Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY OF WINTER MILK PRODUCTION AND A COMPARISON OF TOWN MILK AND SEASONAL SUPPLY DAIRY FARMS IN THE MANAWATU

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Animal Science at Massey University.

GRAY WALTER BALDWIN
1989
ABSTRACT

The literature review commences with a brief description of the past and present town milk industry and reviews the consequences of recent legislative changes which have already wrought substantial change to the town milk industry.

This is followed by a review of factors affecting milk production per cow (feed intake, level of supplementation, cow quality, breed, stage of lactation, calving date) and factors affecting milk production per hectare (stocking rate) on pastoral dairy farms. The likely effects of these factors on the productivity of town milk and seasonal supply farms is also discussed.

There were two major objectives to the present study. The first was to measure the productivity of town milk farms over the winter period. The second was to compare the overall annual productivity of town milk farms with that of seasonal supply farms in the same district. To achieve these objectives, a survey of 58 Manawatu dairy farms (both town milk and seasonal supply) was carried out during the 1988 winter.

Average daily milk production per cow on town milk farms during winter was 12.6 litres/cow/day and ranged from 8 to 19 litres/cow/day. Mean pasture cover and mean cow condition score decreased slightly over the winter period. Average daily production per cow of milkfat, protein and total solids fluctuated during winter, but showed a universal downward trend. The percentage of fat, protein and total solids in milk all decreased over the winter period. Average daily milk production per cow in winter was positively correlated with a number of other variables measured including cow condition score and pasture cover in May, annual milkfat production per cow and per hectare, and digestibility of supplement eaten.

Daily production per cow was negatively correlated with milkfat % and somatic cell count. Farmers who practiced an "all autumn" calving policy to provide winter lactating cows had significantly higher winter milk production than those farmers who continued to milk late spring / summer calved cows through the winter.
On an annual basis, town milk farms produced considerably less milkfat per cow and per hectare than seasonal supply farms although stocking rate on the two farm types was similar. As a consequence of a high winter feed demand, town milk farmers made, brought in and fed more hay and silage supplement than seasonal supply farmers. Town milk farmers grew more forage crops, fed more concentrates and made more extensive use of irrigation and nitrogen fertilizer to boost pasture growth at strategic times of the year than seasonal supply farmers. No significant differences in youngstock grazing policy was observed between farm types. Both seasonal supply and town milk farms were assumed to grow similar amounts of feed per hectare, but town milk farms fed more per hectare when brought in supplements were considered. However feed consumption per hectare was estimated to be significantly higher on seasonal supply farms due to their higher milkfat production per hectare. This resulted in seasonal supply farms having a significantly higher annual feed utilisation efficiency (95 %) compared with town milk farms.

Hay and silage quality in terms of DM Digestibility, protein % and DM % was measured on all farms. Mean digestibility of DM was 56.1 % and 64.5 % for hay and silage respectively.
ACKNOWLEDGEMENTS

I am very grateful to my supervisor, Dr C.W. Holmes for his invaluable guidance throughout this study and for his dedicated assistance with the collection, analysis and interpretation of data.

I also extend sincere thanks to the 58 Manawatu dairy farmers who took time to show me around their farms and to answer the many questions about their production systems which I asked them. This thesis is based entirely upon data provided by these farmers and without their cooperation, the study would not have been possible.

The Manawatu Cooperative Dairy Company Limited gave permission for a supplier survey to be carried out and provided contact addresses and milkfat production figures for a number of the survey farms. Their helpfulness in these matters was appreciated.

Funding for both research and personal expenses was generously provided by the New Zealand Town Milk Producers Federation.

The skilful assistance of Christine Andricksen with the final draft and word processing of this thesis is gratefully acknowledged.

Thank you to my parents in Putaruru and to my many friends in Palmerston North who encouraged me and provided motivation to undertake postgraduate study.

I wish to express special appreciation to my dear wife, Marilyn who has been a loving and supportive partner throughout the past 14 months of this study. She has consistently been caring and unselfish, putting my ambitions and welfare ahead of her own. This has greatly enhanced the efficiency and enthusiasm with which this study has been completed.

Finally, as a Christian, I acknowledge the sovereign guidance of the Lord Jesus Christ in this study and throughout my years here at Massey University. He has created a wonderfully complex world and has given me the ability to study one small part of it.
TABLE OF CONTENTS

ABSTRACT (i)

ACKNOWLEDGEMENTS (iii)

LIST OF TABLES (ix)

LIST OF FIGURES (xi)

LIST OF ABBREVIATIONS (xv)

CHAPTER ONE
Review of Literature

1.1 Town milk and seasonal supply farms in New Zealand. 1

1.2 Factors affecting milk production per cow. 3

1.2.1 Feed intake 3

1.2.1.1 Animal factors 3
1.2.1.2 Plant factors 4
1.2.1.3 Environmental factors 6

1.2.2 Feeding of supplements 7

1.2.2.1 Substitution 7
1.2.2.2 Quality of supplement 7
1.2.2.3 Stage of lactation and level of production. 8
1.2.2.4 Body condition 8

1.2.3 Cow quality 8

1.2.3.1 Milk and milkfat production. 8
1.2.3.2 Liveweight and liveweight change. 9
1.2.3.3 Feed intake 9
1.2.3.4 Grazing behaviour. 9
1.2.3.5 Feed conversion efficiency. 9
1.2.4 Breed
1.2.5 Stage of lactation
1.2.6 Calving date.

1.2.6.1 Seasonal supply farms.
1.2.6.2 Town supply calving dates.

1.3 Factors affecting milk production per hectare.
1.3.1 Introduction to Stocking Rate.
1.3.2 The production per hectare - stocking rate relationship.
1.3.3 Level of feeding and milk production per cow
1.3.4 Pasture Utilisation
1.3.5 Total net pasture production.
1.3.6 Pasture quality.

1.4 Effects of these factors on the productivity of town milk farms compared with seasonal supply farms.
1.4.1 Annual milkfat production per cow.
1.4.2 Annual milkfat production per hectare

CHAPTER TWO
Objectives and Methods

2.1 Objectives of the study.
2.2 Selection and surveying of farms.
2.3 Location of farms/Soil types
2.4 Information collected.
2.4.1 Town milk farms only.

2.4.1.1 Average daily milk production per cow during winter.
2.4.1.2 Condition score
2.4.1.3 Pasture cover.
2.4.1.4 Other town milk information

2.4.2 Town milk and seasonal supply farms
2.5 Statistical procedures
CHAPTER THREE
Results

3.1 Town milk farms

3.1.1 Summary Information for town milk farms.

3.1.1.1 Area, Stocking Rate and Milkfat Production
3.1.1.2 Quota levels

3.1.2 Changes in Pasture cover and cow condition score over winter

3.1.2.1 Farm average pasture cover
3.1.2.2 Average cow condition score.
3.1.2.3 Relationship between condition score and average farm cover.

3.1.3 Production levels per cow achieved on Town milk farms during Winter 1988

3.1.3.1 Daily volumetric milk production.
3.1.3.2 Average daily production of Milkfat, Protein, and Total solids.

3.1.4 The association between Average daily milk production per cow over winter and other variables as shown by regression.

3.1.5 Trends in milk composition over winter.

3.1.6 Comparison of town milk farmers who calved all winter milking cows in Autumn and farmers who retained some spring calvers through winter.
3.2 A comparison of Town Milk and Seasonal Supply milk production for the 1987/88 season.

3.2.1 Comparison of farm areas, cow numbers and production

3.2.2 Comparison of town milk and seasonal supply farms for feeding policy.

3.2.2.1 Hay and silage
3.2.2.2 Cropping
3.2.2.3 Nitrogen, concentrate feed and irrigation usage.

3.2.3 Comparison of Town milk and seasonal supply farms for stocking policy.

3.2.4 Comparison of town milk and seasonal supply farms for feed utilisation efficiency

3.2.5 Supplement quality.

3.2.6 Comparison of production and feeding for the top five (on a milkfat per hectare basis) town milk and the top five seasonal supply farms.

C H A P T E R F O U R
Discussion

4.1 Farm size and milk production on town milk farms.

4.1.1 Comparison of surveys

4.1.2 Production and quotas on Manawatu town milk farms.

4.2 Pasture cover and cow condition score changes

4.2.1 Pasture cover

4.2.2 Cow condition score

4.2.3 Interaction of condition score and pasture cover.

4.3 Average daily milk production per cow over winter.

4.4 Trends in per cow production of milkfat, protein and total solids and milk composition over winter.
4.5 Regression relationships of cowADM on other variables.
4.5.1 Condition score.
4.5.2 Pasture cover
4.5.3 Production per hectare
4.5.4 Annual milkfat production per cow.
4.5.5 Digestibility of supplement.
4.5.6 Milkfat %
4.5.7 Somatic cell count.
4.6 Comparison of all autumn calved vs some spring calved winter herds.
4.7 Town milk and seasonal supply farms in the Manawatu district.
4.8 Feeding policy on town milk and seasonal supply dairy farms
4.9 Stocking policy
4.10 Feed utilisation efficiency.
4.11 Supplement quality
4.12 The "top five" town milk and seasonal supply farms.
4.13 General considerations

APPENDICIES

1.0 Data collected off town milk and seasonal supply farms.
1.1 Quotas, pasture cover and cow condition score on town milk farms.
1.2 General data from both town milk and seasonal farms
2.0 Feed calculations
2.1 Supplements made and fed in 1987/88
2.2 Total feed grown.
2.3 Total feed fed.
2.4 Feed consumption

BIBLIOGRAPHY
LIST OF TABLES

Table 1.1 Number of farms, cows and average herd size on New Zealand town milk and seasonal supply dairy farms 1
Table 3.1 Summary statistics for town milk farms 32
Table 3.2 Summary of town milk farm quotas 38
Table 3.3 Summary of pre and post grazing herbage masses and changes in pasture cover over winter on town milk farms 42
Table 3.4 Summary of condition score changes for autumn calving cows on town milk farms 43
Table 3.5 District average daily milk production per cow by week 45
Table 3.6 Average daily production of milkfat, protein and total solids (kg/cow/day) by ten day period 49
Table 3.7 Summary of milk component production over winter (kilograms component per cow per day) 53
Table 3.8 Changes in milk composition over winter by ten day periods 58
Table 3.9 Summary of milk composition over winter 61
Table 3.10 Comparison of winter milking herds with all autumn or some spring calving cows 62
Table 3.11 Comparison of area, cow numbers and production 64
Table 3.12(a) Comparison of supplements made and fed 66
Table 3.12(b)	Comparison of supplements bought	67
Table 3.13	Comparison of cropping regime	68
Table 3.14	Comparison of nitrogen usage, concentrate feeding and irrigation	69
Table 3.15	Comparison of stocking policy	70
Table 3.16	Comparison of feed demand, supply and utilisation	72
Table 3.17	Comparison of supplement quality	74
Table 3.18	Comparison of production and feeding on the top 5 town milk and seasonal supply farms	75
Table 4.1	Comparison of national milkfat production on seasonal supply farms in two seasons	76
Table 4.2	Comparison of the present study with observations in a Lincoln College study	77
Table 4.3	Comparison of milkfat production (kg/hectare) on Kairanga factory supply farms with the New Zealand average	78
Table 4.4	Comparison of autumn/winter pasture growth rates for 1988 with 8 year averages, measured by MAF on Manawatu "downland" sites	80
Table 4.5	Coefficients of variation for cowADM, milkfat %, protein % and total solids %	85
Table 4.6	Comparison of level of "over quota" milk production for "All Autumn" and "Some Spring" farms	90
Table 4.7	Comparison of two separate studies of town milk and seasonal supply farms in the Manawatu and South Auckland	92
Figure 1.1	Theoretical milkfat production at different stocking rates	15
Figure 1.2	Theoretical milkfat production per cow as stocking rate increases	18
Figure 1.3	Theoretical residual herbage mass as stocking rate increases	21
Figure 2.1	Location of survey farms in the Manawatu district	27
Figure 3.1	Distribution of farm size on town milk farms	33
Figure 3.2	Distribution of herd size on town milk farms	33
Figure 3.3	Distribution of stocking rate on town milk farms	34
Figure 3.4	Distribution of 1987/88 milkfat production on town milk farms	34
Figure 3.5	Distribution of milkfat production per hectare on town milk farms	35
Figure 3.6	Distribution of milkfat production per cow on town milk farms	35
Figure 3.7	Relationship between milkfat production per hectare and stocking rate on town milk farms	36
Figure 3.8	Relationship between milkfat production per hectare and total milkfat production on town milk farms	37
Figure 3.9	Relationship between milkfat production per hectare and herd size on town milk farms	37
Figure 3.10	Distribution of quota on town milk farms	39
Figure 3.11	Distribution of quota per hectare on town milk farms	39
Figure 3.12	Relationship between quota per hectare and the proportion of milk sold as "quota" milk	40
Figure 3.13	Relationship between quota per hectare and winter milking cows per hectare	41
Figure 3.14	Relationship between quota per hectare and the required daily milk production per winter milking cow to meet quota	41
Figure 3.15	Relationship between mean cow condition score and average farm cover in May	44
Figure 3.16	Relationship between mean cow condition score and average farm cover in July	44
Figure 3.17(a)	Mean milk yield per cow per day across all farms during winter	46
Figure 3.17(b)	Mean milk yield per cow per day with maximum and minimum values shown	47
Figure 3.18	Distribution of average daily milk production per cow in winter on town milk farms	48
Figure 3.19	Mean milkfat yield per cow per day across all farms during winter	50
Figure 3.20	Mean protein yield per cow per day across all farms during winter	51
Figure 3.21 Mean yield of total solids per cow per day across all farms in winter
Figure 3.22 Relationship between average daily milk production per cow in winter and mean cow condition score in May
Figure 3.23 Relationship between average daily milk production per cow in winter and average farm cover in May
Figure 3.24 Relationship between average daily milk production per cow in winter and milkfat per hectare in the 1987/88 season
Figure 3.25 Relationship between average daily milk production per cow in winter and total milkfat produced per cow in 1987/88 season
Figure 3.26 Relationship between average daily milk production per cow in winter and digestibility of hay or silage fed
Figure 3.27 Relationship between average daily milk production per cow during winter and average fat percentage in milk
Figure 3.28 Relationship between average daily milk production per cow in winter and average somatic cell count in milk
Figure 3.29 Mean milkfat % across all farms during winter
Figure 3.30 Mean protein % across all farms during winter
Figure 3.31 Mean total solids % across all farms during winter
Figure 3.32 Mean somatic cell count across all farms during winter
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.33</td>
<td>Distribution of silage digestibility for all survey farms</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.34</td>
<td>Distribution of hay digestibility for all survey farms</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.1(a)</td>
<td>Milk production during May</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.1(b)</td>
<td>Maximum temperature in Palmerston North during May</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.1(c)</td>
<td>Rainfall in Palmerston North during May</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Lactation curves for autumn and spring calving cows</td>
<td>91</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

Common abbreviations used in this thesis are as follows:

- = minus
* = multiplied by
/ = divided by
+ = plus
^ = to the power of
AA = All Autumn calving winter milkers
cowADM = Milk production (litres per cow per day)
DM = Dry matter
Ha = Hectare
Kg = Kilogram
ME = Metabolisable Energy
MF = Milkfat
MJ = Megajoule
OM = Organic matter
Prob = Probability
SOM CELL = Somatic cell
SS = Some spring calving winter milkers
STD DEV = Standard deviation