Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Systematics, Biology and Ecology of New Zealand’s Pygmy Mistletoes
(Korthalsella: Viscaceae)

A thesis presented in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy
in
Ecology

at Massey University, Manawatu,
New Zealand

Amir Sultan
2014
Abstract

New Zealand’s pygmy mistletoes belong to the genus *Korthalsella* Tieghem, which comprises about 30 species ranging from Malesia to Hawaii, the Marquesas and Henderson Islands in the east, Japan in the north, Australia, New Zealand in the south, and Ethiopia and Madagascar to the west. Mainland Australia, Hawaii, Malesia and Madagascar all have high levels of species richness. This thesis shows that *Korthalsella* has high levels of regional endemism and has widespread parallelism and supports the biogeographic model of speciation, whereas, the traditional sections based on morphology are not supported.

*Korthalsella* is represented in New Zealand by a monophyletic clade of three species *K. clavata* (Kirk) Cheeseman, *K. lindsayi* (Oliver ex J. D. Hooker) Engl., and *K. salicornioides* (A. Cunningham) Tiegh. *Korthalsella clavata* and *K. lindsayi* are both generalists with relatively broad host ranges whereas *K. salicornioides* is a specialist species with most host records from two myrtaceous genera *Kunzea* Rehb. (kanuka) and *Leptospermum* J. R. Forst & G. Forst (manuka). Cross-infection experiments in *Korthalsella salicornioides* indicate the presence of putative *Kunzea-* and *Leptospermum*-specific races with better success rates of seedling survival when maternal and recipient hosts were the same. However, genetic data based on nuclear internal transcribed spacer (ITS) and chloroplast *trnQ-rps16* spacer sequences does not support the presence of host related variability and the within-species genetic structure appears to be geographic rather than host-based. My study shows that both cpDNA haplotypes and ITS sequence types are shared between *K. clavata* and *K. lindsayi*, which possibly is an outcome of hybridisation and introgression between the two species. *Korthalsella salicornioides* is an ambophilous species relying both on insects and on wind for effective pollination, whereas *K. lindsayi* is an anemophilous species. This study confirms the presence of explosive seed discharge in both species with dispersal distances ranging up to 4 and 7 m in *K. lindsayi* and *K. salicornioides*, respectively. However, dispersal distances of around 1 m are more typical. This study
also describes the first account of clonal propagation by means of proliferation of endophyte and formation of adventitious sprouts in these species.

Several new natural enemies specialising on New Zealand *Korthalsella* were discovered - two specialist armoured scales (*Leucaspis albotecta* Henderson and *L. trilobata* Henderson), a felt scale (*Eriococcus korthalsellae* Henderson), and two pathogenic ascomycetes *Guignardia korthalsellae* Sultan, Johnston, Park & Robertson and *Rosenscheldiella korthalsellae* Sultan, Johnston, Park & Robertson. Other natural enemies include a specialist gall mite *Aceria korelli* Manson, whereas generalists include native and adventive scale insects and generalist Lepidoptera.

Demographic study of several populations revealed that all species have high growth rates and high ramet turnover. *Korthalsella salicornioides* and *K. clavata* had relatively stable recruitment rates in all size/stage classes whereas *K. lindsayi* populations were apparently declining at the two study sites.
To Khwaja Shamsuddin Azeemi, his writings have familiarised me with inner peace
and
to the memory of my father who passed away during the course of my study
Acknowledgements

Massey University and the Higher Education Commission of the Government of Pakistan are thankfully acknowledged for supporting this study. I am deeply indebted to my supervisors Alastair Robertson, Jennifer Tate and David Havell for their support and invaluable input throughout the course of this study. I am grateful to Ed Minot for his support. I am thankful to the Department of Conservation for permission to conduct field work and to collect at sites administered by them.

My wife Faryal Mahmood and Prasad Doddala have been extremely helpful with my fieldwork throughout my study. Ecology technicians Cleland Wallace, Paul Barrett, Tracy Harris and Shaun Nielsen were all very helpful. I am very thankful to them all. Prashant Joshi, Vaughan Symonds and my lab fellows Tina Sehrish, Todd McLay, Rebbecca Purser, Matt Butcher, Cynthia Skema and Rowan Dickson all have been very helpful during the lab work. I am thankful to Naeem Jarral, Ibrar Ahmed, Nick Ellison and Trish McLenachan for their support. Plant Growth Unit staff Stephen Ray, Lindsay Silva and Lesley Taylor are thankfully acknowledged for taking care of the potted hosts.

Special thanks are due to Peter de Lange and David Glenny for their support in the identification of hosts. I am grateful to Martin Callmander, Joel Lau, Jean-Yves Meyer, Patrice Antilahimena, Claudia Baider, Phillip Thomas and Jerome Munzinger for collecting Korthalsella specimens included in the phylogenetic work. Support from Parmananda Ragen (Mauritius) for approving the material transfer agreement and from Sarawak Forestry Department in approving my permit application is also gratefully acknowledged.

Extraordinary support and hospitality by Gregori Hambali and Eka Iskandar during field work in Java and by Talie Foliga and Isamaeli Asotasi during field work in Western Samoa is thankfully acknowledged.

I am thankful to C. C. H. Jongkind, J. Andriantiana, and H. E. Razanatsoa whose collecting efforts made the inclusion of K. madagascarica possible in the current study.

Special thanks to Frank Zich (CNS), Gordon Guymer (BRI), Karina Knight (PERTH), Richard Chung, Yao Tze Leong (KEP), Robert Vogt, Sarah Bollendorf (B) and Jim Solomon (MO) for their support in providing Korthalsella specimens on loan.
I am thankful to Daniel Nickrent, Daniel Letocart, Folkert Aleva (WAG), Nicola Biggs, Shahina Ghazanfar, Renata Borosova (K), John Dransfield, Roger Polhill, Heide Jorgensen, David Watson, Bryan Barlow, Raymond Cranfield and Chrissen Gemmill for their feedback to my queries.

I am indebted to following curators and staff for access to collections and/or information held in respective herbaria: Ines Schonberger, Mary Korver, Peter Heenan, Jane Cruickshank, Debby Redmond, Bruno Peeters (CHR), Ewen Cameron, Dhahara Ranatunga, Chris Jones (AK), Leon Perrie, Kelly Bargh (WELT), Chris Ecroyd (NZFRI), Barry Sneddon (WELTU), Pieter Pelser, Reijel Gardiner (CANU), Toni Cornes (WAiK), Janice Lord (OTA), Lesley van Essen (MPN), Sue Molloy, Jeremy Hawker (CHBG), Jon Sullivan (LINC), Jonathan Gregson (BMNH) and Dan Blanchon (Unitec Herbarium).

Help from Paul Peterson (Landcare Research, Palmerston North) and Rebecca Bennik in determining the nectar contents in the flowers is thankfully acknowledged. I am grateful to Manawatu District Council, Whakatane District Council, Te Puia, Narbey family, Taylor family, Christine Foster and Jim Maniapoto for permission to use the mistletoe populations at study sites. Special thanks are due to Peter Johnston and Duckchul Park for their help in the description of new fungal pathogens specialising on New Zealand *Korthalsella* and to Rosa Henderson who identified the scale insect fauna of New Zealand *Korthalsella*. Thanks are due to Ian Andrew, Jo Berry, Anthony Harris and Barry Donovan who identified pollinators.

Thanks are due to John Sawyer, John Barkla, Andrew Townsend, Nick Singers, Paul Cashmore (Department of Conservation), Maureen Young (Warkworth Herbarium), Tom Myers (Dunedin Botanic Gardens Herbarium), Bruce Burns, Hugh Wilson, Colin Ogle and John Hobbs for sharing host information from their records.

I thank my parents for their love and affection and their support throughout my career. Special thanks are due to my friends Malik Muhammad Farooq, Khurrum Mughal, Tehseen Aslam, Abdul Hanan, Zulfiqar Butt and Anjum Qazzafi who have always been very supportive during my stay in New Zealand.
Contents

Abstract iii
Acknowledgements vii

Chapter 1: Introduction 1
  Systematics of Korthalsella and other genera in Viscaceae 4
  Economic Importance 5
    Viscaceous mistletoes as forest and plantation pests 5
    Viscaceous mistletoes as medicinal plants 6
    Viscaceous mistletoes as keystone resources for wildlife 6
  Literature on New Zealand Korthalsella 7
  Aims of the thesis 7
  References 9

Chapter 2: Molecular phylogeny of Korthalsella (Viscaceae) based on nuclear Internal Transcribed Spacer (ITS) and chloroplast trnL-trnF regions 15
  Introduction 16
  Materials and Methods 29
  Results 35
  Discussion 44
  References 51

Chapter 3: Host Range, Host Specificity, Regional Host Preferences and Distribution Segregation in Pygmy Mistletoes of New Zealand (Korthalsella: Viscaceae) 55
  Introduction 56
  Materials and Methods 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host range and host specificity</td>
<td>59</td>
</tr>
<tr>
<td>Molecular genetic analysis of regional variability</td>
<td>61</td>
</tr>
<tr>
<td><strong>Results</strong></td>
<td>62</td>
</tr>
<tr>
<td>Host range and regional host preferences</td>
<td>62</td>
</tr>
<tr>
<td>Regional host patterns of <em>K. clavata</em></td>
<td>73</td>
</tr>
<tr>
<td>Regional host patterns of <em>K. lindsayi</em></td>
<td>76</td>
</tr>
<tr>
<td>Regional host patterns of <em>K. salicornioides</em></td>
<td>83</td>
</tr>
<tr>
<td>Phylogenetic analyses of New Zealand <em>Korthalsella</em></td>
<td>101</td>
</tr>
<tr>
<td>Network analyses of regional molecular variability</td>
<td>103</td>
</tr>
<tr>
<td><em>Korthalsella clavata</em> and <em>K. lindsayi</em> combined network analysis</td>
<td>106</td>
</tr>
<tr>
<td><strong>Discussion</strong></td>
<td>118</td>
</tr>
<tr>
<td>Host specificity in New Zealand <em>Korthalsella</em></td>
<td>118</td>
</tr>
<tr>
<td>Molecular genetic variability in New Zealand <em>Korthalsella</em></td>
<td>123</td>
</tr>
<tr>
<td><strong>References</strong></td>
<td>125</td>
</tr>
<tr>
<td><strong>Chapter 4: Experimental evidence for presence of potential host races in</strong></td>
<td>151</td>
</tr>
<tr>
<td><em>Korthalsella salicornioides</em></td>
<td></td>
</tr>
<tr>
<td><strong>Introduction</strong></td>
<td>152</td>
</tr>
<tr>
<td><strong>Materials and Methods</strong></td>
<td>154</td>
</tr>
<tr>
<td><strong>Results</strong></td>
<td>154</td>
</tr>
<tr>
<td><strong>Discussion</strong></td>
<td>156</td>
</tr>
<tr>
<td><strong>References</strong></td>
<td>158</td>
</tr>
<tr>
<td><strong>Chapter 5: Reproductive Biology of <em>Korthalsella salicornioides</em> and <em>K. lindsayi</em></strong></td>
<td>161</td>
</tr>
<tr>
<td><strong>Introduction</strong></td>
<td>162</td>
</tr>
<tr>
<td><strong>Materials and Methods</strong></td>
<td>163</td>
</tr>
<tr>
<td><strong>Results</strong></td>
<td>166</td>
</tr>
<tr>
<td><strong>Floral Biology and Pollination</strong></td>
<td>166</td>
</tr>
</tbody>
</table>
Results

*Korthalsella clavata* 227

*Korthalsella lindsayi* 231

*Korthalsella salicornioides* 239

Seedling-Sprout Ratios 245

Relative Growth Rates 245

Occurrence of Invertebrates and Fungal Pathogens at the Study Sites 246

Discussion 248

References 251

Chapter 8: Synthesis 253

Future Work 259

References 260