Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
GENOTYPIC AND ENVIRONMENTAL EFFECTS
ON GROWTH HABIT IN WHEAT

(Triticum aestivum L.)

A thesis
presented in partial fulfilment of the requirements
for the degree of
Master of Agricultural Science
in Plant Science
(Plant Breeding)
at
Massey University

Javad Mozafari Hashjin
1992
In the name of GOD the most compassionate and the most merciful.

In memory of my father and brother
ABSTRACT

A large part of wheat’s world-wide adaptability is due to flexibility arising from spring-winter habit of growth. Genetic and environmental effects on growth habit in wheat were studied by considering the response patterns of 43 diverse lines to combined variations in temperature and photoperiod under natural conditions in the Manawatu region of New Zealand. Four environments were sampled by having a range of sowing dates from early winter to early summer.

The responses were evaluated using 14 developmental and adaptive attributes, and different techniques of univariate and multivariate analyses. Two pooled analyses were used; (a) 37 genotypes over all 4 environments (excluding six genotypes which did not flower in the two later sowings, (b) all 43 genotypes pooled over two early sowings. Estimates of heritability and genotypic correlation were obtained as well as the usual phenotypic analyses of ordinary correlation and genotype X environment patterns.

There was highly significant genotypic variation for all characters except leaf appearance and tiller production rates. Macro environment variance was the largest significant variance component, indicating that all characters were affected in a major way by environmental effects. Genotype X environment interaction variance was non-significant only for the numbers of fertile tillers and total tillers (in both analyses), and for main stem height in analysis (a). The narrow sense full heritabilities estimated by analysis (a) were very low (0.06% - 3.7%) for flowering characters, leaf appearance and tiller production rates; low (11% -18.5%) for leaf, spikelet and internode numbers; and moderate (34% - 57%) for tiller fertility ratio, fertile and total tiller numbers, main stem height and peduncle length. However, the restricted heritabilities were moderate to high for most of the characters (except leaf appearance and tiller production rates). Because of the narrower range of environments, but broader range of genotypes, in analysis (b), genotypic variance and heritability estimates were higher than in analysis (a).
Genotypic correlation was highly significant between flowering characters and leaf number (0.81 - 0.998). It was also highly significant between these characters and total tiller number, and negative and highly significant between the flowering characters and fertility ratio of tillers. Genotypic correlation between spikelet number, and flowering characters and leaf number was significantly moderate to high.

Phenotypic correlation for only the flowering characters, leaf and spikelet numbers was in good agreement with genotypic correlation in analysis(a). Despite of highly significant and negative phenotypic correlation between leaf appearance as well as tiller production rates and the flowering characters, the genotypic correlation between them was low and non-significant. This was in moderate level for fertile tiller number, main stem height, peduncle length and internode number.

General performances (line means) and response patterns of genotypes to environments (GE means) were significantly different. Six genotypes did not flower in spring sowings and one genotype (CRAW 45) flowered very late only on a few tillers. They were therefore classified simply as 'true winter wheat'. Duration of growth cycle was dependent on pattern of response, and was generally indicated by a larger number of leaves. The number of spikelets increased also, in parallel to increase in leaf number.

Genotype x environment means of seven characters, which showed highly significant genotype x environment interaction, were subjected to principal component analysis in order to delineate the genotypes on the basis of similar response pattern. This resulted in two principal component scores for each genotype for each character. Then cluster analysis was applied successfully to classify the genotypes on the basis of these scores. Another five groups were recognised in this way, and defined according to their means of principal component score for each character. The five group were as follows.

1) Facultative wheats with moderate vernalization response and photoperiod sensitivity; 2) semi-spring wheats with moderate vernalization response and day neutral (photoperiod insensitive), 3) spring wheats with weak vernalization response and day neutral; 4) spring wheats with strong photoperiod sensitivity and weak or no vernalization requirement, 5) spring wheats with relatively strong photoperiod sensitivity and no vernalization response.
ACKNOWLEDGEMENT

First of all, praise and gratitude is due to the almighty God the lord and sustainer of the universe.

My especial thanks are extended to my chief supervisor Dr. Ian L. Gordon and my co-supervisor Mr. Ian R. Brooking (of DSIR) for their guidance, support, helpful discussion and constructive criticism throughout the study. The opportunity to work with both, a breeder-biometriton and a crop physiologist were invaluable in pursuit of this study.

My gratitude is to Professor J. Hodgson head of the department (former Agronomy) for his many kindnesses during the course of study at Massey.

I would also like to thank Dr. P. Kemp and Dr. I. Valentine fore their advice and assistance, and Dr. B. Griffin (of DSIR) for supplying the germplasm.

I have been provided with a friendly environment by all staff members and graduate students of the department. Their friendship and cooperation is much appreciated. I specially thank Mr. D. Sollitt, Mr. T. Lynch, Miss C. Mckenzie and Mrs. F. Brown for their assistance during the experiments.

I gratefully acknowledge my sponsors, Seed and Plant Improvement Institute of the Ministry of Agriculture, and the Ministry of Culture and Higher Education of the Islamic Republic of Iran, for allowing me study leave and financial support throughout this study.

Thanks to all my Iranian postgraduate fellows and their families who being with them made my and my family's stay in New Zealand very pleasant.

I am deeply grateful to my mother, late father, brothers and sisters for their continuous encouragement, support over the years in enabling me to achieve this. In particular I wish to thank my dear brother, Gashtasb, for his efforts when I was away from home.

Special thanks to my wife and sons, Mohammad and Mahdi, who their love support, patience, encouragement and understanding, spurred me to complete this study.
TABLE OF CONTENTS

ABSTRACT ........................................................................................................................................... i
ACKNOWLEDGEMENT .......................................................................................................................... iii
TABLE OF CONTENTS .......................................................................................................................... iv
LIST OF TABLES ................................................................................................................................... x
LIST OF FIGURES ................................................................................................................................. xiii

CHAPTER 1: INTRODUCTION
1.1 Distribution and classification of wheat ....................................................................................... 1
1.2 Breeding for matching genotypes with environments ................................................................. 2
1.3 Genotype and Environment controlling wheat development .................................................... 4

CHAPTER 2: REVIEW OF LITERATURE
2.1 Wheat Development and its Growth Cycle .................................................................................. 7
2.1.1 Germination and Emergence ..................................................................................................... 7
2.1.2 Root Growth .............................................................................................................................. 10
2.1.3 Development of Shoot Apex ................................................................................................... 11
2.1.4 Development of Leaf ................................................................................................................ 12
2.1.4.1 Leaf Appearance ................................................................................................................. 13
2.1.4.2 Leaf Number ......................................................................................................................... 14
2.1.4.3 Leaf Expansion and Size .................................................................................................... 15
2.1.5 Development of Tillers ............................................................................................................ 16
2.1.6 Stem Growth ............................................................................................................................ 17
2.1.7 Ear Development ...................................................................................................................... 18
2.2 Vernalization Response .............................................................................................................. 20
2.2.1 Introduction ............................................. 20
2.2.2 Environmental Influences on Vernalization ................. 20
  2.2.2.1 Low Temperature ................................... 20
  2.2.2.2 Devernalization Temperature ........................ 21
  2.2.2.3 Duration of Vernalization ............................. 22
  2.2.2.4 Short Day Vernalization ............................... 23
2.2.3 Genetic Basis of Vernalization ................................. 24
  2.2.3.1 The Association Between Vernalization Genes ........... 26
  2.2.3.2 The Pattern of Gene Action for Vernalization Response 27
  2.2.3.3 Variation of Vernalization Requirement ................ 27
  2.2.3.4 Duration of Gene Effect for Vernalization ............... 28
  2.2.3.5 Evolution of Growth Habit ................................ 28
2.2.4 Metabolic Changes During Vernalization ....................... 29
2.2.5 Vernalization Response During Growth cycle .................. 31
2.2.6 Vernalization Influenced Characters .......................... 32
2.3 Photoperiod Sensitivity .................................... 33
  2.3.1 Light ..................................................... 33
  2.3.2 Photoperiodism .......................................... 33
  2.3.3 Response to Photoperiod in Wheat ........................ 34
  2.3.4 Genetics of Photoperiodism in Wheat ....................... 35
  2.3.5 The Role \textit{Ppd} Genes in Adaptation .................... 35
  2.3.6 Affected Characters by \textit{Ppd} Genes ..................... 36
  2.3.7 Interactions of Vernalization and Photoperiod in Wheat ... 36
2.4 Quantitative Genetic Analysis .................................. 38
  2.4.1 Genetic Analysis of Quantitative Characters ................ 38
CHAPTER 3: MATERIALS AND METHODS

3.1. The Objectives of the Research: ......................................................... 48
3.2. Plant Material.................................................................................. 49
3.3. Environmental Conditions.............................................................. 52
3.4. Experimental Design ....................................................................... 52
3.5. Crop Management .......................................................................... 52
  3.5.1. Sowing ...................................................................................... 52
  3.5.2. Thinning and Weed Control ....................................................... 55
  3.5.3. Pests and Diseases Control ......................................................... 55
  3.5.4. Tagging ..................................................................................... 55
3.6. Characters Measured ....................................................................... 56
  3.6.1 Leaf Appearance ......................................................................... 56
  3.6.2 Final Leaf Number ................................................................. 57
  3.6.3 Tiller Production ....................................................................... 57
  3.6.4 Total Tillers per Plant ............................................................... 57
  3.6.5 Number of Fertile Tillers per Plant ........................................... 57
  3.6.6 Fertility Ratio of the Tillers ....................................................... 58
  3.6.7 Days from Sowing to Flag Leaf Emergence ................................ 58
  3.6.8 Days from Sowing to Heading .................................................... 58
  3.6.9 Days from Sowing to Anthesis ................................................... 58
3.6.11 Main Stem Height .......................................................... 59
3.6.12 Peduncle Length ............................................................ 59
3.6.13 The Number of Elongated Internodes .................................. 59
3.6.14 Vernalization Response ...................................................... 60

3.7 Statistical Analysis .......................................................... 60
3.7.1. Nature of the Data .......................................................... 60
3.7.2. Regression Analysis of Serial Data; ..................................... 61
3.7.3 Single Analysis of Vernalization Response; ............................. 62
3.7.4. Pooled Analysis of Variance; ............................................. 62
3.7.5. Estimation of Genetic Variability ........................................ 65
3.7.6. Estimation of Heritability ................................................... 65
3.7.7. Genotypic and Phenotypic Correlations ................................ 66
3.7.8. Principal Component Analysis of G X E Interactions .................. 67
3.7.9. Cluster Analysis ............................................................... 68
3.7.10 Post-cluster Analysis ........................................................ 68

CHAPTER 4: RESULTS

4.1. Estimation of Leaf Appearance and Tiller .................................. 71
4.2. Single analysis of vernalization test ......................................... 73
4.3 Quantitative genetic analysis of genotypes and environments. 76
   4.3.1. Magnitude and Significance of ........................................ 76
      4.3.1.1 Environmental effects ............................................. 76
      4.3.1.2 Genotypic Variance ............................................... 82
      4.3.2 Heritability Estimates ................................................ 82
     4.3.3 Phenotypic and Genotypic Correlation ................................ 86
4.4 Analysis of genotypic responses .............................................. 91
   4.4.1 Genotypic general performance ....................................... 91
   4.4.2 Environmental Means ................................................... 99
CHAPTER 5: DISCUSSION

5.1 Genetical Studies .......................................................... 139
  5.1.1 Genetic Variation ...................................................... 139
  5.1.2 Heritability ............................................................ 141
  5.1.3 Phenotypic and Genotypic Correlation ......................... 143

5.2 Genotypic Response to Environment and Growth Habit ........... 145
  5.2.1 Timing of Development .............................................. 146
  5.2.2 Leaf Production .................................................... 147
    5.2.2.1 The number of leaves ...................................... 147
    5.2.2.2 Leaf appearance rate ...................................... 148
  5.2.3 Tiller Production .................................................. 149
  5.2.4 Fertility Ratio of Tillers ......................................... 150
  5.2.5 Main Stem Elongation .............................................. 150

5.3 Multivariate Analysis of G X E Interaction ......................... 151

5.4 Implication for Wheat Breeding ....................................... 157
  5.4.1 Comparison Between Screening Methods ....................... 157
  5.4.2 Selection in Relation to Growth Habit ....................... 158
  5.4.3 Adaptive Value of Vernalization and Photoperiod
    Sensitivity .................................................................... 160

CONCLUSIONS ..................................................................... 162
# LSIT OF TABLES

1.1 Distribution of different types of wheat in the world .............................................. 3

3.1 The studied wheat genotypes, their origins and putative habit specifications .................................................. 50

3.2 Sources of variation, degrees of freedom, expectations of mean squares* and F-ratios of environmental pooled analysis .................................................. 64

4.1 The abbreviations used to refer to the characters and their unit of measurement .................................................. 71

4.2 The comparison of coefficients of determination of linear and exponential functions in 3 experiments as indicated by the numbers of best fits (largest $R^2$'s) .................................................. 72

4.3 Analysis of variance for vernalization response .................................................. 73

4.4 Vernalization responses of 43 genotypes of wheat, on the basis of difference in time to flag leaf emergence between unvernalized and vernalized seeds .................................................. 74

4.5 Central values (grand means), coefficients of variation and units of each character .................................................. 77

4.6 Variance component estimates, their standard errors (in brackets) and their significances for pooled analysis of 37 genotypes over four environments .................................................. 78

4.7 Variance component estimates, their standard errors (in brackets) and their significances for pooled analysis of 43 genotypes over two environments .................................................. 80

4.8 Heritability estimates and their standard errors obtained from pooled analysis of 37 genotypes in 4 environments .................................................. 83
4.9 Heritability estimates and their standard errors obtained from pooled analysis of 43 genotypes over two environments
85
4.10 Phenotypic correlations considering 37 genotypes in 4 environments
87
4.11 Genotypic correlations considering 37 genotypes in four environments
88
4.12 Phenotypic correlations considering 43 genotypes in 2 environments
89
4.13 Genotypic correlations considering 43 genotypes in 2 environments
90
4.14 Comparison between genotypic means (over 4 environments)
92
4.15 Environmental means of studied characters
100
4.16 The comparison of genotypic means in different environments. Days to Flag Leaf
102
4.17 The comparison of genotypic means in different environments. Days to Heading
103
4.18 The comparison of genotypic means in different environments. Days to Anthesis
104
4.19 The comparison of genotypic means in different environments. The Number of Leaves
105
4.20 The comparison of genotypic means in different environments. Leaf Appearance Rate
106
4.21 The comparison of genotypic means in different environments. Tiller Production Rate
107
4.22 The comparison of genotypic means in different environments. Spikelet Number
108
4.23 The comparison of genotypic means in different environments.
The Number of Fertile Tiller s.............................................................. 109

4.24 The comparison of genotypic means in different environments.
The Number of Total Tiller s.............................................................. 110

4.25 The comparison of genotypic means in different environments.
Fertility Ratio of Tillers........................................................................... 111

4.26 The comparison of genotypic means in different environments.
Main Stem Height....................................................................................... 112

4.27 The comparison of genotypic means in different environments.
Peduncle Length ....................................................................................... 113

4.28 The comparison of genotypic means in different environments.
The Number of Internods.......................................................................... 114

4.29 Variance explained by the Principal Component Analysis................ 116

4.30 Factor Structure of the principal components................................. 117

4.31 Principal components (C1, C2) scores of genotypes for each character.
.............................................................................................................. 119

4.32 The probability of F test of each cluster............................................ 128

4.33 The means of principal component scores for each character in each cluster and their interpretation.................................................. 131

4.34 Group means in environments for all studied characters................ 133

4.35 The mean differences of time to flag leaf emergence and vernalization responses for each cluster and the type of wheats in each cluster according to this factor.................................................. 138
LIST OF FIGURES

1.1 Wheat area and its distribution in the world in 1982........................................... 1

1.2 Genetic and environmental effects on development phases of wheat and consequently winter-spring habit of growth in wheat. ........................................ 6

2.1 Developmental phases during life cycle of wheat. ........................................... 8

3.1 Day-length changes during growth in different sowing dates (Environments). Each Box represents The time from sowing to the last anthesis for each sowing date. ........................................................................................................ 53

3.2 Changes of temperature during growth in each environment. ..................... 54

4.1: Distribution of the genotypes according to their response patterns on the basis of the first two principal component describing G X E means for final leaf number......................................................... 121

4.2: Distribution of the genotypes according to their response patterns on the basis of the first two principal component describing G X E means for days flag leaf unfolding. ......................................................... 122

4.3: Distribution of the genotypes according to their response patterns on the basis of the first two principal component describing G X E means for the number of spikelet ......................................................... 123

4.4: Distribution of the genotypes according to their response patterns on the basis of the first two principal component describing G X E means for fertility ratio of tillers ......................................................... 124
4.5: Distribution of the genotypes according to their response patterns on the basis of the first two principal component describing G X E means for leaf appearance rate. ................................................................. 125

4.6: Distribution of the genotypes according to their response patterns on the basis of the first two principal component describing G X E means for tiller production rate. ................................................................. 126

4.7: Distribution of the genotypes according to their response patterns on the basis of the first two principal component describing G X E means for peduncle length. ................................................................. 127

4.8: Dendogam obtained by cluster analysis, using Ward method. ............... 129