Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE CONSTRUCTION OF A SELECTION INDEX COMBINING
A MAJOR GENE AND QUANTITATIVE TRAITS

A THESIS PRESENTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF AGRICULTURAL SCIENCE
IN
ANIMAL SCIENCE
AT
MASSEY UNIVERSITY

MENG JIAO SHI
1989
Hassey University Library. Thesis Copyright Form

Title of thesis: The construction of a selection index combining a major gene and quantitative traits

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ________ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ________ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ________ months.

Signed __________________________

Date 5/5/1989

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

ABSTRACT

The Massey University Booroola-cross flock was initiated by crossing Booroola Merino x Romney cross rams with Perendale ewes at the Tuapaka hill country farm in 1980. Records were annually kept of the reproductive performance [expressed as number of lambs born (NLB), foetal number (NF) and ovulation rate (OR)], body and fleece weights, and wool quality characteristics.

Segregation criteria were used for sheep with lifetime lambing records (6 lambings), to assign them to one of the three genotypes. Any ewe with all records of NLB, NF or OR smaller than 3 was defined as being the ++ genotype, for ewes with at least one record of 3 or 4 as the F+ genotype and for ewes with at least one record larger than 4 were assigned as the FF genotype. For ewes with 3-5 lambings and reproductive records less than 3, special requirements were set to define sheep into the ++ genotype. For the remaining unclassified sheep, discriminant analysis was employed to estimate their probabilities of being either ++ or F+ genotypes. The FF category was ignored due to only a small number of FF ewes identified in the present study. The method of discriminant analysis was found to be satisfactory, and it overcame some of the problems that occurred when the segregation criteria were used.

A selection objective (H) for lifetime performance for animals in the Massey Booroola flock was defined as:

\[H = 53.79NLW+2.39WW+42.87CFW-8.75MFD+0.29MSL+3.15SCG, \]
where, NLW = number of lambs weaned, WW = weaning weight,
 CFW = clean fleece weight, MFD = mean fibre diameter,
 MSL = mean staple length, and SCG = scoured colour grade.
Economic weights for wool quality traits were calculated directly
from the regression of auction price on level of the traits. For
other traits, economic weights were calculated using the marginal
profit method. The relativities between the calculated economic
weights were generally in good agreement with those of previously
published estimates.

For the selection objective defined, various selection indices
were examined. It was found that MFD, CFW and hogget liveweight (HLW)
were the most important traits, whereas MSL, SCG and WW were almost
of no value in the index. The F-locus was chosen to be the selection
criterion of NLW, since reproductive rate of the Booroola sheep is
largely controlled by the F-locus.

A method for combining the information on the F-locus into the
selection index was developed. Under the assumption that there were
no correlations between the F genotype and any of other selection
criteria, an index (I) of the form:
 \[I = I_F + I_Q, \]
was proposed to select the genetically superior sheep.
Here, \(I_F \) was the major gene selection index, set to be half of the
dam's breeding value of the individual concerned for the F-
locus (\(BV_F \)), adjusted by the economic value for the F-locus.
\(I_Q \) was the quantitative selection index, composed of the
remaining selection criteria. Different selection indices
for lambs, ram and ewe hoggets were derived.
Sensitivity analyses to changes of genetic and phenotypic parameters, and the economic weight of CFW were undertaken. Generally, there was little effect on the relative importance of traits in the index or in the rate of change in the objective.

An alternative method to incorporate the information on the F-locus into an index was proposed for situation where the correlation between I_F and I_Q is found to be significant.

In conclusion, it was found that the methods examined for categorising animals into various genotypes (discriminant analysis) and for combining quantitative and qualitative traits into a single index were successful and worthy of consideration for similar situations in other breeds or species.
ACKNOWLEDGEMENTS

I would first like to sincerely thank my supervisors, Drs, Hugh T. Blair and George A. Wickham, for their excellent guidance, patient assistance and constant encouragement given throughout my study. Their willingness to provide counsel whenever required is greatly appreciated.

I would also like to express my gratitude to Prof. Rae for his help and invaluable suggestions during this study.

Thanks be to all post-graduate students and staff in the Department of Animal Science. In particular, the assistance and support of the animal breeding students, J. Rendel, B. Southey, C. Sosa, and G. Ahlborn-Breier are gratefully acknowledged.

Thanks also go to the technicians and farm staff for the collection of the data, especially to J. Wickham for the interpretation of the data.

The financial support of the Educational Commission of the People's Republic of China was greatly appreciated.

To my parents and friends whose love and support were a great encouragement through my study.

Finally, a special thanks to my friends, S. Q. Liu and Q. F. Li, who helped me in many ways from the beginning to end.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>ONE</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>TWO</td>
<td></td>
</tr>
<tr>
<td>REVIEW OF LITERATURE</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Major Genes in Sheep</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Wool characters</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.1 Medullation</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.2 Colour</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1.3 Lustre</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1.4 Bulk</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2 Morphological traits</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2.1 Horns</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2.2 Lethal genes</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2.3 Inherited abnormalities</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3 Biochemical and physiological traits</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Methods of Detecting Major Genes</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Effects of Major Genes on Genetic Parameters</td>
<td>14</td>
</tr>
</tbody>
</table>
2.4 The Optimum Use of a Major Gene in Animal Breeding Programmes

2.4.1 Information required for the utilization of major genes

2.4.2 Manipulation of major genes
 2.4.2.1 The index method
 2.4.2.2 Other possible ways to utilize major genes

2.5 The Booroola-cross

2.5.1 The history of Booroola sheep

2.5.2 Evidence of a major gene in Booroola sheep

2.5.3 The segregation criteria and problems in the segregation analysis
 2.5.3.1 The segregation criteria
 2.5.3.2 Problems
 2.5.3.3 Alternative statistical approaches

2.5.4 Characteristics of the F gene
 2.5.4.1 Name of the gene
 2.5.4.2 Mode of gene action of the F-gene
 2.5.4.3 Characteristics of the F-gene in crossbreeding trials
 2.5.4.4 Other aspects

THREE THE MASSEY BOORoola FLOCK

3.1 The Origin of the Massey University Booroola-cross Flock
3.2 Mating Systems 41
3.3 Performance Records 43
 3.3.1 Lamb production of ewes 43
 3.3.2 Other traits 45

FOUR DISCRIMINANT ANALYSIS 46

4.1 Introduction 46
4.2 Principles and Approaches 47
4.3 Definition of Groups 50
4.4 Analysis 51
4.5 Results and Discussion 52

FIVE SELECTION OBJECTIVE AND INDEX 58

5.1 Introduction 58
5.2 Setting of the Selection Objectives for
 Booroola Sheep 60
5.3 Selection Index 64
 5.3.1 Selection criteria 65
 5.3.2 The major gene selection index \(I_P \) 65
 5.3.3 The quantitative selection index \(I_Q \) 68
 5.3.4 The final selection index (I) combining the
 quantitative and qualitative traits 74
 5.3.5 The recommended selection indices for lambs,
 ram and ewe hoggets 79
 5.3.5.1 Lamb selection index 79
5.3.5.2 Ram selection index 80
5.3.5.3 Ewe hogget selection index 81
5.3.6 Restricted index 82
5.3.7 Sensitivity analysis 83
 5.3.7.1 Sensitivity to change of genetic and phenotypic parameters 83
 5.3.7.2 Sensitivity to change in economic weight of CFW 85
5.3.8 An alternative approach to incorporate a major gene into the selection index 88

SIX GENERAL DISCUSSION 89

SEVEN CONCLUSION 97

APPENDICES 99

REFERENCES 106
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>54</td>
</tr>
<tr>
<td>5.1</td>
<td>63</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
</tr>
</tbody>
</table>
from the present study with 2 others 64

5.3 Estimates of parameters required for the calculation of a selection index 69

5.4 Full and reduced selection indices 71–72

5.5 Selection index values for tag 1986 Booroola-cross sheep 76–78

5.6 The effect of changes in the genetic and phenotypic correlations on various selection indices 84

5.7 The effect of increasing the relative economic value of CFW by 30% on various selection indices 87

A.1 Mean litter size of FF, F+ and ++ individuals 105
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.1</td>
<td>The efficiency of selection on known loci alone and in a selection index, relative to individual selection</td>
<td>20</td>
</tr>
</tbody>
</table>