Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Investigation of dothistroma needle blight development on *Pinus radiata*

A thesis presented in the partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Microbiology and Genetics at Massey University, Manawatu, New Zealand

Md Shahjahan Kabir
2014
Abstract

Dothistroma needle blight (DNB), caused by the fungi Dothistroma septosporum and Dothistroma pini, is an important foliar disease of pine species throughout the world and predictions of the future spread of this disease have been made using climate models. Although DNB infection is prevalent in many forests, attempts to achieve infection under controlled laboratory or glasshouse conditions are notoriously difficult. However, artificial infection is a very important tool for studying different aspects of plant-microbe interactions, such as pathogen life style and roles of virulence factors. D. septosporum was thought to have a hemi-biotrophic life style but this was not formally investigated in planta. The non-host selective toxin dothistromin produced by this fungus was shown not to be essential for pathogenicity but its role in pathogen virulence was unknown.

The aims of this study were to improve the DNB pathogenicity assay and to use this system to test the hypotheses that D. septosporum is a hemi-biotrophic pathogen and that dothistromin plays a role in virulence.

A new sporulation medium (pine needle medium with glucose) was used to obtain sufficient viable D. septosporum spores. The critical microclimatic component of leaf wetness was optimised to have a short (4-7 d) high wetness period followed by 'medium' wetness (continual misting), and using these conditions >80% needle infection was routinely achieved on Pinus radiata seedlings.

A combination of microscopy, biochemical and molecular studies over a time-course of infection of P. radiata by D. septosporum confirmed its hemi-biotrophic life style. Restricted mesophyll colonisation, shorter lesions and fewer spores from P. radiata needles infected with dothistromin-deficient mutants, compared to those with

i
wild type *D. septosporum*, suggested that dothistromin has a role in virulence. Interestingly ‘green islands’ in which chlorophyll levels were maintained at higher levels than adjacent chlorotic and necrotic regions, surrounded early-appearing lesions caused by both wild-type and mutant isolates. At a later developmental stage of the lesion the green islands were still present in the mutant but appeared to be masked by the extended dothistromin-containing lesions in the wild type, which lead to the hypothesis that chloroplasts could be a site of action of dothistromin.

The discovery that dothistromin is a virulence factor opens up new insights into the *Dothistroma*-pine interaction. This fundamental finding will be useful for management strategies for this important disease in the future.
Acknowledgements

First of all I would like to acknowledge my God who kept me in sound health, peaceful mind and broadened my patience during my PhD candidature.

I am incredibly grateful to my supervisor Dr. Rosie Bradshaw, whose contribution from my initialisation in New Zealand to the completion of my thesis was remarkable. Her encouragement, time, efforts and supervisory inputs helped my long journey to run very smoothly. I will never forget her motivation by providing a *Journal of Cell Science* essay ‘The importance of stupidity in scientific research’ when I got stuck with my experiments. I am also thankful to her for creating opportunities for presenting my findings in different national and overseas conferences. Her contribution in arranging partial financial supports (from IMBS, IFS, FOA) towards my PhD is also appreciated.

I acknowledge my co-supervisor Dr. Rebecca Ganley for her intellectual support to enrich my thesis. She also helped me by providing pine seedlings from Scion, Rotorua for my experiments. I also acknowledge her contribution for arranging some laboratory work at Scion with Lloyd Donaldson.

I acknowledge all of the former and current members of ‘Fungal Jungle’ group. Thanks to Carole Flyger for her technical help in the laboratory. Although I did not have much of an opportunity to work with Naydene, Rebecca, Shuguang and Tim; their contribution at early stages is appreciated. Melissa, Yanfei, Kutay, Andre many thanks all of you for supporting me during my study. Special thanks to Pranav who helped me a lot with technical support in operating the light cycler and HPLC machine and also for discussing many academic and non-academic issues.
I spent lots of time in the Manawatu Microscopy and Imaging Centre (MMIC) and am thankful to Doug, Dmitry, Jianyu and Jordan for the advice on sample preparation, technical support and imaging. I also acknowledge Trevor for technical support for the HPLC. I also appreciate the help and advice of Cory Matthew, Jan Schmid, Lloyd Donaldson and Arif Robin.

I admit the sacrifice of my family members Shamima Begum (wife), Shadman Jahin and Shahmat Mahin (sons) during my study period. Their company at home was a great relief after a long stressful day in Massey. I will never forget their patience to pick me up from University at night, especially at winter time when they were about to sleep. Special thanks to Shamima, who bore the weight of many family and social commitments on my behalf, despite having her own studies. My absence helped my kids to play chess against with each other, and to learn how to match Rubik’s cube that helped them to develop their friendship as brothers, but I felt guilty for not being in their company.

I am grateful to Bangladesh Rice Research Institute for granting me leave for study. Last but not least, I acknowledge Massey Doctoral Scholarships for enabling me to pursue my studies in New Zealand.

The Author
Table of contents

Abstract .. i
Acknowledgements .. iii
Table of contents ... v
List of tables .. ix
List of figures .. x
Abbreviation .. xiv
Chapter 1: Introduction ... 1
 1.1. Dothistroma needle blight disease ... 1
 1.1.1. Incidence of the disease .. 1
 1.1.2. Dothistroma needle blight symptoms ... 4
 1.1.3. Dothistroma needle blight and its hosts .. 4
 1.1.4. Management of dothistroma needle blight ... 5
 1.2. Dothistroma pathogens cause dothistroma needle blight 6
 1.3. Parasitic phases of plant-fungal interactions .. 7
 1.3.1. Different life styles in plant-microbe interactions 7
 1.3.2. Molecular aspects of biotrophic plant-fungal interactions 8
 1.3.3. Molecular aspects of necrotrophic plant fungal interactions 10
 1.3.4. Molecular aspects of hemi-biotrophic plant fungal interactions 11
 1.3.5. Fungi having a latent phase in planta and their quantification 13
 1.3.6. Identification of life styles of plant-microbe interactions 14
 1.3.7. Use of green fluorescence protein in fungal biology 14
 1.4. Microbial toxins and plant disease ... 15
 1.4.1. Introduction and classification of toxins .. 15
 1.4.2. Host-selective toxins and their roles .. 16
 1.4.3. Non-host selective toxins and their roles ... 17
 1.5. Dothistromin toxin ... 17
 1.5.1. Biosynthesis of dothistromin in vitro and in planta 18
 1.5.2. Genetics of dothistromin biosynthesis .. 22
 1.5.3. Mode of action of dothistromin ... 26
 1.5.4. Role of dothistromin in dothistroma needle blight pathogenesis 27
 1.6. Hypotheses, aims and objectives ... 29
Chapter 2: Materials and Methods... 31
2.1. Biological materials ... 31
 2.2.1. Fungal isolates .. 31
 2.2.1.1. Isolation and confirmation of Dothistroma septosporum 31
 2.1.2.2. Maintenance of fungal isolates ... 32
2.2. Plant material ... 32
2.3. Pathogenicity assay ... 33
 2.3.1. Sporulation of Dothistroma septosporum (in vitro and in planta) 33
 2.3.2. Spore germination, surface growth and penetration 34
 2.3.3. Pathogenicity assay chamber ... 35
 2.3.4. Plant inoculation techniques ... 36
 2.3.5. Adhesion tests .. 36
 2.3.6. Microclimate optimisation ... 37
 2.3.7. Dothistroma needle blight infection and scoring 37
 2.3.8. Pathogenicity assays for role of dothistromin 38
2.4. Microscopy ... 39
 2.4.1. Light microscopy .. 39
 2.4.2. Confocal microscopy ... 39
 2.4.3. Transmission electron microscopy ... 40
 2.4.4. Scanning electron microscopy ... 41
2.5. Histo-chemical studies .. 41
 2.5.1. Cell viability .. 41
 2.5.2. Reactive oxygen species (ROS) staining .. 42
 2.5.3. Lignification test ... 42
2.6. Molecular and biochemical studies .. 43
 2.6.1. PCR Diagnostics ... 43
 2.6.1.1. DNA extraction ... 43
 2.6.1.2. Dothistroma needle blight confirmation by PCR 43
 2.6.2. Dothistroma septosporum biomass and dothistromin toxin quantification 44
 2.6.2.1. Needle sampling.. 44
 2.6.2.2. Quantification of Dothistroma septosporum biomass 45
 2.6.2.3. Dothistromin toxin quantification ... 46
 2.6.3. Semi-quantitative gene expression .. 48
 2.6.4. Gene expression studies ... 49
2.6.5. Chlorophyll quantification ... 50
2.7. Statistical analysis ... 51
 2.7.1. ANOVA ... 51
 2.7.2. Scattered plot analysis ... 51
 2.7.3. Student t-test ... 51

Chapter 3: Pathogenicity assay optimisation 53
 3.1. Introduction ... 53
 3.2. Results ... 55
 3.2.1. Sporulation ... 55
 3.2.2. Inoculation ... 56
 3.2.3. Needle Wetness .. 57
 3.2.4. Host Genotype .. 60
 3.3. Discussion .. 63

Chapter 4: Life style of *Dothistroma septosporum in planta* 69
 4.1. Introduction ... 69
 4.2. Results ... 72
 4.2.1. Microscopy, molecular and biochemical studies of *Dothistroma septosporum* life style ... 72
 4.2.1.1. Overview of *Dothistroma septosporum* life cycle in planta 72
 4.2.1.2. Host cell disintegration during stages 3 and 4 of dothistroma needle blight ... 80
 4.2.1.3. Histo-chemical analysis of cell death and host response during dothistroma needle blight ... 86
 4.2.1.4. Chlorophyll loss during dothistroma needle blight infection ... 87
 4.2.1.5. Growth and toxin production by *Dothistroma septosporum* during dothistroma needle blight infection ... 89
 4.2.2. Gene expression studies and the life style of *Dothistroma septosporum* 96
 4.2.2.1. Expression of dothistromin genes in planta 96
 4.2.2.2. Expression of other genes associated with life style 101
 4.3. Discussion .. 103
Chapter 5: Role of dothistromin during dothistroma needle blight.............. 113
5.1. Introduction.. 113
5.2. Results... 115
 5.2.1. Spore germination and surface growth of dothistromin-deficient mutants at
 stage 1 ... 115
 5.2.2. Needle penetration of dothistromin-deficient mutants at stage 2 117
 5.2.3. Mesophyll colonisation of dothistromin-deficient mutant at stages 3 and 4
 .. 118
 5.2.4. Effect of dothistromin on lesion development at stages 3 and 4 119
 5.2.5. Cell damage by dothistromin-deficient mutants 122
 5.2.6. Fruiting body formation and sporulation by dothistromin-deficient mutants
 .. 125
 5.2.7. Chlorophyll quantification in needles with dothistroma needle blight lesions
 .. 126
 5.3. Discussion.. 128

Chapter 6: Conclusions and future directions... 135

Appendices .. 141
Appendix 1: Media, buffers, primers and probes.. 141
Appendix 2: Calculations of Dothistroma septosporum biomass and dothistromin
 toxin .. 144
Appendix 3: Pathogenicity assay optimisation ... 149
Appendix 4: Life style of Dothistroma septosporum... 153
Appendix 5: Role of dothistromin ... 161
Appendix 6: Publication and conference presentation..................................... 166

References ... 167
List of tables

Table 1.1. Biological functions of some secondary metabolite and proteinaceous host
selective toxins from Dothideomycete spp... 11
Table 1.2. Characteristics of 'core' dothistromin genes of Dothistroma septosporum...... 23
Table 2.1. Dothistroma septosporum isolates used in experiments............................... 31
Table 2.2. Summary of experiments conducted to determine the role of dothistromin in
planta ... 38
Table 2.3. Summary of needle sampling, sampling time and other related information
for Dothistroma septosporum biomass and dothistromin toxin quantification
during dothistroma needle blight .. 45
Table 3.1. Sporulation of Dothistroma septosporum on different media 56
Table 3.2. Effect of inoculation techniques on dothistroma needle blight.................... 56
Table 3.3. Effect of adhesives on dothistroma needle blight incidence and red bands... 57
Table 3.4. Effect of needle wetness on dothistroma needle blight (DNB) infection 58
Table 3.5. Effect of initial high wetness on spore germination, penetration and
dothistroma needle blight symptoms .. 59
Table 3.6. Dothistroma needle blight events on Pinus radiata clones......................... 61
Table 4.1. Macroscopic and microscopic overview of the Dothistroma septosporum life
cycle ... 73
Table 5.1. Spore germination, surface growth and penetration of dothistromin-deficient
mutants (ΔPksA: gfp and ΔHexA) and wild type (WT) Dothistroma septosporum
... 115
Table 5.2. Comparison of fruiting bodies and spores per lesion between needles infected
with dothistromin-deficient mutants and wild type (WT) Dothistroma
septosporum ... 125

Appendix tables

Table A1.1. Primers and probes used for Dothistroma septosporum identification and
biomass quantification ... 143
Table A2.1. Calculation of unknown DNA from pine needle 145
Table A2.2. Calculation of unknown dothistromin from needle 148
Table A3.1. Spore germination of *Dothistroma septosporum* on PMMG at 7, 12 and 17 day... 149
Table A3.2. Percent adhered *Dothistroma septosporum* spores (*in vitro* glass surface) after wash, and spore germination using adhesives ... 149
Table A3.3. Dothistroma needle blight infection with optimised wetness conditions . 150
Table A3.4. Dothistroma needle blight events on *Pinus radiata* clones 152
Table A3.5. Comparison of variance between seedlings and clones 152
Table A4.1. Genes associated with fungal life style .. 158
Table A4.2. Summary results of *Dothistroma septosporum* biomass and dothistromin toxin quantification along with environmental parameters.. 159
Table A4.3. Interim transcriptome read counts for the time-course of dothistroma needle blight ... 160
Table A5.1. Spore germination, surface growth and penetration of dothistromin-deficient mutant (*ΔPksA: gfp*) and wild type (WT) *Dothistroma septosporum*. 161
Table A5.2. Spore germination, fungal surface growth and penetration of dothistromin-deficient mutant (*ΔHexA*) and wild type (WT) *Dothistroma septosporum* 161
Table A5.3. Comparison of fruiting body and spores per lesion between dothistromin-deficient mutants and wild type *Dothistroma septosporum* infected needle lesions ... 164

List of figures

Fig. 1.1. Location of *Dothistroma* spp. on pines throughout the world...................... 1
Fig. 1.2. Distribution and prediction of dothistroma needle blight severity in New Zealand... 3
Fig. 1.3. Symptoms of dothistroma needle blight.. 4
Fig. 1.4. Zigzag model of plant immune system.. 9
Fig. 1.5. Plant-microbe interaction of *Colletotrichum* fungi along with gene expression .. 12
Fig. 1.6. Similarity of chemical structures of dothistromin and aflatoxin precursors versicolorin A and versicolorin B... 18
Fig. 1.7. Growth and dothistromin biosynthesis in liquid media by *Dothistroma septosporum* .. 20
Fig. 1.8. *gfp* expression of *Dothistroma septosporum* ... 21
Fig. 1.9. Dothistromin (DOTH) fragmented gene cluster and proposed dothistromin biosynthetic pathway
.. 24
Fig. 2.1. Pathogenicity assay chamber ..35
Fig. 3.1. Dothistroma needle blight (DNB) progression ..60
Fig. 3.2. Dothistroma needle blight (DNB) symptoms on pine clones ... 61
Fig. 3.3. Scatter plots showing percent of needles showing dothistroma needle blight symptoms in Pinus radiata clones or seedlings ... 62
Fig. 4.1. Time course of Mycosphaerella graminicola (septoria leaf blotch) on wheat. 70
Fig. 4.2. Macroscopic overview of Dothistroma septosporum life cycle ... 73
Fig. 4.3. Microscopic (SEM) overview of the Dothistroma septosporum life cycle74
Fig. 4.4. Stages 1 and 2 of Dothistroma septosporum life cycle ... 76
Fig. 4.5. Stage 3 (mesophyll colonisation) of Dothistroma septosporum life cycle78
Fig. 4.6. Stage 4 (maturation of fruiting bodies) of Dothistroma septosporum life cycle ...
... 79
Fig. 4.7. Light microscopic observations on pine needle cross sections during dothistroma needle blight progression ... 83
Fig. 4.8. Ultra-structure of dothistroma needle blight infection on Pinus radiata needle at stage 2 and 4 .. 85
Fig. 4.9. Neutral red stain indicates loss of mesophyll cell viability in stage 3 of dothistroma needle blight ... 86
Fig 4.10. Mesophyll colonisation and chlorophyll auto-florescence in Pinus radiata needles by gfp-labelled Dothistroma septosporum .. 88
Fig. 4.11. Quantification of Dothistroma septosporum biomass and dothistromin toxin from whole needles .. 91
Fig. 4.12. Quantification of Dothistroma septosporum biomass and dothistromin toxin from dothistroma needle blight lesions .. 93
Fig. 4.13. Quantification of Dothistroma septosporum biomass and dothistromin toxin from lesions of susceptible clonal plants .. 95
Fig. 4.14. Semi-quantitative PDotA:gfp gene expression during dothistroma needle blight .. 97
Fig. 4.15. Dothistromin regulated gene PDotA:gfp expression during dothistroma needle blight .. 99
Fig. 4.16. Dothistromin gene expression in planta .. 100
Fig. 4.17. Expression of genes associated with life style in planta ... 102
Fig. 5.1. Spore germination, surface growth and penetration of dothistromin-deficient mutant (Δ\textit{PksA}:\textit{gfp}) and wild type (WT) \textit{Dothistroma septosporum} at stages 1 and 2 .. 116

Fig. 5.2. Comparison of mesophyll colonisation between dothistromin-deficient mutant (Δ\textit{PksA}:\textit{gfp}) and wild type (WT:\textit{gfp}) \textit{Dothistroma septosporum} infected needles ... 118

Fig. 5.3. Comparison of dothistroma needle blight (DNB) events caused by dothistromin-deficient mutants (Δ\textit{PksA}:\textit{gfp} and Δ\textit{HexA}) and wild type (WT) \textit{Dothistroma septosporum} at stages 3 and 4 ... 120

Fig. 5.4. Comparison of dothistroma needle blight (DNB) lesions on needles infected with dothistromin-deficient mutants (Δ\textit{PksA}:\textit{gfp}, Δ\textit{HexA}) and wild type (WT) \textit{Dothistroma septosporum} .. 121

Fig. 5.5. Cross sections through dothistroma needle blight lesions infected with dothistromin-deficient mutant Δ\textit{HexA} and wild type (WT) \textit{Dothistroma septosporum} at stages 3 and 4 ... 123

Fig. 5.6. Scanning electron microscopy of transverse sections of late-stage dothistroma needle blight lesions from dothistromin-deficient mutant (Δ\textit{HexA}) and wild type (WT) infected needles ... 124

Fig. 5.7. Comparison of fruiting body eruptions from needles infected with dothistromin-deficient mutants and wild type \textit{Dothistroma septosporum} 126

Fig. 5.8. Comparison of chlorophyll content between distinct regions of needles infected with dothistromin mutant and wild type (WT) \textit{Dothistroma septosporum} 127

Appendix figures

Fig. A2.1. Amplifications and standard curves of \textit{PksA} and \textit{CAD} gene 144

Fig. A2.2. Standard curve of dothistromin ... 147

Fig. A3.1. Types of \textit{Dothistroma septosporum} spores seen during sporulation tests ... 149

Fig. A3.2. Dothistroma needle blight incidence between taller and smaller seedlings 150

Fig. A3.3. Optimised dothistroma needle blight ... 151

Fig. A3.4. Dothistroma needle blight progression on pine clones 151

Fig. A4.1. Spore germination and fungal growth on pine needle surface 153

Fig. A4.2. Fruiting body of \textit{Dothistroma septosporum} ... 154

Fig. A4.3. Young pine needle ... 154
Fig. A4.4. Light microscopic view of lignification on pine needle during dothistroma needle blight...155
Fig. A4.5. Reactive oxygen species staining during dothistroma needle blight........156
Fig. A4.6. Absolute biomass quantification...157
Fig. A5.1. Comparison of dothistroma needle blight (DNB) events caused by dothistromin-deficient mutants and wild type (WT) Dothistroma septosporum ..162
Fig. A5.2. Comparison of dothistroma needle blight needle (DNB) lesions between dothistromin-deficient mutant and wild type (WT) Dothistroma septosporum at stages 3 and 4...163
Fig. A5.3. PCR diagnostics of DNB lesions caused by dothistromin-deficient Dothistroma septosporum...165

Contents of CD

1. Raw data of Figs. 4.11, 4.12 and 4.13 (growth and toxin production of Dothistroma septosporum in experiment 1 to 5 of section 4.2.1.5).

2. Raw data of Figs 4.16 and 4.17 (quantitative gene expression in section 4.2.2.1.2).

3. Digital version of thesis
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>micro gram</td>
</tr>
<tr>
<td>µl</td>
<td>micro litre</td>
</tr>
<tr>
<td>µM</td>
<td>micro molar</td>
</tr>
<tr>
<td>ai</td>
<td>after inoculation</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>d</td>
<td>day</td>
</tr>
<tr>
<td>DNB</td>
<td>dothistroma needle blight</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pair</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>milli litre</td>
</tr>
<tr>
<td>mm</td>
<td>milli metre</td>
</tr>
<tr>
<td>mM</td>
<td>milli molar</td>
</tr>
<tr>
<td>MQ</td>
<td>Milli Q water</td>
</tr>
<tr>
<td>nm</td>
<td>nano metre</td>
</tr>
<tr>
<td>°C</td>
<td>degree celsius</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>wpi</td>
<td>weeks post inoculation</td>
</tr>
<tr>
<td>WT</td>
<td>wild type</td>
</tr>
</tbody>
</table>