A STUDY OF METABOLIC DIFFERENCES BETWEEN FAT

AND MEATY SOUTHDOWN SHEEP

A thesis presented in partial fulfillment

of the requirements for the degree of

Master of Agricultural Science

in Animal Science

at Massey University.

MARK LEVETT CARTER

1987
Title of thesis: A STUDY OF METABOLIC DIFFERENCES BETWEEN FAT AND MEATY SOUTHDOWN SHEEP

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for __________ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for __________ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for __________ months.

Signed __________________________
Date ______________/11/1987

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

__

DATE

__

__
ACKNOWLEDGEMENTS

The author is especially indebted to his supervisors Dr S.N. McCutcheon and Dr R.W. Purchas, for their invaluable guidance and assistance in experimental design, procedure and evaluation. A further special thanks to Dr S.N. McCutcheon for the thorough and frequent proof-reading which was required in the preparation of this manuscript.

Mrs Janice Rumbal, with her invaluable expertise, should take full credit for the smoothness of the blood sampling and animal handling which was carried out in an intense regime and sometimes under difficult conditions. For the IGF-1 assays I would like to thank Dr P.D. Gluckman and his laboratory staff, and for the other hormone and metabolite assays Mrs Janice Rumbal, Mrs Janice Bridges and Ms Geraldine Borrie. I would also like to thank Tim van Iersol, Barry Parlane and the other Post-grads and staff who helped with the feeding of animals, cleaning of the research area, and blood sampling during the experimental period.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER I: REVIEW OF LITERATURE</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Selection Lines for Growth Characteristics</td>
<td>2</td>
</tr>
<tr>
<td>Variation Between Selection Lines in Nutrient Utilization</td>
<td>4</td>
</tr>
<tr>
<td>1. Voluntary intake (appetite)</td>
<td>5</td>
</tr>
<tr>
<td>2. Digestive efficiency</td>
<td>8</td>
</tr>
<tr>
<td>3. Metabolic efficiency</td>
<td>9</td>
</tr>
<tr>
<td>4. Nutrient partitioning</td>
<td>13</td>
</tr>
<tr>
<td>Endocrine Control of Nutrient Deposition</td>
<td>15</td>
</tr>
<tr>
<td>1. Protein</td>
<td>15</td>
</tr>
<tr>
<td>A. Factors affecting myogenic cell proliferation</td>
<td>15</td>
</tr>
<tr>
<td>in prenatal and early life</td>
<td>15</td>
</tr>
<tr>
<td>B. Postnatal endocrine effects on muscle cell hypertrophy</td>
<td>18</td>
</tr>
<tr>
<td>i. Insulin</td>
<td>19</td>
</tr>
<tr>
<td>ii. Growth hormone</td>
<td>20</td>
</tr>
<tr>
<td>iii. Thyroid hormones</td>
<td>21</td>
</tr>
<tr>
<td>iv. Glucocorticoids</td>
<td>22</td>
</tr>
<tr>
<td>2. Carbohydrate and fat</td>
<td>22</td>
</tr>
<tr>
<td>A. Insulin</td>
<td>23</td>
</tr>
<tr>
<td>B. Sympathetic nervous system</td>
<td>25</td>
</tr>
<tr>
<td>C. Specific lipogenic enzymes</td>
<td>25</td>
</tr>
</tbody>
</table>
CHAPTER III: GENERAL DISCUSSION

Baseline Concentrations of Metabolites/Hormones 60
Responses to Metabolic/Hormonal Challenges 63
Summary ... 66
APPENDIX .. 68
REFERENCES ... 71
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Response to selection for growth characteristics in ruminants</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Metabolic challenges, injection concentrations and dose rates administered to 10 Fat and 10 Meaty Southdown ram lambs</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Animal Liveweights, liveweight gains and backfat measurements of 10 Fat and 10 Meaty Southdown ram lambs</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>Baseline plasma concentrations of growth hormone IGF-1, urea, glucose, insulin and NEFA in 10 Fat and 10 Meaty Southdown ram lambs</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Glucose tolerance test parameters calculated from plasma concentrations of glucose and insulin after an intravenous glucose challenge (1.7g/kg liveweight) in 10 Fat and 10 Meaty Southdown ram lambs</td>
<td>47</td>
</tr>
<tr>
<td>A.1</td>
<td>Source of hormone and assay parameters for the measurement of insulin and growth hormone concentrations</td>
<td>70</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 A possible framework for the discussion of genetic aspects of growth (from Robertson 1982) . . 5

Figure 2.1 Plasma concentrations of glucose and non-esterified fatty acids during an intravenous adrenalin challenge (1.0μg/kg liveweight) in 10 Fat and 10 Meaty Southdown ram lambs 41

Figure 2.2 Plasma concentrations of glucose and non-esterified fatty acids during an intravenous insulin challenge (0.01mg/kg liveweight) in 10 Fat and 10 Meaty Southdown ram lambs 43

Figure 2.3 Plasma concentrations of glucose, non-esterified fatty acids and insulin during an intravenous glucagon challenge (0.175μg/kg liveweight) in 10 Fat and 10 Meaty Southdown ram lambs 44

Figure 2.4 Plasma concentrations of glucose and insulin during an intravenous glucose challenge (1.7g/kg liveweight) in 10 Fat and 10 Meaty Southdown ram lambs 46

Figure 2.5 Plasma concentrations of growth hormone, insulin and urea during a 63.5 h fasting and 7.5 h refeeding period in 10 Fat and 10 Meaty Southdown ram lambs 49

Figure 2.6 Plasma concentrations of glucose, NEFA and β-hydroxy butyrate during a 63.5h fasting and 7.5 refeeding period in 10 Fat and 10 Meaty Southdown ram lambs 50
LIST OF ABBREVIATIONS

ADG average daily gain
ANOVA analysis of variance
BMR basal metabolic rate
BSA bovine serum albumin
BW body weight
cAMP cyclic adenosine monophosphate
CV coefficient of variation
dl decilitre
DM drymatter
DNA deoxyribonucleic acid
e natural base of logarithms
g gram
G(t) glucose concentration at time t
h hour
h2 heritability
IGF-1 insulin-like growth factor-1
IU international unit
Kg glucose fractional decay constant
kg kilogram
LPL lipoprotein lipase
mg milligram
mm millimeter
mM millimolar
ml millilitre
MANOVA multivariate analysis of variance
MEI metabolizable energy intake
MJ ME megajoules metabolizable energy
MSA multiplicative stimulating activity
NADPH nicotinamide adenine dinucleotide
ng nanogram
NSILA non suppressible insulin-like factors
NEFA non-esterified fatty acids
P probability
r correlation coefficient
RNA ribonucleic acid
SED standard error of the difference
SEM standard error of the mean
T3 triiodothyronine
T4 thyroxine
pg picogram
µg microgram
µl microlitre

Levels of Statistical Significance

NS Not significant P>0.1
† 0.05< P <0.1
* 0.01< P <0.05
** 0.001< P <0.01
*** P<0.001