Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECT OF CONTINUOUS STOCKING
OF BREEDING EWES
AT DIFFERENT SWARD SURFACE HEIGHTS
DURING THE LATE SUMMER-AUTUMN
ON HERBAGE INTAKE AND PRODUCTIVITY

A thesis presented in partial fulfilment
of the requirements for the degree of

Master of Agricultural Science
in Animal Science
at Massey University
New Zealand

Aderina Uli Panggabean
1995
Massey University Library

Thesis Copyright Form

Title of thesis: EFFECT OF CONTINUOUS STOCKING OF BREEDING EWES AT DIFFERENT SWAY SURFACE HEIGHTS DURING THE LATE SUMMER-AUTUMN ON HERbage INTAKE AND PRODUCTIVITY

(1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.
(b) I do not wish my thesis to be made available to readers without my written consent for months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for months.

(3) (a) I agree that my thesis may be copied for Library use.
(b) I do not wish my thesis to be copied for Library use for months.

Signed

Date 13 APRIL 1995

* * * * * * * * * * * * *

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME and ADDRESS

DATE
Continuous stocking management is preferred by many New Zealand sheep farmers during the late summer-autumn period. At present, there are no guidelines available to farmers that define the optimum sward conditions for continuous stocking management of ewes leading up to, and during, the mating period. Three different nominal sward surface heights (SSH) (2, 4, and 6 cm) replicated twice were used for a trial with 14 mixed age breeding ewes per treatment (n=84 ewes) continuously stocked from February to April 1994. The pastures consisted of predominantly 10-year old ryegrass (Lolium perenne), white clover (Trifolium repens) and browntop (Agrostis capillaris). Sward heights were measured weekly throughout the trial. Herbage intakes by the ewes were determined indirectly from faecal output using chromic oxide controlled release capsules and in vitro digestibility of digesta samples obtained from oesophageal-fistulated sheep run with the ewes.

The average actual sward surface heights for the 2, 4, and 6 cm SSH treatments were 2.7 vs 4.3 vs 6.1 cm (± 0.05 cm (SEM), P<0.001). The pasture characteristics in terms of herbage mass, dead matter content and organic matter digestibility (OMD) for the 2, 4, and 6 cm SSH treatments were: 2723 vs 3880 vs 4337 (± 204 kg DM/ha, P<0.05); 69.74 vs 64.62 vs 51.37 (± 2.78%, P<0.05); 66.52 ± 0.85 vs 60.29 ± 0.90 vs 69.56 ± 0.84% (P<0.01). The daily liveweight gain, condition score, wool growth rate and mean fibre diameter for ewes grazing the 2, 4, and 6 cm SSH treatments were: 103 vs 122 vs 195 (± 15 g/day, P<0.05); 2.89 vs 3.05 vs 3.23 (± 0.06 condition score units, P<0.1); 1.30 vs 1.26 vs 1.41 (± 0.03 mg/cm²/day, P<0.1); 43.01 vs 44.07 vs 44.48 (± 0.35 microns, P>0.1).

The results suggest that swards of at least 6 cm height are required to support adequate liveweight gain and condition score of breeding ewes in the period prior to and during mating. The accumulation of weed and dead material appear to be the major problems limiting intake and ewe performance.

Keywords Continuous stocking; late summer-autumn; sward height; breeding ewes
ACKNOWLEDGEMENTS

I express my deepest gratitude and sincere appreciation to my supervisors, Dr. S.T. Morris and Professor S.N. McCutcheon for their invaluable guidance and encouragement in all aspects of my studies including the preparation of this manuscript.

I am extremely grateful to Professor W.J. Parker of the Department of Agricultural and Horticultural Systems Management for his constructive criticism towards the preparation and presentation of this manuscript at the New Zealand Society of Animal Production Annual Conference.

I would also like to convey my thanks to those who have helped me during the experimental work: Kerry Kilmister, Dean Burnham, John Williamson, Hamsun Husain, Penny Back, Yvette Cottam and Marjorie Elwin.

Thanks are extended to staff of the Nutrition Laboratories in the Animal Science Department for chromium and herbage in vitro digestibility analysis.

My sincere gratitude to Professor D.J. Garrick and Dr. P.C.H. Morel for statistical advice.

My special thanks to all staff and postgraduate students at the Department of Animal Science for their help and hospitality during the period of my study.

I gratefully acknowledge The New Zealand Ministry of Foreign Affairs and Trade (MFAT) for providing me a scholarship and the C. Alma Baker Trust for financial support for the research programme.

Finally to my mother, brother and sisters, and to my Kiwi parents, Rod and Myrle Watt for their prayer and moral support.

Above all, I thank and praise my God, Lord Jesus Christ for He always guides me along the path of my life. To Him be all the glory and praise.

This thesis is dedicated to the memory of my late father who encouraged me to undertake further study. He has played a significant role in my achievement so far.
TABLE OF CONTENTS

ABSTRACT .. 1

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS viii

CHAPTER ONE INTRODUCTION 1

PREAMBLE ... 1

PASTORAL SHEEP PRODUCTION SYSTEMS 1

Seasonal Effects 2
Herbage Composition Within The Sward 3
Stocking Rate 5

THE CONCEPT OF HERBAGE AVAILABILITY
MEASUREMENTS UNDER PASTORAL
GRAZING SYSTEMS 6

Herbage Mass and Herbage Allowance 6
Sward Surface Height (SSH) 8

ASSESSMENT OF HERBAGE ALLOWANCE 10

Single Probe Capacitance Meter 11
Ellinbank Pasture Meter (EPM) 12
Hill Farming Research Organization (HFRO) Sward Stick . 13
METHODS OF CONTROLLING HERBAGE ALLOWANCE ... 15

Continuous Stocking Systems ... 15
Rotational Grazing Systems ... 18

HERBAGE ALLOWANCE, HERBAGE INTAKE
AND ANIMAL PERFORMANCE ... 19

Lamb Performance ... 20
Hoggets .. 22
Breeding Ewes .. 23

Liveweight gain and ovulation rate ... 23
Pregnancy and lactation ... 27

PURPOSE OF THE STUDY ... 28

CHAPTER TWO EFFECT OF CONTINUOUS STOCKING
OF BREEDING EWES AT DIFFERENT
SWARD SURFACE HEIGHTS DURING
THE LATE SUMMER - AUTUMN ON
HERBAGE INTAKE AND PRODUCTIVITY ... 30

ABSTRACT .. 30

INTRODUCTION .. 31

MATERIALS AND METHODS .. 32

Pasture Measurements ... 33
Animal Measurements ... 34
Statistical Analysis ... 35

RESULTS AND DISCUSSION .. 36

Pasture Production .. 36
Ewe Intake and Productive Performance ... 40
Reproductive Performance of The Ewes ... 43
CHAPTER THREE GENERAL DISCUSSION 45

EVALUATION OF THE PRESENT STUDY 45
CONCLUSION .. 51

REFERENCES ... 53

APPENDIX I ESTIMATION OF FEED INTAKE USING
Cr$_2$O$_3$ AS A FAECAL MARKER 62

APPENDIX II TECHNIQUE TO ESTIMATE
BOTANICAL COMPOSITION
OF DIET SAMPLES COLLECTED
FROM OESOPHAGEAL FISTULATES 64
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Seasonal guidelines for sward surface height (cm) under continuously stocked systems of grazing management.</td>
<td>9</td>
</tr>
<tr>
<td>Table 2</td>
<td>Means of sward height, herbage mass, botanical composition and in vitro digestibility of the three sward surface height (SSH) treatments (Mean±S.E.M.).</td>
<td>37</td>
</tr>
<tr>
<td>Table 3</td>
<td>Effects of sward surface height (SSH) treatments on DMI (Dry Matter Intake),OMI (Organic Matter Intake), DOMI (Digestible Organic Matter Intake) and MEI (Metabolizable Energy Intake) (Mean ± S.E.M.)</td>
<td>41</td>
</tr>
<tr>
<td>Table 4</td>
<td>Effects of sward surface height (SSH) treatments on ewe liveweight, daily liveweight gain and condition score, wool growth rate and mean fibre diameter (Mean ± S.E.M.).</td>
<td>42</td>
</tr>
<tr>
<td>Table 5</td>
<td>Effects of sward surface height (SSH) treatments on lamb birth weight, proportion lambing and proportion of multiples (Mean ± S.E.M.)</td>
<td>44</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Seasonal distribution of herbage growth rates in kg DM/ha/day (1981-1987) at Keeble Farm, Massey University, Palmerston North, New Zealand (latitude 41° 10'S) (Hawkins et al. 1989).</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Mean (± S.E.M.) sward surface height (SSH) measurements on the 2.0 cm (●), 4.0 cm (▲) and 6.0 cm (■) sward surface height treatments over the trial period.</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3</td>
<td>The effect of sward surface height (SSH) treatments on ewe dry matter intake (DMI), metabolizable energy intake (MEI), daily liveweight gain and wool growth rates reported by Burnham et al. (1994) (O) and the current trial (●).</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Relationship between clover DM (%) estimated by a point analysis technique and actual clover DM (%) by the operator.</td>
<td>66</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
<td></td>
</tr>
<tr>
<td>cm²</td>
<td>square centimetre</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>chromium</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>day</td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
<td></td>
</tr>
<tr>
<td>DMD</td>
<td>dry matter digestibility</td>
<td></td>
</tr>
<tr>
<td>DMI</td>
<td>dry matter intake</td>
<td></td>
</tr>
<tr>
<td>DOMD</td>
<td>organic matter digestibility of dry matter</td>
<td></td>
</tr>
<tr>
<td>DOMI</td>
<td>digestible organic matter intake</td>
<td></td>
</tr>
<tr>
<td>et al.</td>
<td>and others</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
<td></td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
<td></td>
</tr>
<tr>
<td>i.e.</td>
<td>that is to say</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
<td></td>
</tr>
<tr>
<td>LW</td>
<td>liveweight</td>
<td></td>
</tr>
<tr>
<td>MEI</td>
<td>metabolizable energy intake</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
<td></td>
</tr>
<tr>
<td>°1 S</td>
<td>degree minute south</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
<td></td>
</tr>
<tr>
<td>OMD</td>
<td>organic matter digestibility</td>
<td></td>
</tr>
<tr>
<td>OMI</td>
<td>organic matter intake</td>
<td></td>
</tr>
<tr>
<td>S.E.M.</td>
<td>standard error mean</td>
<td></td>
</tr>
<tr>
<td>vs</td>
<td>versus</td>
<td></td>
</tr>
</tbody>
</table>