Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A STUDY ON THE USE OF UNFROZEN, DILUTED SEMEN FOR THE IN VITRO FERTILISATION OF BOVINE OOCYTES MATURED *IN VITRO*

ANGELA DAWN SEATON

1991
Massey University Library
Thesis Copyright Form

Title of thesis: A STUDY ON THE USE OF UNFROZEN, DILUTED SEMEN FOR THE IN VITRO FERTILISATION OF BOVINE OVULES

(1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ... months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ... months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ... months.

Signed

Date

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE
A STUDY ON THE USE OF UNFROZEN, DILUTED SEMEN FOR THE IN VITRO FERTILISATION OF BOVINE OOCYTES MATURED IN VITRO

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agriculture Science in Animal Science at Massey University

ANGELA DAWN SEATON

1991
ACKNOWLEDGEMENTS

I gratefully acknowledge the assistance of the following people and organisations:

- My supervisors, Assistant Professor Maurice McDonald (Department of Animal Science, Massey University) and Dr Bob Welch (Grasslands Division, DSIR), for their time, advice and encouragement.

- Staff at Grasslands DSIR, particularly Adrian King and Drs Michael Gurnsey and Lora Hagemann, for many services rendered.

- Staff of the Animal Science Department and my fellow postgraduate students, particularly Ken Greaney, for their support and advice.

- Dr Dorian Garrick (Department of Animal Science) and Bob Fletcher (Division of Information Science, DSIR) for help with statistical analyses - and their patience!

- Livestock Improvement Corporation for generously donating semen and Caprogen.

I would also like to thank Dr Pat Shannon and Earle Newey for their interest and advice.

- Management and staff of Waitaki Freezing Co., Aorangi plant, Feilding.

- Grasslands Division, DSIR, for considerable financial support and for supplying research facilities.

- Massey University for financial support through J. A. Anderson and Helen E. Akers scholarships.

- Very special thanks to co-workers and friends, Sally Rhodes and Dr Jim Catt, without the moral support, advice and encouragement of whom this thesis would not have existed.

- Last but not least, my parents, who gave me my very first experience of embryology...
ABSTRACT

The study investigated the use of unfrozen, diluted semen for in vitro fertilisation of bovine oocytes matured in vitro. In experiment 1, semen from each of two bulls was used on two consecutive days ("day-old" and "two-day-old" sperm) to explore the effect of sperm concentration on oocyte penetration rates. The sperm concentrations used were 0.125, 0.25, 0.5, 1.0, 2.0 and 4.0x10⁶/ml. Penetration rates were uniformly high when day-old sperm was used, but low penetration rates were obtained below 1x10⁶/ml with two-day-old sperm. Unfrozen sperm appeared to give better penetration rates than frozen-thawed sperm at concentrations of 0.5-2.0x10⁶/ml. There was no relationship between sperm concentration and incidence of polyspermy. In experiment 2, sperm from the same two bulls were used to investigate the presence of Caprogen extender in the fertilisation medium. Caprogen inhibited penetration when present in concentrations greater than 10ml/litre. Experiments 3 and 4 studied the effect of heparin on penetration rates. In experiment 3, sperm from one bull was used to inseminate oocytes in medium containing 0, 1, 5, 10, 20, 30 or 50μg/ml heparin. There was no relationship between penetration rates and heparin concentrations in the medium, and average penetration rates were high for all concentrations. In experiment 4, five bulls were used to investigate penetration rates at heparin levels of 0μg/ml (frozen-thawed and unfrozen sperm) and 10μg/ml (unfrozen sperm). The results obtained in experiment 3 with sperm from one bull were confirmed; penetration was obtained in the absence of heparin with all five bulls.

Good penetration can be obtained in vitro with unfrozen sperm, and its greater longevity and viability make it a useful alternative to frozen semen for both commercial and research in vitro fertilisation programmes.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

ABSTRACT .. ii

TABLE OF CONTENTS .. iii

LIST OF TABLES .. viii

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS ... xi

CHAPTER 1. INTRODUCTION. .. 1

CHAPTER 2. FACTORS AFFECTING THE SUCCESS OF IVM/IVF/IVC

PROCEDURES. ... 4

2.1. COLLECTION OF GAMETES. 4

2.1.1. Oocytes. ... 4

2.1.2. Spermatozoa. ... 7

2.2. OOCYTE MATURATION. ... 8

2.2.1. Oocyte Quality. .. 9
3.5.2. Unfrozen sperm. ... 36

3.6. FERTILISATION. ... 37

3.7. FIXING AND STAINING OF OOCYTES. 37

3.8. ASSESSMENT. .. 38

3.9. METHODOLOGY OF INDIVIDUAL EXPERIMENTS. 39

3.9.1. Experiment 1: Effect of Sperm Concentration and
Semen Age on Oocyte Penetration and Polyspermy. 39

3.9.2. Experiment 2: Effect of Caprogen Presence on
Oocyte Penetration. ... 39

3.9.3. Experiment 3: Effect of Heparin Concentration on
Oocyte Penetration .. 40

3.9.4. Experiment 4: Effect of Heparin Concentration on
Oocyte Penetration .. 40

3.10. STATISTICAL ANALYSIS. .. 41

CHAPTER 4. RESULTS. ... 44

4.1. EXPERIMENT 1: SPERM CONCENTRATION, SEMEN AGE, OOCYTE
PENETRATION AND POLYSPERMY. 44

4.1.1. Effect of sperm concentration and semen age
on oocyte penetration. .. 44

4.1.2. Effect of sperm concentration on the proportion
of polyspermic oocytes. .. 47

4.1.3. Rates of penetration achieved with frozen-thawed
versus unfrozen sperm. .. 48
4.2. EXPERIMENT 2: EFFECT OF CAPROGEN PRESENCE ON OOCYTE PENETRATION RATE. ... 50

4.3. EXPERIMENT 3: EFFECT OF HEPARIN CONCENTRATION ON OOCYTE PENETRATION. ... 52

4.4. EXPERIMENT 4: EFFECT OF HEPARIN CONCENTRATION ON OOCYTE PENETRATION. ... 55

CHAPTER 5: DISCUSSION ... 57

5.1. SEMEN AGE AND SPERM CONCENTRATION. 58
 5.1.1. Effects of semen age on penetration. 58
 5.1.2. Effects of sperm concentration on penetration. 60
 5.1.3. Effects of sperm concentration on polyspermy. 61
 5.1.4. Penetration achieved with frozen-thawed and unfrozen sperm. .. 62

5.2. PRESENCE OF CAPROGEN EXTENDER IN THE FERTILISATION MEDIUM. ... 64

5.3. PRESENCE OF HEPARIN IN THE FERTILISATION MEDIUM. .. 66

REFERENCES ... 69

APPENDICES ... 85

APPENDIX 1 - MEDIA RECIPES. .. 86

APPENDIX 2 - TIMING OF OPERATIONS 95

APPENDIX 3 - TIMING OF OOCYTE AND EMBRYO DEVELOPMENT .. 96
3.1. In Vitro Maturation. .. 96
3.2. In Vitro Fertilisation. ... 96

APPENDIX 4. STATISTICAL ANALYSES FOR EXPERIMENT 1. 97
APPENDIX 5. STATISTICAL ANALYSIS FOR EXPERIMENT 2. 104
APPENDIX 6. STATISTICAL ANALYSES FOR EXPERIMENT 3. 105
LIST OF TABLES

Table 1. Developmental capacity of bovine oocytes matured and fertilised *in vitro*.

Table 2. Conditions and success of various bovine embryo culture systems.

Table 3. Proportions of oocytes penetrated at different sperm concentrations

 (day-old sperm).

Table 4. Proportions of oocytes penetrated at different sperm concentrations

 (2-day-old sperm).

Table 5. Proportion of polyspermic oocytes generated by each sperm concentration.

Table 6. Penetration rates obtained at different sperm concentrations

 (frozen-thawed sperm).

Table 7. Penetration rates obtained at different sperm concentrations

 (unfrozen sperm).

Table 8. Data summary of oocyte penetration rates with different concentrations of Caprogen in the fertilisation medium.

Table 9. Oocyte penetration rates with different concentrations of heparin in the fertilisation medium.

Table 10. Incidence of polyspermic oocytes for different concentrations of heparin in the fertilisation medium.

Table 11. Penetration rates obtained with unfrozen sperm from five bulls in medium without heparin.
Table 12. Penetration rates obtained with unfrozen sperm from five bulls in medium containing 10µg/ml heparin. ... 57

Table 13. Penetration rates obtained with frozen-thawed sperm from five bulls in medium without heparin. ... 57
LIST OF FIGURES

Figure 1: Ovaries collected from the slaughterhouse that have been washed and trimmed of excess tissue. ... 44*

Figure 2: A healthy follicle with good vascularisation, suitable for providing granulosa cells for maturation culture. 44

Figure 3: Degenerate oocyte and healthy immature oocytes with compact unexpanded cumulus layers. ... 44

Figure 4: An oocyte that has undergone cumulus layer expansion after maturation culture. ... 44

Figure 5: Immature oocyte at nuclear stage metaphase I 44

Figure 6: Oocyte in first phase of secondary maturation - nuclear stage anaphase II. ... 44

Figure 7: Oocyte in second phase of secondary maturation - nuclear stage telophase II and the production of the polar body. 44

Figure 8: Oocyte in third phase of secondary maturation - metaphase II (lateral view of spindle). ... 44

Figure 9: Oocyte in third phase of secondary maturation - metaphase II (cross-sectional view of spindle). ... 44

Figure 10: Early penetration with female pronucleus, decondensing sperm head and detached sperm tail. .. 44
Figure 11: Penetration of two oocytes, both possessing male
and female pronuclei. .. 44

Figure 12: Syngamy - the amalgamation of the male and female pronuclei
and the merging of genetic material. 44

Figure 13: A polyspermic oocyte with three pronuclei. 44

Figure 14. Observed and predicted penetration rates obtained with day-old
and two-day-old unfrozen sperm. 47

Figure 15. Observed and predicted penetration rates obtained with frozen-thawed
and unfrozen sperm. .. 50

Figure 16. Observed and predicted penetration rates obtained with various
concentrations of Caprogen. ... 52

* Figures on pages following those indicated.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>acrosome reaction</td>
</tr>
<tr>
<td>BO</td>
<td>Brackett's-Oliphant's medium</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>COC</td>
<td>cumulus-oocyte complex</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle stimulating hormone</td>
</tr>
<tr>
<td>GAG</td>
<td>glycosaminoglycan</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic gonadotropin</td>
</tr>
<tr>
<td>HIS</td>
<td>high ionic strength (medium)</td>
</tr>
<tr>
<td>IVC</td>
<td>in vitro culture</td>
</tr>
<tr>
<td>IVF</td>
<td>in vitro fertilisation</td>
</tr>
<tr>
<td>IVM</td>
<td>in vitro maturation</td>
</tr>
<tr>
<td>LIC</td>
<td>Livestock Improvement Corporation</td>
</tr>
<tr>
<td>LH</td>
<td>luteinising hormone</td>
</tr>
<tr>
<td>m199</td>
<td>medium 199</td>
</tr>
<tr>
<td>OCS</td>
<td>oestrous cow serum</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline solution</td>
</tr>
<tr>
<td>PHE</td>
<td>penicillamine, hypotaurine, epinephrine</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis Systems</td>
</tr>
<tr>
<td>TALP</td>
<td>Tyrode's medium with acetate, lactate, pyruvate</td>
</tr>
</tbody>
</table>