibly the result of an interfacial extraction barrier at one of 

the active layer interfaces, possibly between the active layer and the metal cathode. 

Avoiding the possibility of oxide and other layers through encapsulating the devices in 

an inert environment might remove the charge extraction barrier. The conclusion drawn 

is efficiencies of devices based on aza-BODIPYs might be improved significantly 

through further studies of interfaces and defects in devices. 
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