RENEWABLE ENERGY SYSTEM DESIGN:
A GUIDE TO
THE APPLICATION OF PHOTOVOLTAIC, WIND,
AND MICRO-HYDRO POWER

A thesis
submitted in partial fulfilment
of the requirement for the degree
of
Master of Horticultural Science
in
Agricultural Engineering
at
Massey University, New Zealand

Samuel David Weiss
1992
I gratefully acknowledge the following, who have all contributed to the completion of this thesis:

The financial support given to me through the D.J. McGowan scholarship.

My parents, who convinced me (after much effort) of the value of education, and instilled in me a desire for learning.

Ronda, who has been my joy, and who restored my sanity at regular intervals.

Dr Gavin Wall, for his guidance and helpful advice in times of uncertainty, and for permitting me the luxury of using of his office, while on sabbatical.

Dr Cliff Studman, for looking over my thesis and suggesting some modifications.

Finally I wish to acknowledge my Creator and my God.

"You alone are the LORD.
You made the heavens, even the highest heavens,
and all their starry host,
the earth and all that is on it,
the seas and all that is in them.
You give life to everything,
and the multitudes of heaven
worship you."

(Nehemiah 9:6)
ABSTRACT

The primary objective of this study was to produce a guide for the application of photovoltaic, wind, and micro-hydro power to remote areas. The applications considered are those of generating electricity, and pumping water. An extensive literature review introduces and covers the main design considerations for each energy form. The primary decision-making areas are then examined, beginning with a look at the theory of electricity, and going on to discuss generators, inverters, energy storage, and mechanical transmission. Next, the assessment of the demand over a given time interval is considered.

The key questions of, "How big a system is required?", and, "How much energy will be produced?", are addressed for each energy form, along with various design considerations. For each of the energy forms the issue of quantifying the resource is examined in detail. The factors influencing the amount of power available are presented for each. This process of quantifying the power available is essential in order to be able to choose the optimum type of renewable energy to use for a given application in a specified location. Dealing with them together in one document allows the different energy forms to be assessed side by side, and a preliminary decision on the most promising type made.

For both wind and photovoltaic energy a computer model was created, drawing on available theory, in order to generate charts to assist in the design process. The photovoltaic design charts enable sunshine hour data to be converted to radiation in Kwh/m², and radiation on a horizontal plane to be converted to that received on a plane inclined at a specified angle. Other charts were produced which enable the most cost effective combination of array and battery to be selected for a given situation. The wind charts specify the amount of power which can be produced from a wind turbine with given characteristics operating in a specified wind regime.

The photovoltaic and wind design charts produced by the models enable the size of the relevant system required to be determined for a given situation. This information then allows a costing to be done to determine the cost of generating energy with a particular method. The procedure for evaluating and determining the true cost of the energy produced, based on life cycle costing, is then examined. This can then be used to assess the most economical means of meeting any particular demand.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>Symbols and Abbreviations</td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Problems with Conventional Power Generation ... 1
1.2 The New Zealand Situation ... 2
1.3 Developing Country Application .. 2
1.4 Price of Renewable Energies ... 2

2 LITERATURE REVIEW

2.1 Overall Introduction to Literature Review ... 4

Solar Energy

2.2 Introduction ... 4
2.3 General Comment on References ... 5
2.4 Design Overview .. 5
2.5 Sizing Photovoltaic Array .. 6
2.6 Determining Storage ... 7
2.6.1 Battery Storage ... 7
2.6.2 Hydro Storage .. 7
2.7 DC and AC ... 8
2.8 Matching Load to Array .. 8
2.9 Tracking Arrays .. 8
2.10 Load Control ... 9
2.10.1 Lightning Protection ... 9
2.11 Photovoltaic Water Pumping ... 9
2.11.1 Photovoltaic Pumping Design Overview 10
2.11.2 Types of Pumps .. 10
2.11.3 Motor Selection .. 10
2.11.4 Pump Output .. 11
2.11.5 Reliability .. 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undershoot</td>
<td>32</td>
</tr>
<tr>
<td>Overshot Waterwheel</td>
<td>32</td>
</tr>
<tr>
<td>2.33.2 Impulse Turbines</td>
<td>32</td>
</tr>
<tr>
<td>Advantages</td>
<td>32</td>
</tr>
<tr>
<td>General Disadvantages</td>
<td>33</td>
</tr>
<tr>
<td>Pelton Wheels</td>
<td>33</td>
</tr>
<tr>
<td>Turgo Turbines</td>
<td>33</td>
</tr>
<tr>
<td>Crossflow</td>
<td>34</td>
</tr>
<tr>
<td>Pelton Wheels as Turbines</td>
<td>34</td>
</tr>
<tr>
<td>Turgo Turbines</td>
<td>34</td>
</tr>
<tr>
<td>Impulse Turbines</td>
<td>34</td>
</tr>
<tr>
<td>Francis Turbine</td>
<td>35</td>
</tr>
<tr>
<td>Kaplan Turbine</td>
<td>35</td>
</tr>
<tr>
<td>Rams</td>
<td>35</td>
</tr>
<tr>
<td>2.34 Selecting the Most Appropriate Type of Turbine</td>
<td>36</td>
</tr>
<tr>
<td>2.35 Electricity Generation</td>
<td>36</td>
</tr>
<tr>
<td>2.35.1 Speed Control</td>
<td>36</td>
</tr>
<tr>
<td>2.35.2 DC Power</td>
<td>36</td>
</tr>
<tr>
<td>2.36 Costs</td>
<td>37</td>
</tr>
<tr>
<td>2.37 Developing Country Applications</td>
<td>37</td>
</tr>
<tr>
<td>2.38 Conclusions from Literature</td>
<td>38</td>
</tr>
<tr>
<td>3 OBJECTIVES</td>
<td></td>
</tr>
<tr>
<td>Limitations of the Study</td>
<td>40</td>
</tr>
<tr>
<td>4 ELECTRICITY THEORY, TRANSMISSION AND STORAGE</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>4.2 Voltage</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Frequency</td>
<td>42</td>
</tr>
<tr>
<td>4.4 Waveform</td>
<td>42</td>
</tr>
<tr>
<td>4.5 Current</td>
<td>42</td>
</tr>
<tr>
<td>4.5.1 Direct Current</td>
<td>42</td>
</tr>
<tr>
<td>4.5.2 Alternating Current</td>
<td>43</td>
</tr>
<tr>
<td>AC: Single vs Three Phase</td>
<td>43</td>
</tr>
<tr>
<td>4.6 Series vs Parallel Circuits</td>
<td>43</td>
</tr>
<tr>
<td>4.6.1 Series Circuits</td>
<td>43</td>
</tr>
<tr>
<td>4.6.2 Parallel Circuits</td>
<td>44</td>
</tr>
<tr>
<td>4.7 Inverters</td>
<td>44</td>
</tr>
<tr>
<td>4.8 Rectifier</td>
<td>45</td>
</tr>
<tr>
<td>4.9 Transformers</td>
<td>45</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>4.30</td>
<td>Transmitting Power from Renewable Energy Sources some Distance</td>
</tr>
<tr>
<td>5</td>
<td>DEMAND ASSESSMENT</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Determining the Demand Profile</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Daily Power Consumption</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Peak Power Load</td>
</tr>
<tr>
<td>5.3</td>
<td>Water Heating</td>
</tr>
<tr>
<td>5.4</td>
<td>Water Pumping With Electricity</td>
</tr>
<tr>
<td>5.5</td>
<td>Assessing the Water Demand</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Domestic Consumption</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Animal Consumption</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Water for Irrigation</td>
</tr>
<tr>
<td>6</td>
<td>PHOTOVOLTAICS</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Photovoltaic Cell Prices</td>
</tr>
<tr>
<td>6.3</td>
<td>Components of Radiation</td>
</tr>
<tr>
<td>6.4</td>
<td>Determination of Extraterrestrial Radiation (Ho)</td>
</tr>
<tr>
<td>6.5</td>
<td>Actual Incident Radiation (H)</td>
</tr>
<tr>
<td>6.6</td>
<td>Measuring Solar Radiation</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Instruments for Measuring Solar Radiation</td>
</tr>
<tr>
<td>6.6.1.1</td>
<td>Pyrheliometer</td>
</tr>
<tr>
<td>6.6.1.2</td>
<td>Pyranometer</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Instruments for Measuring Duration of Sunshine</td>
</tr>
<tr>
<td>6.6.2.1</td>
<td>Campbell-Stokes Sunshine Recorder</td>
</tr>
<tr>
<td>6.6.2.2</td>
<td>Foster Sunshine Switch</td>
</tr>
<tr>
<td>6.7</td>
<td>Cleanness Index</td>
</tr>
<tr>
<td>6.8</td>
<td>Use of Sunshine Hour Data to Derive Radiation on a Horizontal Plane</td>
</tr>
<tr>
<td>6.9</td>
<td>Determining the Amount of Radiation on an Inclined Plane</td>
</tr>
<tr>
<td>6.10</td>
<td>Types of Translation Models and their Characteristics</td>
</tr>
<tr>
<td>6.11</td>
<td>Overview of Solar Design</td>
</tr>
<tr>
<td>6.12</td>
<td>Sizing the Photovoltaic Array</td>
</tr>
<tr>
<td>6.12.1</td>
<td>Rating Photovoltaic Arrays</td>
</tr>
<tr>
<td>6.12.2</td>
<td>Array Sizing Temperature Correction</td>
</tr>
<tr>
<td>6.13</td>
<td>Determining Battery Size Requirement</td>
</tr>
<tr>
<td>6.13.1</td>
<td>Temperature Correction</td>
</tr>
<tr>
<td>6.14</td>
<td>Photovoltaic Pumping</td>
</tr>
<tr>
<td>6.15</td>
<td>Introduction to the Photovoltaic Computer Model</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Generator</td>
</tr>
<tr>
<td>7.10</td>
<td>Introduction to the Wind Turbine Computer Model</td>
</tr>
<tr>
<td></td>
<td>Wind Velocity Distribution</td>
</tr>
<tr>
<td></td>
<td>Wind Power Duration</td>
</tr>
<tr>
<td></td>
<td>Annual Turbine Power Output</td>
</tr>
<tr>
<td></td>
<td>Sizing a Wind Pump Rotor</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Basic Theory Behind Models Operation</td>
</tr>
<tr>
<td></td>
<td>Wind Frequency Distribution</td>
</tr>
<tr>
<td></td>
<td>Wind Power Duration</td>
</tr>
<tr>
<td></td>
<td>Turbine Power Output</td>
</tr>
<tr>
<td></td>
<td>Simple Example to Illustrate the Use of the Design Tables</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Validation of Computer Model Turbine Output</td>
</tr>
<tr>
<td>7.11</td>
<td>Determining the Turbine Size Required for Water Pumping</td>
</tr>
<tr>
<td>7.11.1</td>
<td>Determining Pumping Head</td>
</tr>
<tr>
<td>7.11.2</td>
<td>Volume-Head Product</td>
</tr>
<tr>
<td>7.11.3</td>
<td>Sizing the Rotor using the Design Nomograms</td>
</tr>
<tr>
<td>7.11.4</td>
<td>Basis of the Design Nomograms</td>
</tr>
<tr>
<td>7.11.5</td>
<td>Energy Pattern Factor</td>
</tr>
<tr>
<td>7.11.6</td>
<td>Example showing the use of the Rotor Sizing Nomograms:</td>
</tr>
<tr>
<td>7.12</td>
<td>Determining the Pump Size</td>
</tr>
<tr>
<td>7.13</td>
<td>Determining the Storage Requirement</td>
</tr>
<tr>
<td>8</td>
<td>MICRO-HYDRO</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Calculating the Power in the Water</td>
</tr>
<tr>
<td>8.3</td>
<td>Determining the Flow Rate</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Container Method</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Float Method</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Weir Method</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Salt Dilution Method</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Using Catchment Area Data</td>
</tr>
<tr>
<td>8.4</td>
<td>Measuring the Head</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Using a Surveyor's Level</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Spirit Level</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Using a Hose and Pressure Gauge</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Using an Aneroid</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Adjusting Gross Head to Obtain Net Head</td>
</tr>
<tr>
<td>8.5</td>
<td>Other Factors to Consider in Site Selection</td>
</tr>
<tr>
<td>8.6</td>
<td>Selecting the most Appropriate Turbine</td>
</tr>
</tbody>
</table>
8.7.1 Specific Speed ... 155
8.8 Crossflow Turbine .. 157
8.9 Using Centrifugal Pumps as Turbines 159
8.9.1 Disadvantages of Using Pumps as Turbines 162
8.10 Intakes .. 162
8.10.1 Venting .. 165
8.11 Penstocks .. 165
8.11.1 Determining Required Pipe Size for Penstock 165
8.11.2 Hydraulic Gradient 165
8.11.3 Water Hammer .. 166
8.12 Energy Storage in Dams 166
8.13 Battery Storage .. 166
8.14 Legal Issues .. 167
8.15 Micro-Hydro Electric Generators 167
8.15.1 Governing Systems 168
8.15.2 Generator Speed 169
8.15.3 Brakes .. 169
8.16 Developing Country Applications 173
8.17 Computer Programme 173

9 HYBRID SYSTEMS

9.1 Introduction ... 174
9.2 The Variable Nature of Renewable Energies in Relation to the LOLP 175
9.3 Wind-Photovoltaic Hybrid 175
9.4 Diesel Generators .. 176
9.4.1 Disadvantages of Diesel Generators 176
9.4.2 Fuel Efficiency .. 177
9.4.3 Diesel Generator plus Batteries 178
9.4.4 Sizing the Battery Bank Associated with a Diesel-Hybrid System 178
9.5 Wind-Diesel Systems 178
9.5.1 Types of Generators on the Wind Turbine used in a Wind-Diesel Hybrid 179
9.6 Hybrid System Controllers 179
9.7 Sizing the Battery Bank Associated with Two Renewable Energies 180
9.8 Battery Sizing Procedure 180
9.9 Sizing Hybrid Systems 181
9.9.1 Procedure for Sizing Hybrid Systems 181
9.9.2 Hybrid Sizing Example 182
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Financial Assessment</td>
<td>187</td>
</tr>
<tr>
<td>10.2</td>
<td>Life Cycle Costing</td>
<td>187</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Determining the Annualised Cost</td>
<td>188</td>
</tr>
<tr>
<td>10.3</td>
<td>Example of a Financial Assessment</td>
<td>189</td>
</tr>
<tr>
<td>11.1</td>
<td>Suggestions for Further Research</td>
<td>195</td>
</tr>
<tr>
<td>A</td>
<td>Appliance Power Rating and Energy Demand</td>
<td>204</td>
</tr>
<tr>
<td>B</td>
<td>Relating Sunshine Duration to Radiation on a Horizontal Surface</td>
<td>206</td>
</tr>
<tr>
<td>C</td>
<td>A Comparison of Measured Radiation with that calculated from Sunshine Hour Data</td>
<td>209</td>
</tr>
<tr>
<td>D</td>
<td>A Summary of Measured Daily Radiation per Month for Various Locations in New Zealand</td>
<td>217</td>
</tr>
<tr>
<td>E</td>
<td>Radiation on a Tilted Surface, H_r, Based on Latitude, Tilt Angle, and H</td>
<td>218</td>
</tr>
<tr>
<td>F</td>
<td>Combination of Array Rating and Battery Storage Capacity, Required for Specified Conditions</td>
<td>230</td>
</tr>
<tr>
<td>G</td>
<td>Power Produced by Specified Turbine per Annum</td>
<td>246</td>
</tr>
<tr>
<td>H</td>
<td>Weibull Distribution for Different Average Wind Velocities and Shape Factors</td>
<td>255</td>
</tr>
<tr>
<td>I</td>
<td>Wind Speed Frequency Distribution Curves</td>
<td>261</td>
</tr>
<tr>
<td>J</td>
<td>Wind Power Duration Curves</td>
<td>264</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td>267</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Wind Turbine Efficiency versus Tip Speed Ratio</td>
<td>20</td>
</tr>
<tr>
<td>2.2 Power and Torque versus Rotational Speed</td>
<td>21</td>
</tr>
<tr>
<td>4.1 A Parallel Circuit</td>
<td>44</td>
</tr>
<tr>
<td>4.2 A Transformer</td>
<td>45</td>
</tr>
<tr>
<td>4.3 A Simple Generator</td>
<td>47</td>
</tr>
<tr>
<td>4.4 A Multi-Coil Generator</td>
<td>48</td>
</tr>
<tr>
<td>4.5 Battery Capacity Temperature Correction</td>
<td>55</td>
</tr>
<tr>
<td>4.6 Series and Parallel Battery Configurations</td>
<td>56</td>
</tr>
<tr>
<td>4.7 The Relationship Between Ampere-hour Capacity and Discharge Rate</td>
<td>57</td>
</tr>
<tr>
<td>4.8 The Effect of Pulley Size on Drive Suitability</td>
<td>60</td>
</tr>
<tr>
<td>6.1 Photovoltaic Price History</td>
<td>75</td>
</tr>
<tr>
<td>6.2 Nomogram to Determine Time of Sunset and Sunrise</td>
<td>82</td>
</tr>
<tr>
<td>6.3 Annual Variation of Global Radiation on Horizontal and Tilted Surface for Qacha's Nek, South Africa</td>
<td>83</td>
</tr>
<tr>
<td>6.4 Daily Diffuse/Global Ratio as a Function of the Cleanness Index for Wellington and Gracefield, New Zealand</td>
<td>87</td>
</tr>
<tr>
<td>6.5 The Relationship between the Average Cleanness Index, and the Distribution of K Throughout the Year</td>
<td>99</td>
</tr>
<tr>
<td>6.6 R versus the Cleanness Index, K</td>
<td>100</td>
</tr>
<tr>
<td>7.1 Relationship between Velocity and Wind Power</td>
<td>108</td>
</tr>
<tr>
<td>7.2 Beaufort Wind Scale: Velocity Equivalent at a Standard Height of 10 m</td>
<td>111</td>
</tr>
<tr>
<td>7.3 Griggs-Putman Index</td>
<td>112</td>
</tr>
<tr>
<td>7.4 Assessing Turbulence</td>
<td>116</td>
</tr>
<tr>
<td>7.5 Influence of Recording Duration on Accuracy</td>
<td>117</td>
</tr>
<tr>
<td>7.6 Extrapolation of Wind Velocity Information to Areas with Differing Roughness</td>
<td>121</td>
</tr>
<tr>
<td>7.7 Common Types of Wind Turbine</td>
<td>122</td>
</tr>
<tr>
<td>7.8 Savonius Rotor Design Parameters</td>
<td>123</td>
</tr>
<tr>
<td>7.9 Wind Speed Frequency Distribution</td>
<td>129</td>
</tr>
<tr>
<td>7.10 Wind Power Duration Curve</td>
<td>130</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>7.11</td>
<td>Standard Turbine Output Curve</td>
</tr>
<tr>
<td>7.12</td>
<td>Schematic Representation of Wind Pumping</td>
</tr>
<tr>
<td></td>
<td>Head Components</td>
</tr>
<tr>
<td>7.13</td>
<td>Nomogram for Sizing Wind Pump Rotor (EPF 1.9)</td>
</tr>
<tr>
<td>7.14</td>
<td>Nomogram for Sizing Wind Pump Rotor (EPF 2.2)</td>
</tr>
<tr>
<td>7.15</td>
<td>Nomogram for Sizing Wind Pump Rotor (EPF 2.8)</td>
</tr>
<tr>
<td>8.1</td>
<td>Measuring Flow with a Float</td>
</tr>
<tr>
<td>8.2</td>
<td>Measuring Head using Surveying Equipment</td>
</tr>
<tr>
<td>8.3</td>
<td>Turbine Selection Chart for Relatively</td>
</tr>
<tr>
<td></td>
<td>High Flows</td>
</tr>
<tr>
<td>8.4</td>
<td>Turbine Selection Chart</td>
</tr>
<tr>
<td>8.5</td>
<td>Pelton Wheel Design Parameters</td>
</tr>
<tr>
<td>8.6</td>
<td>Specific Speed Relating to Number of Buckets</td>
</tr>
<tr>
<td>8.7</td>
<td>Relationship between Blade Speed and Efficiency</td>
</tr>
<tr>
<td>8.8</td>
<td>Crossflow Turbine Design Parameters</td>
</tr>
<tr>
<td>8.9</td>
<td>The Relative Performance of Turbines Measured Against Percentage of Design Flow</td>
</tr>
<tr>
<td>8.10</td>
<td>Suggested Intake Structures</td>
</tr>
<tr>
<td>8.11</td>
<td>An Intake Suitable for Mountain Streams</td>
</tr>
<tr>
<td>8.12</td>
<td>Pelton Wheel Electricity Generating System</td>
</tr>
<tr>
<td>8.13</td>
<td>Crossflow Turbine Electricity Generating System</td>
</tr>
<tr>
<td>9.1</td>
<td>Turbine Output showing Photovoltaic Contri</td>
</tr>
<tr>
<td>9.2</td>
<td>Diesel Fuel Usage versus Electrical Load</td>
</tr>
<tr>
<td>9.3</td>
<td>Hybrid Wind-Diesel Electric Power System</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Copper Wire Resistance and Rating</td>
</tr>
<tr>
<td>4.2</td>
<td>A Comparison of Lead-Acid and Nickel-Cadmium Batteries</td>
</tr>
<tr>
<td>4.3</td>
<td>A Summary of Conclusions on Transmission Options</td>
</tr>
<tr>
<td>5.1</td>
<td>Demand Profile based on Energy Demand for Six Individuals in a Remote Dwelling</td>
</tr>
<tr>
<td>5.2</td>
<td>Average Water Consumption per Usage for Common Household Articles</td>
</tr>
<tr>
<td>5.3</td>
<td>Peak Animal Water Consumption Figures</td>
</tr>
<tr>
<td>5.4</td>
<td>Animal Daily Water Allowance</td>
</tr>
<tr>
<td>6.1</td>
<td>Average Days and their Declination</td>
</tr>
<tr>
<td>6.2</td>
<td>Monthly Average Extraterrestrial Radiation, H_0, for $G_{sc} = 1371 \text{ W/m}^2$</td>
</tr>
<tr>
<td>6.3</td>
<td>Array Size Required Based on 10% Efficient Array</td>
</tr>
<tr>
<td>6.4</td>
<td>Temperature Correction Data</td>
</tr>
<tr>
<td>6.5</td>
<td>Grid References and Regional Coefficients of Selected New Zealand Locations</td>
</tr>
<tr>
<td>6.6</td>
<td>Measured and Calculated Global Radiation on an Inclined Surface ($\text{tilt} = \text{latitude}$)</td>
</tr>
<tr>
<td>6.7</td>
<td>Measured and Calculated Global Radiation on an Inclined Surface ($\text{tilt} = \text{latitude} \text{ less } 10^\circ$)</td>
</tr>
<tr>
<td>7.1</td>
<td>Wind Turbine Site Suitability Based on Slope</td>
</tr>
<tr>
<td>7.2</td>
<td>Wind Turbine Site Suitability for Isolated Hills</td>
</tr>
<tr>
<td>7.3</td>
<td>Typical Values of Surface Roughness</td>
</tr>
<tr>
<td>7.4</td>
<td>Wind Velocity Extrapolation Factors for Sites in Areas of Different Surface Roughness</td>
</tr>
<tr>
<td>7.5</td>
<td>Turbine Parameters for which Power Output Tables have been Produced</td>
</tr>
<tr>
<td>7.6</td>
<td>Power Produced by Turbine per Annum: Validation Example</td>
</tr>
<tr>
<td>7.7</td>
<td>Headloss in metres per 100 m of Pipe Length for Various Flow Rates and Pipe Diameters</td>
</tr>
<tr>
<td>7.8</td>
<td>Adjusting for Different Overall Efficiencies in Wind Pump Nomograms</td>
</tr>
</tbody>
</table>
Table of Contents

7.9 Relationship between K and EPF .. 143
8.1 Discharge Tables for Weirs .. 148
8.2 Constants versus Specific Speed in the Determination of
Pumps Operating as Turbines ... 160
10.1 Discount Factors for "One-Off" Costs for Various Discount
Rates and Number of Years .. 191
10.2 Discount Factors for Recurrent Costs Over a Number of Years,
for Various Discount Rates .. 192
SYMBOLS AND ABBREVIATIONS

ENERGY

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>amps</td>
</tr>
<tr>
<td>A.h</td>
<td>ampere-hours</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>e</td>
<td>efficiency of the transformer</td>
</tr>
<tr>
<td>emf</td>
<td>electromotive force</td>
</tr>
<tr>
<td>hp</td>
<td>horsepower</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>I_p</td>
<td>primary current</td>
</tr>
<tr>
<td>I_s</td>
<td>secondary current</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
</tr>
<tr>
<td>L</td>
<td>litres</td>
</tr>
<tr>
<td>m</td>
<td>metres</td>
</tr>
<tr>
<td>N</td>
<td>newtons</td>
</tr>
<tr>
<td>N_p</td>
<td>primary turns</td>
</tr>
<tr>
<td>N_s</td>
<td>secondary turns</td>
</tr>
<tr>
<td>PF</td>
<td>power factor</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>S</td>
<td>speed of rotation</td>
</tr>
<tr>
<td>T</td>
<td>torque</td>
</tr>
<tr>
<td>V</td>
<td>voltage</td>
</tr>
<tr>
<td>V_p</td>
<td>primary voltage</td>
</tr>
<tr>
<td>V_s</td>
<td>secondary voltage</td>
</tr>
</tbody>
</table>

PHOTOVOLTAICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>declination</td>
</tr>
<tr>
<td>η</td>
<td>system efficiency</td>
</tr>
<tr>
<td>η_b</td>
<td>overall battery efficiency</td>
</tr>
<tr>
<td>ρ</td>
<td>ground reflection coefficient (ground albedo)</td>
</tr>
<tr>
<td>φ</td>
<td>latitude in degrees</td>
</tr>
<tr>
<td>C</td>
<td>days of load</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>DI</td>
<td>estimated daily demand for the month</td>
</tr>
<tr>
<td>DOD</td>
<td>maximum permissible depth of battery discharge</td>
</tr>
<tr>
<td>G_{sc}</td>
<td>solar constant equal to 1371 W/m²</td>
</tr>
<tr>
<td>h</td>
<td>height above sea level in km</td>
</tr>
<tr>
<td>H</td>
<td>global radiation on a horizontal surface</td>
</tr>
<tr>
<td>H_b</td>
<td>beam radiation on an inclined surface</td>
</tr>
<tr>
<td>Hc</td>
<td>H calculated using equations</td>
</tr>
<tr>
<td>$H_{c(adj)}$</td>
<td>H adjusted by the regional coefficients</td>
</tr>
<tr>
<td>H_d</td>
<td>diffuse radiation incident on a horizontal surface</td>
</tr>
<tr>
<td>H_o</td>
<td>extraterrestrial radiation on a horizontal surface</td>
</tr>
<tr>
<td>H_r</td>
<td>ground reflected radiation on an inclined surface</td>
</tr>
<tr>
<td>H_s</td>
<td>sky diffuse radiation on an inclined surface</td>
</tr>
<tr>
<td>H_T</td>
<td>total global amount of radiation on an inclined surface</td>
</tr>
<tr>
<td>I</td>
<td>average H for the month</td>
</tr>
<tr>
<td>K</td>
<td>clearness index</td>
</tr>
<tr>
<td>K_t</td>
<td>monthly average clearness index</td>
</tr>
<tr>
<td>LOLP</td>
<td>loss of load probability</td>
</tr>
<tr>
<td>M</td>
<td>balancing parameter between the array and the battery</td>
</tr>
<tr>
<td>MPPE</td>
<td>mean percentage error</td>
</tr>
<tr>
<td>n</td>
<td>Julian day of the year</td>
</tr>
<tr>
<td>NSR</td>
<td>no sun ratio i.e. the ratio of the night load to the total daily load</td>
</tr>
<tr>
<td>R</td>
<td>ratio of the standard deviation in daily radiation over the average daily radiation</td>
</tr>
<tr>
<td>R_b</td>
<td>ratio of extraterrestrial radiation on an inclined surface to that on a horizontal surface</td>
</tr>
<tr>
<td>S</td>
<td>standard deviation of the radiation over a period of a month</td>
</tr>
<tr>
<td>S_o</td>
<td>monthly average daily sunshine duration</td>
</tr>
<tr>
<td>S_{m}</td>
<td>monthly maximum possible daily sunshine duration</td>
</tr>
<tr>
<td>W</td>
<td>watts</td>
</tr>
<tr>
<td>W_s</td>
<td>sunset hour angle for a horizontal plane</td>
</tr>
<tr>
<td>W_s^1</td>
<td>sunset hour angle for the tilted surface for the average day of the month</td>
</tr>
</tbody>
</table>

WIND

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area covered by wind pump rotor</td>
</tr>
<tr>
<td>C</td>
<td>Weibull scale factor</td>
</tr>
<tr>
<td>EPF</td>
<td>energy pattern factor</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
</tr>
<tr>
<td>F</td>
<td>factor for extrapolating wind data</td>
</tr>
</tbody>
</table>
H
hp
K
kWh
m
m/s
mm
n
SC
V
or
v₁
v₂
w.h
x

H: total pumping head
hp: horsepower
K: wind shape factor
kWh: kilowatt hour
m: metres
m/s: metres per second
mm: millimetres
n: total number of observations
SC: required storage capacity
V: voltage
or: wind velocity
v₁: velocity at height z₁
v₂: wind velocity at height z₂
w.h: watt hour
x: constant determined by the surface roughness

MICRO-HYDRO

α: angle of entry
θ: subtended angle
ρ: blade radius of curvature
ω: blade orientation of crossflow turbine
d: jet diameter in metres
D: discharge flange diameter of the pump operating as a turbine
d: impeller diameter of pump operating as turbine
f: output frequency (Hz)
H: available head (m)
Hₜ: total head measured to the bottom of the runner
Hz: hertz
K: empirically derived constant to calculate required pump size when operating as turbine
l/s: litres per second
L: nozzle width of crossflow turbine
m/s: metres per second
N: speed at which the pump should operate as a turbine (rpm)
n: speed in rpm
or: number of poles
Nⱼ: number of jets
specific speed per jet
specific speed of the wheel
specific speed of the pump
power output of the turbine
flow
flow
runner radius of crossflow turbine
blade depth of crossflow turbine
blade spacing of crossflow turbine
velocity of the buckets
jet velocity in m/s
velocity of the jet
empirically derived constant to calculate required pump speed when operating as turbine

annualised cost of the photovoltaic array
annualised cost of the battery storage unit
discount rate
number of years from the present to year n
expected system life