Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A case study of
gifted visual-spatial learners

A thesis presented in partial fulfilment of
the requirements for the degree of
Masters in Education

Massey University, New Zealand

Sharon Mansfield, 2014
Acknowledgements

Carrying out educational research and writing up the results to share what has been found has been an exciting opportunity. Sharing personal experiences with an unknown audience has been slightly daunting for me and I sincerely thank those who have similarly put themselves into my hands, and had faith in my ability to express the essence of their experiences. The fact that participants in this research project were, without exception, so eager to contribute, is a measure of their common desire to add what they could to the telling of this story. It was truly a special privilege to be welcomed into your homes, classrooms and workplaces and I am very grateful for the open and reflective conversations that took place between us.

I would especially like to acknowledge with love, my two wonderful gifted visual-spatial learner sons. This whole journey has been about and for you. Thank you for the insights you have shared with me as we have travelled this road together. Also, all the other gifted visual-spatial students I have had the pleasure of knowing and learning alongside – my wish for all of you is that you find a place of passion where your very special gifts can enhance your lives and be appreciated by others.

I would also like to acknowledge the positive support of my supervisors, whose continued faith in me was so valuable in maintaining the effort needed to complete what began as a gem of an idea and turned into a saga! Thank you for your genuine interest in my writing and the encouragement you have given me at every step of the way. I have learned so much and sincerely thank you both for your thoughtful and thought-provoking guidance.

Finally I would like to acknowledge all the teachers who work so hard in our schools throughout New Zealand. Your job is one that constantly challenges and I have so much admiration for the colleagues who I see daily, striving to make improvements to meet the diverse learning needs of their students. The contents of this research may necessarily challenge you some more. However I hope that what you find within this thesis will support you in responding with greater understanding to enable a further group of children to experience success with their learning.
Dedication:

This is for all gifted visual-spatial children – those with the gift of magic in their minds and potential to create unique solutions to common problems – children that the rest of the world need to nurture, now more than ever.
ABSTRACT

This thesis explores a group of learners who have exceptional visual-spatial abilities relative to their same age peers. These abilities give them the potential to achieve success in areas where the capability to visualise three dimensional images and manipulate those images in space contributes to a creative problem-solving mindset that is highly valued in today’s globally competitive world of innovative technology.

Literature reviewed to background the investigation topic suggested characteristic differences in the way these learners process information can create barriers to successful classroom learning. It was reported that consequent areas of challenge within traditional academic domains, together with their exceptional ability being not often recognised or valued in schools, contributes to gifted visual-spatial learners being an “invisible group”. These findings lead to the development of a primary research aim to describe these differences and explore how they affect the learning experiences of these students. As part of this investigation, the extent to which the exceptional visual-spatial abilities were recognised and how well their need for a differentiated curriculum was understood was also evaluated.

A case study approach has been utilised to create in-depth descriptions of three students who, following completion of a cognitive assessment profile by a professional with acknowledged expertise and knowledge about gifted students, had been identified as gifted visual-spatial learners. A photo elicitation technique was incorporated into the case study methodology as it was considered that this would mesh well with the characteristic processing style of the participants. Semi-structured interviews were conducted with participants using photographs that they had taken in response to stimulus questions posed at an initial meeting. The photographs provided a concrete visual product that linked to personal experiences as a prompt for communication to encourage meaningful discussion. Observations were undertaken of the learners in learning environments and semi-structured interviews were carried out with teachers and parents. Further data was gathered from analysis of unobtrusive artefacts such as assessment reports and samples of work.
The resulting information is presented as three case descriptions followed by a discussion section. Particular attention has been given to describing learning characteristics that set these students apart and discussion of how these differences impact on academic achievement. Aspects that supported successful learning experiences were also identified and recommendations for classroom practice and for future research have been made.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Contents</td>
<td>vi</td>
</tr>
<tr>
<td>Chapter One: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Context of the Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Justification of the Need for this Research</td>
<td>3</td>
</tr>
<tr>
<td>1.3 The Research Problem</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Organisation of this Thesis</td>
<td>6</td>
</tr>
<tr>
<td>Chapter Two: Literature Review</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Gifted and Talented Learners</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1 How is ‘Gifted and Talented’ Defined in New Zealand?</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Gifted? Talented? Gifted and Talented?</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3 Ministry of Education Guidelines</td>
<td>11</td>
</tr>
<tr>
<td>2.1.4 The Political Context</td>
<td>12</td>
</tr>
<tr>
<td>2.1.5 Behavioural Characteristics</td>
<td>14</td>
</tr>
<tr>
<td>2.1.6 Finding the Hidden Groups</td>
<td>17</td>
</tr>
<tr>
<td>2.1.7 Gifted and Talented Definition for this Thesis</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Visual-spatial Learners</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1 Background to the Visual-Spatial Learner Concept</td>
<td>20</td>
</tr>
<tr>
<td>2.2.2 Linda Kreger Silverman</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3 Louise Porter</td>
<td>22</td>
</tr>
<tr>
<td>2.2.4 Brain Lateralisation</td>
<td>23</td>
</tr>
<tr>
<td>2.2.5 Visual-Spatial Definition for this Thesis</td>
<td>24</td>
</tr>
<tr>
<td>2.3 Identification of Gifted Visual-Spatial Learners</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1 Current Identification Practices in Schools</td>
<td>25</td>
</tr>
<tr>
<td>2.3.2 Cognitive Assessment Profiling</td>
<td>27</td>
</tr>
<tr>
<td>2.3.3 The Visual-Spatial/Auditory-Sequential Identifier</td>
<td>29</td>
</tr>
<tr>
<td>2.3.4 Summary</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Research into how Visual-Spatial Learners Learn</td>
<td>32</td>
</tr>
<tr>
<td>2.4.1 A Different Way of Learning</td>
<td>32</td>
</tr>
<tr>
<td>2.4.2 Changing Values</td>
<td>33</td>
</tr>
<tr>
<td>2.4.3 Providing Practice Opportunities to Enhance Spatial Skills</td>
<td>34</td>
</tr>
<tr>
<td>2.5 Literature Review Summary</td>
<td>35</td>
</tr>
</tbody>
</table>
Chapter Three: Methodology

3.1 Case Study Methodology

3.2 Research Design
 3.2.1 Research Aims
 3.2.2 Units of Analysis
 3.2.3 Data Gathering Tools
 3.2.4 Photo-Elicitation Interview

3.3 Data Collection
 3.3.1 Initial Meeting with Participants
 3.3.2 Photo Elicitation Process
 3.3.3 Follow-up Semi-structured Interview with Gifted Visual-Spatial Learners
 3.3.4 Interviews with Parents, Teachers and Assessors
 3.3.5 Observations
 3.3.6 Document Analysis

3.4 Data Analysis

3.5 Ethical Considerations

Chapter Four: Results (Case A)

4.1 Introduction to Case Descriptions

4.2 Case A Description
 4.2.1 Gifted Characteristics
 4.2.2 Visual-Spatial Characteristics
 4.2.3 Strengths
 4.2.4 Challenges
 4.2.5 Elements That Support Learning

Chapter Five: Results (Case B)

5.1 Case B Description
 5.1.1 Gifted Characteristics
 5.1.2 Visual-Spatial Characteristics
 5.1.3 Strengths
 5.1.4 Challenges
 5.1.5 Elements That Support Learning

Chapter Six: Results (Case C)

6.1 Case C Description
 6.1.1 Gifted Characteristics
 6.1.2 Visual-Spatial Characteristics
 6.1.3 Strengths
 6.1.4 Challenges
 6.1.5 Elements That Support Learning
Chapter Seven: Discussion

7.1 Visual-Spatial Information Processing

7.1.1 A Different Way of Organising Information

7.1.2 Creativity

7.1.3 Introversion

7.1.4 Summary

7.2 Aspects that are Challenging for VSLs

7.2.1 Barriers to Writing

7.2.2 Barriers to Verbal Communication

7.2.3 When English is an Additional Language

7.2.4 Difficulty with Rote Memorisation vs. Excelling at Math Concepts

7.2.5 When Learning Difference Equals Learning Disability

7.2.6 Challenges with Organisation

7.2.7 Over-excitabilities

7.2.8 The Gifted Female Visual-Spatial Learner

7.2.9 Frustration Equals Stress

7.2.10 Summary

7.3 What has Helped?

7.3.1 Differentiation that is Responsive to Demonstrated Needs

7.3.2 A Student-centred Learning Environment

7.3.3 Utilising Visual-Spatial Strengths to Maintain Motivation

7.3.4 Time to Process and Conceptualise

7.3.5 Experiential Contexts that Support Deep Learning

7.3.6 Direct Instruction in Organisational Strategies that Utilise Visual Strengths

7.3.7 Working with Like-Minded Peers

7.3.8 Learning Environment Sympathetic to Overexcitabilities

7.3.9 Positive Personality Traits

7.3.10 Summary

7.4 Awareness of Difference

7.4.1 Acknowledgement of Difference from Others

7.4.2Extent of Self Knowledge

7.4.3 Summary

Chapter Eight: Conclusions

8.1 Description of Difference

8.1.1 How do these Learners Experience Learning?

8.1.2 Learning Challenges

8.2 How Were Their Differences Recognised and Responded to?
8.3 Implications of Findings
 8.3.1 Recommendations for Practice 140
 8.3.2 Professional Learning Needs 141
 8.3.3 Strengths and Limitations of the Research 143
 8.3.4 Recommendations for Future Research 144

References 147

Appendices A1

Appendix A: Initial Approach letter A1
Appendix B: Information Sheet
 i. for educational psychologists A2
 ii. for parents A4
 iii. for students A6
 iv. for school principals A8
 v. for teachers A10
 Consent Form
 vi. for students/teachers/educational psychologists A12
 vii. for parents A13
 viii. for schools A14

Appendix C: Protocol used in initial meeting with visual-spatial learners A15
Appendix D: Photography “Tips” Sheet A16
Appendix E: Protocol used in follow up semi-structured interviews
 with visual-spatial learners A17
Appendix F: Protocol used in semi-structured interviews with
 parents and teachers A19
Appendix G: Observation form A20
Appendix H: Ethics approval letter A21
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Differentiated Model of Giftedness and Talent (Gagne)</td>
<td>17</td>
</tr>
<tr>
<td>2.</td>
<td>Learning style preference of students (Porter)</td>
<td>22</td>
</tr>
<tr>
<td>3.</td>
<td>Approximate distribution of preferred and strongly preferred learning styles among students in the regular classroom according to study by Silverman</td>
<td>30</td>
</tr>
<tr>
<td>4.</td>
<td>Taking apart a television set</td>
<td>55</td>
</tr>
<tr>
<td>5.</td>
<td>Lego model of man with camcorder</td>
<td>56</td>
</tr>
<tr>
<td>6.</td>
<td>‘Modular transport system’ created from tangram pieces</td>
<td>62</td>
</tr>
<tr>
<td>7.</td>
<td>Mind map created for a science lesson</td>
<td>63</td>
</tr>
<tr>
<td>8.</td>
<td>Copy of abstract artwork recreated at home</td>
<td>69</td>
</tr>
<tr>
<td>9.</td>
<td>Word software programme</td>
<td>70</td>
</tr>
<tr>
<td>10.</td>
<td>Powerpoint software programme</td>
<td>70</td>
</tr>
<tr>
<td>11.</td>
<td>Danielle’s motorised K’nex cable car</td>
<td>70</td>
</tr>
<tr>
<td>12.</td>
<td>‘Disco Skim’ model</td>
<td>72</td>
</tr>
<tr>
<td>13.</td>
<td>Danielle’s maths homework</td>
<td>81</td>
</tr>
<tr>
<td>14.</td>
<td>Times table test</td>
<td>81</td>
</tr>
<tr>
<td>15.</td>
<td>Making a balloon animal</td>
<td>83</td>
</tr>
</tbody>
</table>