Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
BOVINE SOMATOTROPIN (bST): AN ASSESSMENT OF
POTENTIAL RESPONSE AND PROFITABILITY FOR
ADOPTION ON NEW ZEALAND DAIRY FARMS

A thesis presented in partial fulfilment
of the requirements for the degree of
Master of Agricultural Economics
at Massey University

Palmerston North
New Zealand

Priya Madduma Banda Ekanayake
1995
Title of thesis: **Bovine Somatotropin (BST): An Assessment of Potential Response and Profitability for Adoption on New Zealand Dairy Farms**

(1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for months.

Signed

Date 24/6/94

* *

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME and ADDRESS DATE
ABSTRACT

Administration of the growth hormone bovine somatotropin (bST) is known to increase milk production in lactating cows making the technology attractive for use in commercial dairying. BST a cost reducing and output enhancing technology is used in some countries while others including New Zealand have not approved the use of the hormone. Studies indicate that as a result of bST use by some major dairy producers, low cost or subsidised dairy products could enter international trade to damage competitive positions of other major dairy exporters not adopting the technology. New Zealand's dairy industry is particularly vulnerable to such a situation.

The objectives of the study were to estimate potential response and evaluate the profitability of bST use in New Zealand dairy farms. Response to bST is highly dependent on the level of animal nutrition and most available information is for stall fed cattle. The study attempts to estimate the potential for bST in a pasture based dairy management system in New Zealand.

Twelve sites representative of the major dairying regions of New Zealand were selected. Data on pasture growth rate were compiled from published data or where such data were unavailable were generated through computer modelling. Response to bST was assumed to be a function of pre-grazing herbage mass. Regional bST response were calculated on this basis.

The study assumed a 150 day bST treatment period for seasonal herds in New Zealand. The profitability of bST use was estimated in five 30 day sub periods for the twelve sites used in the study. The incentive to use bST on New Zealand dairy farms is assessed on the basis of a required return to management.

Results reveal that feasibility of bST use in New Zealand dairy farms are closely linked to pasture growing conditions. For the Northland, Bay of Plenty,
Taranaki and Southland sites where pasture growth is consistent, bST use is feasible throughout the 150 day treatment period considered in the study commencing from peak lactation. For the balance of North Island sites which included Waikato, Rangitikei, Manawatu and Wairarapa districts, the drier summer condition and relatively high stocking rates prevailing made bST use feasible only during the first half of the lactation cycle. For the South Island sites excluding the dry Central Otago site, bST could be profitable only during the second half of the lactation cycle because of the colder winters and late spring. The study identifies how bST could be manipulated by the New Zealand dairy farmer to maximize returns.

The findings are that bST could be used selectively to enhance profits on New Zealand dairy farms. If at some stage bST were approved for use in New Zealand, dairy farmers would be aware of the implications. Secondly, it provides a base to survey the attitudes of dairy farmers to know of the likely adoption rates for a better understanding on the effects bST would have on the dairy industry of New Zealand.
ACKNOWLEDGEMENTS

Special thanks are due to my chief supervisor Professor W. C. Bailey who suggested this research and helped me complete the study within a short period of time. The guidance and advice given to me by Professor Bailey is gratefully acknowledged.

I extend my thanks sincerely to my co-supervisor Dr. Cory Matthew of the Department of Plant Science whose door was always open to me. The interest shown by Dr. Matthew helped me to direct this study to completion. The valuable suggestions, constant encouragement and patient hearing needs special mention.

I must thank Professor Stuart McCutcheon of the Department of Animal Science for providing the necessary data for the analysis without whom this study could not have taken place. The suggestions and advice given to me in his speciality is appreciated.

My thanks to a special person Dr. Marion Harris, whose support for my family helped us establish in New Zealand enabling me to progress through the study quite easily.

For the suggestions and support in the various disciplines given to me by Associate Professor Colin Holmes, Professor B. Townsley and Dr. Chris Dake is gratefully acknowledged.

My thanks are also due to Professor Anton Meister of the Department of Agricultural Economics and Business who supported me to do this study in New Zealand.

I also wish to thank the staff of the Department of Agricultural Economics and colleagues for their friendship and help in various ways to make this study a success.
My appreciation and grateful thanks to the New Zealand Ministry of Foreign affairs and Trade and the Central Institute of Technology (New Zealand) for the financial assistance provided towards the cost of this study programme.

Finally, I thank my beloved wife Kumudini whose determined effort, help and encouragement has seen the reality of my arrival in New Zealand and the completion of this study. A big thank you to my loving sons Vedhaya and Kanishka who have foregone much of their interests for my sake and for their patience throughout my study time. My humble thanks to my parents to whom this thesis is dedicated for their love and painstaking effort in bringing me to this stage.
TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xiv

Chapter 1: INTRODUCTION .. 1
 1.1 Statement of the problem 3
 1.2 Objective .. 5
 1.3 Outline of the study .. 5

Chapter 2: LITERATURE REVIEW 6
 2.1 Introduction and overview 6
 2.2 Dairy farming in New Zealand 7
 2.2.1 General characteristics 7
 2.2.2 Dairy farm characteristics and spatial distribution ... 8
 2.3 Overview of Bovine Somatotropin (bST) 9
 2.3.1 Use of Bovine Somatotropin (bST) under controlled environments .. 10
 2.3.2 Use of Bovine Somatotropin (bST) in pasture based dairy systems .. 11
 2.3.2.1 Availability of pasture and response to Bovine Somatotropin (bST) .. 11
 2.3.2.2 Bovine Somatotropin (BST) and feed conversion efficiency .. 12
 2.3.2.3 Bovine Somatotropin (bST) treatment and genetic merit of cows .. 13
 2.3.3 The controversy over Bovine Somatotropin (bST) 14
2.4 Grassland farming systems and seasonality of pasture production in New Zealand .. 16
 2.4.1 Climatic variation and patterns of pasture growth 16
 2.4.1.1 Seasonal Patterns of pasture production 17
 2.4.1.2 Grass species and seasonal production .. 18
 2.4.2 Pasture management .. 18
 2.5 Pasture yield variability 19
 2.6 Pasture growth modelling 20
 2.6.1 "GROW" model ... 20
 2.6.2 Pasture based desk top dairy farm models 21
 2.7 Review of economic studies on bST 22

Chapter 3: MATERIALS ... 24
 3.1 Introduction ... 24
 3.2 Source of data ... 24
 3.3 Observations on data 26

Chapter 4: METHODOLOGY AND ASSUMPTIONS 27
 4.1 Introduction .. 27
 4.2 General approach .. 27
 4.2.1 Flow chart .. 28
 4.2.2 Components of methodology 29
 4.3 Methodology in detail 29
 4.3.1 Estimation of pasture mass 30
 4.3.1.1 Selection of sites 30
 4.3.1.2 Pasture growth rates for selected sites 31
 4.3.1.3 Simulation of pasture mass 32
 4.3.2 Specification of an Econometric model to predict response rates 32
 4.3.3 Prediction of response to bST in selected sites 33
 4.3.4 Farm level returns to bST adoption 34
 4.4 Assumptions ... 35
 4.4.1 Limitations of the major assumptions 36
Chapter 5: RESULTS AND DISCUSSION ... 38

5.1 Introduction ... 38

5.2 Pasture Growth Rates (PGR) and pasture mass data for the selected 39

5.2.1 Pasture growth rates for the selected locations 39

5.2.2 Simulation of pasture mass data for selected sites using the 'Udder' model 40

5.3 Econometric model for bST response function ... 48

5.3.1 Model 1 .. 50

5.3.1.1 Analysis of variance - model 1 .. 50

5.3.2 Model II .. 51

5.4. Estimation of response to bST in selected sites ... 53

5.4.1 Nature of response to bST ... 56

5.4.2 Response to bST in selected sites ... 57

5.5 Returns to bST use .. 73

5.5.1 Returns to bST use in Warkworth .. 75

5.5.2 Returns to bST use in Te Puke ... 76

5.5.3 Returns to bST use in Hamilton ... 79

5.5.4 Returns to bST use in Manaia (South Taranaki) 80

5.5.5 Returns to bST use in Stratford (Central Taranaki) 81

5.5.6 Returns to bST use in Wanganui ... 82

5.5.7 Returns to bST use in Palmerston North .. 83

5.5.8 Returns to bST use in Masterton ... 84

5.5.9 Returns to bST use in Winchmore .. 85

5.5.10 Returns to bST use in Invermay .. 87

5.5.11 Returns to bST use in Gore ... 88

5.5.12 Returns to bST in Greymouth ... 89

5.5.13 Summary - returns to bST use .. 90

5.6 Sensitivity analysis .. 91

Chapter 6: SUMMARY AND CONCLUSIONS 95

6.1 Introduction ... 95

6.2 Summary .. 95

6.3 Implications to dairy farming in New Zealand .. 100
6.4 Suggestions for further research

BIBLIOGRAPHY

APPENDIX
LIST OF TABLES

Table 1. Bi-weekly pasture mass measurements and milkfat production with and without bST from Hoogendoorn et al. (1990) 25
Table 2. Validation of PGR (kgDM/ha/day) using 'GROW' model for Massey University's no.4 dairy farm - 1987/88. 40
Table 3. Pasture growth rates (kg DM/ha/day) simulated using the 'GROW' model. ... 41
Table 4. Published pasture growth rate data for sites selected for the study. ... 42
Table 5. Validation of 'Udder' model for simulation of herbage mass. ... 43
Table 6. Regression coefficients from Fourier series for predicted and measured pasture mass data for Massey University's No. 4 Dairy farm. .. 44
Table 7. Pasture mass data simulated by 'Udder' model for North Island sites ... 46
Table 8. Pasture mass data simulated by 'Udder' model for South Island sites ... 47
Table 9. Parameter estimates from econometric model 1 48
Table 10. Analysis of variance for econometric model 1. 50
Table 11. Parameter estimates from econometric model II 51
Table 12. Analysis of variance for econometric model II 51
Table 13. Actual MF response measured by Hoogendoorn et al. (1990) against the fit from the model. 54
Table 14. Set of weighted co-efficients for stage of lactation effect used to predict response to bST. 55
Table 15. Summary of analysis of variance for straight line model and quadratic curve model 57
Table 16. Predicted increase in milkfat production by use of bST under average conditions in different sites in New Zealand. 58
Table 17. Likely response per cow to bST under average conditions in Warkworth obtained by fitting bST response function to simulated pasture mass data.

Table 18. Likely response per cow to bST under average conditions in Te Puke obtained by fitting bST response function to simulated pasture mass data.

Table 19. Likely response per cow to bST under average conditions in Hamilton obtained by fitting bST response function to simulated pasture mass data.

Table 20. Likely response per cow to bST under average conditions in Stratford obtained by fitting bST response function to simulated pasture mass data.

Table 21. Likely response per cow to bST under average conditions in Manaia obtained by fitting bST response function to simulated pasture mass data.

Table 22. Likely response per cow to bST under average conditions in Wanganui obtained by fitting bST response function to simulated pasture mass data.

Table 23. Likely response per cow to bST under average conditions in Palmerston North obtained by fitting bST response function to simulated pasture mass data.

Table 24. Likely response per cow to bST under average conditions in Masterton obtained by fitting bST response function to simulated pasture mass data.

Table 25. Likely response per cow to bST under average conditions in Winchmore obtained by fitting bST response function to simulated pasture mass data.

Table 26. Likely response per cow to bST under average conditions in Winchmore (irrigated) obtained by fitting bST response function to simulated pasture mass data.

Table 27. Likely response per cow to bST under average conditions in Invermay obtained by fitting bST response function to simulated pasture mass data.
Table 28. Likely response per cow to bST under average conditions in Gore obtained by fitting bST response function to simulated pasture mass data. .. 71
Table 29. Likely response per cow to bST under average conditions in Greymouth obtained by fitting bST response function to simulated pasture mass data. .. 72
Table 30. Returns to bST use under average conditions in Warkworth ... 76
Table 31. Returns to bST use under average conditions in Te Puke ... 79
Table 32. Returns to bST use under average conditions in Hamilton ... 80
Table 33. Returns to bST use under average conditions in Manaia ... 81
Table 34. Returns to bST use under average conditions in Stratford ... 82
Table 35. Returns to bST use under average conditions in Wanganui ... 83
Table 36. Returns to bST under average conditions in Palmerston North ... 84
Table 37. Returns to bST use under average conditions in Masterton ... 85
Table 38. Returns to bST use under average conditions in Winchmore ... 86
Table 39. Returns to bST use for an irrigated site in Winchmore ... 86
Table 40. Returns to bST use under average conditions in Invermey ... 87
Table 41. Returns to bST use under average conditions in Gore ... 88
Table 42. Returns to bST use under average conditions in Greymouth ... 89
Table 43. Summary of feasible periods for bST treatment and likely returns to management under average pasture growth and farming conditions for sites selected in the study. .. 92
Table 44. Breakeven levels of incremental milkfat required per cow for each bST treatment period of 30 days at different economic conditions. .. 93
Table 45. Maximum cost of bST and required price for milkfat in order for bST use to be feasible at different locations .. 94

Appendix

Table 2A 1. Climate variability in popular dairy regions 114
Table 3A 1. Physical data used to predict PGR from GROW model 116
Table 4A 1. Regional farm characteristics used for Udder model 117
Table 7A 1. Sensitivity analysis - Returns to Management at different economic conditions - Warkworth

Table 7A 2. Sensitivity analysis - Returns to Management at different economic conditions - Te Pupe

Table 7A 3. Sensitivity analysis - Returns to Management at different economic conditions - Hamilton

Table 7A 4. Sensitivity analysis - Returns to Management at different economic conditions - Manaia

Table 7A 5. Sensitivity analysis - Returns to Management at different economic conditions - Stratford

Table 7A 6. Sensitivity analysis - Returns to Management at different economic conditions - Wanganui

Table 7A 7. Sensitivity analysis - Returns to Management at different economic conditions - Palmerston North

Table 7A 8. Sensitivity analysis - Returns to Management at different economic conditions - Masterton

Table 7A 9. Sensitivity analysis - Returns to Management at different economic conditions - Winchmore (irrigated)

Table 7A 10. Sensitivity analysis - Returns to Management at different economic conditions - Invermay

Table 7A 11. Sensitivity analysis - Returns to Management at different economic conditions - Gore

Table 7A 12. Sensitivity analysis - Returns to Management at different economic conditions - Greymouth
LIST OF FIGURES

Figure 1. Flow chart for bST response estimation and calculation of returns to bST use ... 28
Figure 2. Comparison of Fourier curves derived for predicted and measured pasture mass for Massey University’s no. 4 dairy farm (1987/88). .. 45
Figure 3. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Warkworth. .. 60
Figure 4. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Te Puke. .. 61
Figure 5. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Hamilton. .. 62
Figure 6. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Stratford. .. 63
Figure 7. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Manaia. .. 64
Figure 8. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Wanganui. .. 65
Figure 9. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Palmerston North. ... 66
Figure 10. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Masterton. .. 67
Figure 11. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Winchmore. .. 68
Figure 12. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Winchmore - irrigated pasture. .. 69
Figure 13. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Invermay. .. 70
Figure 14. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Gore. 71
Figure 15. Comparison of expected milk production per cow in bST treated and control groups against average pasture mass in Greymouth. .. 72

Appendix

Figure 1A. Spread of dairying in New Zealand in relation to characteristic soils .. 113
Figure 2A. Climate variation in New Zealand .. 115