Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Massey University
Agronomy Department
Palmerston North
New Zealand

Feed value of tagasaste (Chamaecytisus palmensis) for goats and preferential browsing activities by goats and sheep in multi-species shrub/pasture conditions.

A Thesis submitted in partial fulfilment of
the requirements for the degree of
Master of Agricultural Science
in Agronomy

By

Rameshwar Singh Pande
1990.
Title of thesis: FEED VALUE OF TAGASASTE (Chamaerops humilis) PALM LEAF for Goats and Preference by Birds & Sheep in Multi Specie

(1) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.
(b) I do not wish my thesis to be made available to readers without my written consent for ________ months.

(2) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ________ months.

(3) I agree that my thesis may be copied for Library use.
(b) I do not wish my thesis to be copied for Library use for ________ months.

Signed R.Sandle
Date 14/10/90

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

__________________________ ________________________

__________________________ ________________________

__________________________ ________________________
Abstract

The objective of the thesis work was to investigate the feed value and diet selection of tagasaste foliage vs lucerne hay chaff; browsing activities in mixed conditions of tagasaste shrub/pasture; and the preference ranking for forage shrubs species including tagasaste in multi-shrub/pasture conditions by goats as well as sheep.

1. Two experiments were carried out in The Animal Physiology Unit, Massey University and Grassland Division DSIR, Palmerston North.

A) Indoor experiment: to evaluate DM intake, feed selection, digestibility, chemical compositions of tagasaste foliage and lucerne hay.

B) Outdoor experiment: to evaluate browsing activities of goats on mixed conditions of tagasaste shrub and pasture and goat behaviour.

1.1 DM intake, in-vivo OMD, in-vitro OMD and body weight change were similar for both tagasaste foliage and lucerne hay groups.

DM intakes were 33.37 ± 1.64 (g/kg BW/day) for tagasaste foliage and 26.49 ± 2.22 (g/kg BW/day) for lucerne hay.
In-vivo DMD were 70.42 ± 1.35 % and 66.94 ± 1.35 % for tagasaste and lucerne hay chaff respectively. Similarly, in-vitro DMD were 62.48 % vs 66.63 % for tagasaste and lucerne hay group. Tagasaste leaves only were higher in in-vitro DMD compared to stems only. In-vitro DMD of leaves were 69.29 % whereas for stems were 47.45 %.

Tagasaste foliage and lucerne hay chaff were similar in Nitrogen (3.16 vs 3.21 % DM); NDF (45.89 vs 45.39 % DM); ADL (7.10 vs 6.76 % DM). But ash content in tagasaste foliage was less than half that of lucerne hay (5.18 vs 11.92 % DM).

Goats selected most leafy parts of the tagasaste foliage, which were high in Nitrogen content and digestibility but lower in NDF and lignin than the feed offered. In the feed refusal of tagasaste foliage Nitrogen content was 2.52 % DM; and NDF and ADL were 55.1 % and 9.0 % respectively. However, such type of selectivity were not distinct while feeding on lucerne hay chaff, possibly due to its homogeneous nature.

During the indoor measurement periods body weight change were 0.026 ± 0.008 (kg/day/kg BW) and 0.036 ± 0.008 (kg/day/kg BW) for tagasaste foliage and lucerne hay group respectively.

1.2 Goats spent more time on browsing on tagasaste foliage than grazing on pasture. Percentage of activities on browsing observations were 36.0 ± 2.08 % compared to 22.2 ± 2.08 % for grazing and 41.7 ± 2.08 % on idling.
Goats browsed tagasaste foliage up to 1.5 m height. Bipedal stance was frequently observed. Goats ate dead bark of tagasaste branches particularly towards the end of the experiment period when there was no more foliage to browse. The use of artificial shelter was rare, instead of that they selected open and relatively dry places for night camping. Overgrazing might be harmful for better performance of tagasaste plants.

Body weight changes in mixed conditions of tagasaste shrub/pasture conditions were higher than in indoor conditions while feeding either on tagasaste foliage or lucerne hay chaff as a sole diet. In shrub/pasture conditions body weight change was 0.133 ± 0.02 (kg/day/kg BW) and 0.122 ± 0.02 (kg/day/kg BW) for the two groups.

2. In the second trial preference for browsing by goats and sheep in multi-shrub species and pasture conditions including tagasaste, preference ranking for shrub species, and overlap of browsing activities between goats and sheep were evaluated in DSIR, Ballantrae Hill Station. The tested species were six leguminous shrubs including tagasaste, three non leguminous shrubs and two erect grass species.

Non leguminous species: tauhinu (*Cassinia leptophylla* (Frost.F.)R.Br.), ceanothus (*Ceanothus griseus* (Trel.) Mc Minn.), and manuka (*Leptospermum scorparium* J.R.et,
Erect grass species: toetoe (*Cortaderia fulvida* (Buchan) Zotov.), pampas (*Cortaderia selloana* Schult) Asch.& Graeb.).

2.1 The browsing activities of goats were high compared to sheep. Goats and sheep ranked shrub species differently, but the differences were not extreme. Similarly, proportional utilizations of shrubs were higher in goats compared to sheep. Overlap of browsing activities for shrub species was higher in summer and autumn than in winter.

Goats spent 44.67 ± 1.3 % of activities on browsing compared to 11.56 ± 1.3 % of sheep. Grazing activities between goats and sheep were 48.57 vs 80.49 ± 1.3 % of total observation respectively. Similarly idling activities were 6.76 vs 7.95 ± 1.3 % for goats and sheep respectively. Low idling activities during the two hours record period might be due to the overnight fasting of the animals.

2.2 The most intensively browsed species were tree medic, tagasaste and ceanothus by goats as well as sheep. Among the other species goats preferred gorse and short spine gorse compared to other shrub species while sheep preferred black locust and broom. Less preferred species were pampas, tauhinu, toetoe and manuka. Utilization of these species was higher by goats than by sheep. A comparison between these results and those of Lambert *et al.*, (1989) indicated that there were some difference in estimates of preference made under indoor and outdoor conditions.

The results indicate the potential of common grazing with goats and sheep especially
in shrub/pasture conditions, in the absence of shrubs incorporation of tagasaste in goat farming systems could be useful.
Acknowledgements

"Life merge into the all prevalent, the eternal;
body turn to ashes.
Mind ! meditate on the eternal spirit;
Remember past deeds.
Minds ! Remember past deeds;
Remember, Mind ! Remember".
- Eksha-upnishad;

Dr Sally Diana Newton is no more with us. Her deeds, her memory remained only ! I met her at the very beginning of this thesis work as one of the supervisor for this thesis project, her enthusiasm, supportiveness and friendliness impressed me deeply in my heart. I would like to express my sincere gratitude and wish to pray for the everlasting peace of her soul !!!

May Peace and Peace and Peace be Everywhere !!!

When a tree bears fruit it is not only the branches which involves to produce that fruit, but the whole system of the tree, the soil where it stands and extract nutrients, the air where it breaths and spread its arms, the sun from where it receives warmth and
energy, the environment, the whole eco-system contributes to produce that fruit, in the same way this thesis work could never have come to fruition without the support of many people in many ways. However, the following people who deserves individual recognition for their contribution, for which I am deeply indebted!

First of all I would like to express my sincere thank to Director General Dr. Udaya Singh, and the members of the Animal Service Department, Nepal to nominate me under the auspices scholarship of FAO/UNDP in this beautiful country otherwise it would be impossible for me to get such opportunity.

My special thank to Dr Christie Samuel, Chief Technical Adviser, Himalayan Fodder and Pasture Research Net Work, FAO/UNDP for the arrangement of studentship for the first part of this study and for the sincere advice and support.

I am grateful to Prof John Hodgson, the Head of the Department Agronomy and the members for their support and to arrange funding to continue my study; I would like to acknowledge Ministry of External Relation & Trade, New Zealand for the sponsorship during second year period which enabled me to complete this course.

I deeply acknowledge my supervisor Dr Peter David Kemp for his excellent course planning and arrangement throughout my study period, his proper supervision at the start of the first experiment and during the third experiment of this thesis work. I appreciate his supervision, guidance and his valuable suggestions and comments throughout my thesis writing. Thanks for free, frank and friendliness.
I am greatly indebted to my supervisor Prof John Hodgson (HOD, Agronomy) for his support & inspirations, for his patience and generosity, besides his proper supervision, guidance and critical suggestion throughout my study and this thesis work, I admire him as a real teacher, he deeply impressed me by his personality, by his affectionate behaviour and supportiveness. Thank you to lead me in the world of grazing behaviour of animals.

Besides to contribute in the study of statistics in the lecture room I appreciate Dr I.L.Gordon for his help and suggestions in the statistical analysis of this thesis work.

My thanks to Dr M. A. Choudhary and Dr A. C. P. Chu for their help in my study and for support.

Thank you to all rest of the teaching staff for their contributions in my study; Mr. C. Matthew, Dr. I. Valentine, Mr. P. Matthews, Mr. K. Harrington, and Mr. W. Parker.

I would like to thanks to the members of Animal Science Department; Prof T. N. Barry; Prof S. N. McCutcheon (Head of the Department Animal Science) for their valuable comments and suggestions during my first feeding experiment and to allow me to use the facilities of Animal Physiology Unit and Nutrition Laboratory.

It was great help from Mr. Maurice Thompson (Agricultural & Mechinery Research Centre) and Mr. W. B. Parlane (The Animal Physiology unit) to collect tagasaste
foliage and to organise feeding trial, without their help it was difficult to complete my first trial.

I am grateful to the members of the Nutrition Laboratory, Animal Science Department for the analysis of my most of the samples of the first experiment. Thank you very much Miss Rosemary A. Watson for your help and friendly 'Namaste'. My thanks to Mr. D. A. Hamilton especially for his help in in-vitro digestibility and Nitrogen determination, it would be impossible for me to complete the chemical analysis without their help.

My thanks to Mr. Dave Sollitt; Mrs. June Cave; Miss Cally McKenzie; Mrs. Colette Gwynne; Mr. Terry Lynch; Mrs. Frith Brown; Mr. Gary Evans; Mr. Brian Thomson for their help and to organise the materials and equipments for this thesis work and in many other ways to support me. My thanks also to all the members of Massey Library and Computer centre.

I am grateful to DSIR, Grassland Division, Palmerston North to allow me to use their experimental block of tagasaste for the second trial. Especially I would like to thank Dr Greg M. Lambert; Mr. Philip Budding; Mr. Roger Redmayne; Mr. Brian Devantier; Mr. Nick Dymock and all the members of DSIR, Grasslands Division, Ballantrae Hill Station for their great help and cooperation during the third experiment period and for the permission to use their shrub nurseries with experimental goats and sheep.

I would like to thank to all my well wishers especially Mrs. Ruth Hodgson and
Dr Ross R. Nelson for their affection, friendship and the concern about my family members.

My especial thank to Mrs. Gladys Durand (Venezuela); and Mr. Thonkey Dukpa (Bhutan) for being a nice friend, and all the Post Grade students of this Agriculture & Horticulture Faculty, whom I fail to mention individually at this moment especially, those who knows my tenderness inside this very rough and tough cocoon.

My sincere thanks to my respectable parents Mr. Purna Singh Pande and Mrs. Devaki Pande, my brother & sisters, and my life partner Mrs. Sumitra (Gyanu) Pande and our love Kricha & Krijuta just for being one of the part of my soul.

Finally, I wish to thank to the supreme power; the almighty God! for whom we are simply a piece of pawn! just a pawn!!!

Thank you/Kia ora/Dhanyabad!

Rasi Pande.
1990.
Table of Contents

i Abstract .. ii
ii Acknowledgements .. vii
iii Table of Contents .. xii
iv List of Tables .. xvii
v List of Plates ... xx
vi Appendices .. xxi
1 Chapter ... 1
 1 Introduction .. 1
2 Literature review .. 4
 2.1 Introduction .. 4
2.2 Agronomy of shrub species ... 5
 2.2.1 Leguminous shrubs ... 5
 2.2.1.1 Tagasaste ... 5
 2.2.1.2 Gorse ... 10
 2.2.1.3 Short spine gorse .. 13
 2.2.1.4 Black locust .. 13
 2.2.1.5 Tree medic ... 14
 2.2.1.6 Broom ... 15
 2.2.2 Non-leguminous shrub .. 16
 2.2.2.1 Ceanothus ... 16
3.3.1.2 Tagasaste foliage ... 35
3.3.1.3 Lucerne hay ... 37
3.3.1.4 Animals ... 37
3.3.1.5 Level of Feed offered ... 37
3.3.1.6 Sampling procedures .. 38
3.3.1.7 Leaf: stem ratio of tagasaste ... 38
3.3.1.8 Analytical Methods ... 38
3.3.2 Experiment - II : Field study .. 40
3.3.2.1 Experimental Design ... 40
3.3.2.2 Tagasaste block ... 40
3.3.2.3 The pasture mass between shrubs .. 40
3.3.2.4 Shelter ... 40
3.3.2.5 Measurements ... 41
3.3.2.6 Body weight change in goats .. 41
3.3.2.7 Statistical analysis ... 42
3.4 Results .. 42
3.4.1 Experiment - 1: Indoor study .. 42
3.4.1.1 DM intake and in-vivo digestibility of tagasaste 42
3.4.1.2 In-vitro digestibility of tagasaste foliage and 44
3.4.1.3 In-vitro digestibility of tagasaste leaves vs stems 45
3.4.1.4 Nutritive composition of tagasaste foliage and lucerne 46
3.4.1.5 Chemical composition of feed refusals .. 48
3.4.1.6 Faecal composition ... 49
3.4.1.7 Body weight change during measurement period 50
3.4.2 Experiment - II: Field study ... 51
3.4.2.1 Grazing activities ... 51
3.4.2.2 Body weight change in field condition ... 52
3.5 Discussion .. 53
3.5.1 Feed and nutritive value of tagasate foliage and 53
3.5.2 Feed selection .. 53
3.5.3 Browsing activities .. 56
3.5.4 Goat behaviour .. 57
3.5.5 Body weight change .. 60
3.6 Conclusions .. 60
4.0 Preference ranking and browsing activity ... 62
4.1 Introduction ... 62
4.2 Materials and Methods .. 63
4.2.1 Location ... 63
4.2.2 Experimental Nurseries .. 64
4.2.3 Pasture in between shrub rows .. 66
4.2.4 Animals ... 66
4.2.5 Procedures .. 66
4.2.6 Measurements .. 69
4.2.6.1 Relative Abundance value of forage shrubs species 69
4.2.6.2 Morphological characteristics of shrub species 69
4.2.6.3 Proportional utilization of shrub species 69
4.2.6.4 Preference index for shrub species .. 70
4.2.6.5 Overlap of browsing activities .. 72
4.3 Statistical analysis ... 72
4.4 Results .. 73
4.4.1 Animal activities ... 73
4.4.2 Proportional utilizations of shrubs 75
4.4.3 Browsing activities .. 77
4.4.3.1 Distribution browsing activity (PREF) 77
4.4.3.2 Defoliation of plant parts (BRPT) 80
4.4.3.3 Preference index of shrub species 82
4.4.4 Overlap of browsing activities .. 85
4.5 Discussion .. 86
4.5.1 The Main Animal activities ... 86
4.5.2 Preference ranking for shrub species 87
4.5.3 Goat and sheep contrasts .. 88
4.5.4 Seasonal effects on preference .. 91
4.5.5 Preference ranking in indoor vs outdoor conditions 92
4.6 Conclusions .. 95
5.0 General conclusions .. 97
References .. 100
Appendices .. 123
List of Tables

Table 2.1: Nutritive composition of tagasaste ...7
2.2: Comparative feed value of foliage ..9
2.3: Chemical composition of gorse ...12
2.4: Proportions of the major plant groups
 in the diets of different ruminants ..24
3.1: DM intake (DMI) of tagasaste foliage
 and lucerne hay.......hay by goat ..43
3.2: *In-vitro* Dry Matter Digestibility (DMD)
 Organic Matter Digestibility (OMD) and
 Digestible Organic Matter in Dry Matter
 (DOMD) of tagasaste foliage and lucerne
 hay by goats fed as a sole diet (on DM basis) ..44
3.3: *In-vitro* Dry Matter Digestibility (DMD),
 Organic Matter Digestibility (OMD) and
 Digestible Organic Matter in Dry Matter
 (DOMD) of tagasaste stems vs leaves by
 goats fed as a sole diet (on DM basis) ...45
3.4: Nutritive composition of tagasaste foliage
 and Lucerne hay (% DM) ...47
3.5: Chemical Composition of feed refusal ..48
3.6: Faecal composition .. 49
3.7: Change in body weight in goats .. 50
3.8: Grazing Activities by Goats .. 51
3.9: Body weight change in goats .. 52
4.1: Species used in Experiments ... 65
4.2: Harvesting Schedule .. 67
4.3: The percentage of observations of animal activity in the categories of browsing, grazing and idling. Percentages are the means for all harvest dates ... 74
4.4: Proportional utilization of browse shrubs by goats and sheep in different harvest periods ... 76
4.5: Effect of season and animal species on the distribution of total browsing activity (PREF) by goat and sheep. (Overall Ranking in parenthesis) ... 79
4.6: Intensity of defoliation (number of bites of plants parts per species) (BRPT) by goats and sheep in different seasons ... 81
4.7: Overall Relative abundance of shrub species (ABUN), ratio of abundance (ABRAT), number of browsing observations (BRW), ratio of browsing observation (BRAR), and the preference Rank (RNK) of the shrub species by goats and sheep (in percent ratio) ... 84
4.8: The overlap coefficient of browsing activities
(Cμ) by goats and sheep in different harvest
seasons (periods are presented in parenthesis)85

4.9: Comparison of relative preference for shrub
species by goats and sheep in indoor vs outdoor
study (order of ranking; mean index values are
presented in parenthesis)...94
Lists of plates

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Harvesting of tagasaste foliage</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Debarked dead branches of tagasaste plant by goats</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental plant species</td>
<td>70</td>
</tr>
</tbody>
</table>
List of Appendices

Appendix

<p>| 3.1 | Comparative value of tagasaste with other shrubs | 123 |
| 4.1 | Relative abundance of shrubs | 124 |
| 4.2 | Morphology of shrub species | 126 |
| 4.3.1 | Relative Similarity of nurseries | 131 |
| 4.3.2 | Relative similarity of two nursery site | 131 |
| 4.3.3 | Assessment of Resource Use: Utilization of shrub | 134 |
| 4.4 | Overlap of browsing activities on forage shrubs | 138 |
| 4.5 | Measurements of forage preferences: RPI | 141 |
| 4.6 | Effects of seasons on animal activities, Browsing, grazing and idling activities of goats and sheep according to mean season | 148 |
| 4.7 | ANOVA (GLM) of Browsing activity (PREF) and Intensity of defoliation (BRPT) by goats and sheep | 149 |
| 4.8 | Preference ranking of shrub species (Index) by goats and sheep on the basis of Relative Abundance (Abun) & browsing activities (Brw) in different harvest periods | 150 |
| 4.9 | Browsing preference index for shrub species by goats and sheep in different harvesting periods (Summary data from Appendix 4.7) | 156 |
| 4.9 | ANOVA of relative abundance, browsing observation and index | 158 |</p>
<table>
<thead>
<tr>
<th>4.9.1</th>
<th>Relative abundance value (ABUN) and its ratio (ABRAT)</th>
<th>151</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.2</td>
<td>Number of browsing observation (BRW) and its ratio (BRAT)</td>
<td>152</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Index (INDX)</td>
<td>160</td>
</tr>
</tbody>
</table>