Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE ESTIMATION OF PHENOTYPIC AND GENETIC PARAMETERS

FOR LIVEWEIGHT TRAITS OF RED DEER

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science at Massey University
Palmerston North, New Zealand

CATHERINE MARY RAPLEY

1988
Massey University Library

Thesis Copyright Form

Title of thesis: THE ESTIMATION OF PHENOTYPIC AND GENETIC PARAMETERS FOR LIVESTOCK TRAITS OF RED DEER

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ________ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ________ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ________ months.

Signed

Date 12 August 1988

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

__

__

__

DATE

__

__

__

MASSEY UNIVERSITY
LIBRARY
I would first like to sincerely thank my supervisor, Dr. H.T. Blair, for the advice and assistance given throughout this study. My sincere thanks and gratitude are further extended to Drs R.L. Baker, P.F. Fennessy, G.A. Wickham and Prof. A.L. Rae for their guidance, encouragement and support, especially during the period when Dr. Blair was on sabbatical leave.

The efforts of Mr P. Harper and E. Foreman of the New Zealand Meat Producers Board in providing the data for this study are most appreciated. My thanks to the New Zealand Deer Farmers’ Association for initially making the data available and the patient efforts of the deer farmers in recording and double checking the data when requested.

The assistance and support of staff members and fellow post-graduate students of the Animal Science Department is gratefully acknowledged, particularly L.A. McClelland, S-A.N. Newman and J.M. Rendel.

Thanks be to the Ministry of Agriculture and Fisheries for the financial support during this study. A big thank-you to the staff of the Batchelor Agriculture Centre for their enduring encouragement.

To Peter Barwell, who helped in many ways from beginning to end, I give my special thanks.
ABSTRACT

Data for this study were uplifted from Deerplan (the New Zealand deer performance recording scheme). The data consisted of 311 birth weight records from 4 herds, 2874 March weight (approximately 3 months of age) records from 28 herds and 1225 15-month weight records from 20 herds, for Red deer. Approximately half the March and 15-month weight records had an accompanying date of birth. Dam winter weight accompanied about one-third of the fawn weight records. The objectives of this study included: least squares estimation of non-genetic effects influencing birth, March and 15-month weights; estimation of heritability of these weight traits by Henderson’s Method 3 and offspring-dam regression method; estimation of phenotypic and genetic correlations between these weight traits, and development of selection indices based on the estimated parameters.

The non-genetic effects found to significantly influence birth weight, with the approximate percentage of total variation each controlled given in parenthesis, were: herd (12%); sex (15%); age of dam (13%), and dam winter weight (18%). The effects of year and date of birth were small and were not considered to be of practical importance. Approximately 50% of the total variation in birth weight was accounted for by these non-genetic effects.

The non-genetic effects found to significantly influence March weight were: herd (11%); year (2%); sex (13%); age of dam or dam winter weight (10%), and age at March weighing (25%). Approximately 63% of the total variation in March weight was accounted for by these non-genetic effects.

The non-genetic effects found to significantly influence 15-month weight were: herd (6.0%); sex (70%); age at 15-month weighing (3%), and dam winter weight (3%). The effect of year on 15-month weight could not be tested. Approximately 80% of the total variation in 15-month weight was accounted for by these non-genetic effects.

The paternal-half sib heritability estimates of birth, March, and 15-month weights were high, 0.67 ± 0.29 (± S.E), 0.77 ± 0.15, 0.60 ± 0.22, respectively.
The heritability of adjusted March weight estimated by the offspring-dam regression method was low, 0.15 ± 0.30.

The phenotypic correlation estimates between the adjusted fawn weights were consistently positive with moderate to strong magnitude. These estimates were 0.49 for birth and March weight, 0.34 for birth and 15-month weight and 0.51 for March and 15-month weight. The phenotypic correlation estimates between dam winter weight in adjacent years were strongly positive (0.49 to 0.97).

The genetic correlation estimates between the adjusted fawn weights were moderately to strongly positive, 0.93 ± 0.24 for birth and March weight and 0.32 ± 0.44 for March and 15-month weight.

Selection indices were developed for two objectives. One was to increase venison production at 15-months of age, and the other was to increase venison production at 27-months of age and 2 year old velvet antler weight. Due to the strongly positive correlations between liveweights, negative index weighting factors were obtained for March weight. These were considered unreasonable and indicated the need for further investigation. An economic gain per generation of 12.80 and 24.27 could be achieved for the two objectives respectively. The economic gain in the first objective was reduced to 12.53 by restricting genetic gain in birth weight to zero. There was little advantage in recording actual birth weights.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1

CHAPTER 2 REVIEW OF LITERATURE

2.1 INTRODUCTION

4

2.2 NON-GENETIC EFFECTS

4

2.2.1 Birth weight

5

2.2.1.1 Date of birth

5

2.2.1.2 Sex of offspring

6

2.2.1.3 Age of dam

7

2.2.1.4 Dam Liveweight

8

2.2.1.5 Year of Birth

9

2.2.1.6 Herd

10

2.2.1.7 Interactions

10

2.2.2 Weaning weight

11

2.2.2.1 Age at weaning

11

2.2.2.2 Sex of offspring

14

2.2.2.3 Age of dam

15

2.2.2.4 Dam Liveweight

17

2.2.2.5 Year of birth

18

2.2.2.6 Herd

20

2.2.2.7 Interactions

21

2.2.3 15-Month Weight

24
3.3 Preliminary Editing

3.4 Statistical Methods

3.4.1 Non-genetic Effects

3.4.2 Heritability

3.4.3 Correlations

3.4.4 Selection Indices

3.4.5 Computer Software

Chapter 4 Non-genetic Effects

4.1 Introduction

4.2 Birth Weight

4.2.1 Model 1

4.2.2 Model 2

4.2.3 Model 3

4.2.4 Model 4

4.2.5 Summary of Models for Birth Weight

4.2.6 Birth Weight Discussion

4.3 March Weight

4.3.1 Model 5

4.3.2 Model 6

4.3.2.1 Model 6A

4.3.2.2 Model 6B

4.3.3 Model 7

4.3.4 Model 8

4.3.4.1 Model 8A

4.3.4.2 Model 8B

4.3.5 Summary of Models for March Weight

4.3.6 March Weight Discussion

4.4 15-month Weight

4.4.1 Model 9

4.4.2 Model 10

4.4.3 Summary of Models for 15-month Weight

4.4.4 15-month Weight Discussion
<table>
<thead>
<tr>
<th>CHAPTER 5 HERITABILITIES</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 INTRODUCTION</td>
<td>120</td>
</tr>
<tr>
<td>5.2 BIRTH WEIGHT</td>
<td>121</td>
</tr>
<tr>
<td>5.3 MARCH WEIGHT</td>
<td>123</td>
</tr>
<tr>
<td>5.3.1 Paternal half-sib</td>
<td>123</td>
</tr>
<tr>
<td>5.3.2 Offspring-dam regression</td>
<td>127</td>
</tr>
<tr>
<td>5.4 15-MONTH WEIGHT</td>
<td>129</td>
</tr>
<tr>
<td>5.5 DISCUSSION</td>
<td>131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 6 CORRELATIONS</th>
<th>136</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 INTRODUCTION</td>
<td>136</td>
</tr>
<tr>
<td>6.2 PHENOTYPIC CORRELATIONS</td>
<td>137</td>
</tr>
<tr>
<td>6.3 GENETIC CORRELATIONS</td>
<td>140</td>
</tr>
<tr>
<td>6.4 DISCUSSION</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 7 SELECTION INDICES</th>
<th>148</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 INTRODUCTION</td>
<td>148</td>
</tr>
<tr>
<td>7.2 DEFINITION OF THE BREEDING OBJECTIVE</td>
<td>148</td>
</tr>
<tr>
<td>7.3 SELECTION INDEX PARAMETERS</td>
<td>150</td>
</tr>
<tr>
<td>7.3.1 Relative Economic Values</td>
<td>150</td>
</tr>
<tr>
<td>7.3.2 Phenotypic and Genetic Parameters</td>
<td>150</td>
</tr>
<tr>
<td>7.4 RESULTS</td>
<td>152</td>
</tr>
<tr>
<td>7.5 DISCUSSION</td>
<td>155</td>
</tr>
</tbody>
</table>

| CHAPTER 8 CONCLUSIONS | 157 |

APPENDICES 161

BIBLIOGRAPHY 176
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>age at mwt</td>
<td>age at the March weighing</td>
</tr>
<tr>
<td>age at wt</td>
<td>age at the 15-month weighing</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>β</td>
<td>regression coefficient</td>
</tr>
<tr>
<td>bwt</td>
<td>birth weight</td>
</tr>
<tr>
<td>D.F.</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>EMS</td>
<td>expected mean square</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kgDM/ha</td>
<td>kilograms of dry matter per hectare</td>
</tr>
<tr>
<td>LSE</td>
<td>ordinary least squares estimate</td>
</tr>
<tr>
<td>LSM</td>
<td>ordinary least squares mean</td>
</tr>
<tr>
<td>mwt</td>
<td>March weight</td>
</tr>
<tr>
<td>n</td>
<td>number of records in each sub-class</td>
</tr>
<tr>
<td>N</td>
<td>total number of records for that model</td>
</tr>
<tr>
<td>na</td>
<td>not applicable</td>
</tr>
<tr>
<td>NS</td>
<td>not significant (P>0.05)</td>
</tr>
<tr>
<td>P</td>
<td>probability</td>
</tr>
<tr>
<td>R²</td>
<td>coefficient of determination</td>
</tr>
<tr>
<td>S.D.</td>
<td>standard deviation</td>
</tr>
<tr>
<td>S.E.</td>
<td>standard error</td>
</tr>
<tr>
<td>SIGN.</td>
<td>significance level</td>
</tr>
<tr>
<td>ylg</td>
<td>15-month weight</td>
</tr>
<tr>
<td>%VC</td>
<td>percentage of variation controlled</td>
</tr>
</tbody>
</table>
LIST OF TABLES

2.2.4.2.1: Multiplicative adjustment factors for velvet growth of 2 year old stags.

2.4.1: Paternal half-sib estimates of the heritability of birth weight, weaning weight and yearling weight in beef cattle not included in the review of Woldehawariat et al. (1977).

2.5.1.1: Phenotypic and genetic correlation estimates between birth weight and weaning weight, birth weight and yearling weight, and weaning weight and yearling weight in beef cattle not included in the review of Woldehawariat et al. (1977).

3.3.1: Number of records (N) in each liveweight trait with the number of herds contributing to that data base (Herds$_N$) and the number of records in each trait that had the corresponding date of birth recorded on the fawn (DOB) with the respective number of herds contributing to that data base (Herd$_{DOB}$).

4.2.1.1: Numbers of records in each class of non-genetic effect for Model 1.

4.2.1.2: Analysis of variance in fawn birth weight and the percentage of variation controlled (% VC) by each of the non-genetic effects using Model 1.

4.2.1.3: Ordinary least square estimates (LSE) and means (LSM) for sex, dam age, and (herd x sex) interaction, with their respective standard errors (S.E.) for Model 1.

4.2.1.4: Combined ordinary least square estimates of sex and (herd x sex) interaction for Model 1.

4.2.2.1: Number of records in each class of non-genetic effect in Model 2.

4.2.2.2: Analysis of variance in birth weight using Model 2 with the percentage of variation controlled (% VC) by each of the non-genetic effects.
4.2.2.3: Ordinary least square estimates (LSE) and means (LSM) for sex, dam age and (sex x dam age) interaction, and the regression coefficient for dam pre-fawning winter weight, with their respective standard errors (S.E.) for Model 2.

4.2.2.4: Combined ordinary least square estimates of dam age, sex, and (sex x dam age) interaction for Model 2.

4.2.3.1: Number of records in each class of non-genetic effects in Model 3.

4.2.3.2: Analysis of variance in birth weight using Model 3 and the percentage of variation controlled (%VC) by each of the non-genetic effects.

4.2.3.3: Ordinary least square estimates (LSE) and means (LSM) for sex and dam age, and the regression coefficients for dam post-fawning winter weight and date of birth, with their respective standard errors (S.E.) for Model 3.

4.2.5.1: Analysis of variance summary in fawn birth weight for Models 1, 2, 3 and 4.

4.3.1.1: Numbers of records in each class of non-genetic effect for Model 5.

4.3.1.2: Analysis of variance in fawn March weight using Model 5 and the percentage of variation controlled (%VC) by each non-genetic effect.

4.3.1.3: Ordinary least square estimates (LSE) and means (LSM) for sex, dam age, and (herd x dam age) interaction and the regression coefficient for age at March weighing (age at mwt), with their respective standard errors (S.E.) for Model 5.

4.3.1.4: Combined ordinary least square estimates of dam age and (herd x dam age) interaction for Model 5.

4.3.2.1: Number of records in each class of non-genetic effect in Model 6A.
4.3.2.1.2: Analysis of variance in fawn March weight using Model 6A and the percentage of variation controlled (%VC) by each of the non-genetic effects.

4.3.2.1.3: Ordinary least square estimates (LSE) and means (LSM) for sex and the regression coefficients for age at March weighing (age at mwt), dam pre-fawning winter weight, and dam pre-fawning winter weight within herds, with their respective standard errors (S.E.) for Model 6A.

4.3.2.2.1: Number of records in each class of non-genetic effect in Model 6B.

4.3.2.2.2: Analysis of variance in fawn March weight using Model 6B and the percentage of variation controlled (%VC) by each non-genetic effect.

4.3.2.2.3: Ordinary least square estimates (LSE) and means (LSM) for sex and the regression coefficients for age at March weighing (age at mwt) and dam pre-fawning winter weight, with their respective standard errors (S.E.) for Model 6B.

4.3.3.1: Number of records in each class of non-genetic effect in Model 7.

4.3.3.2: Analysis of variance in fawn March weight using Model 7 and the percentage of variation controlled (%VC) by each non-genetic effect.

4.3.3.3: Ordinary least square estimates (LSE) and means (LSM) for sex, dam age, and (herd x dam age) interaction and the regression coefficients for age at March weighing (age at mwt) and dam post-fawning winter weight, with their respective standard errors (S.E.) for Model 7.

4.3.3.4: Combined ordinary least square estimates of dam age and (herd x dam age) interaction for Model 7.

4.3.4.1.1: Number of records in each class of non-genetic effect in Model 8A.

4.3.4.1.2: Analysis of variance in fawn March weight using Model 8A and the percentage of variation controlled (%VC) by each non-genetic effect.
4.3.4.1.3: Ordinary least square estimates (LSE) and means (LSM) for sex and the regression coefficients for age at March weighing (age at mwt) and dam pre-fawning winter weight, with their respective standard errors (S.E.) for Model 8A.

4.3.4.2.1: Number of records in each class of non-genetic effect in Model 8B.

4.3.4.2.2: Analysis of variance in fawn March weight using Model 8B and the percentage of variation controlled (%VC) by each non-genetic effect.

4.3.4.2.3: Ordinary least square estimates (LSE) and means (LSM) for sex and (herd x sex) interaction, and the regression coefficients for age at March weighing (age at mwt) and dam pre-fawning winter weight, with their respective standard errors (S.E.) for Model 8B.

4.3.4.2.4: Combined ordinary least square estimates of sex and (herd x sex) interaction for Model 8B.

4.3.5.1: Analysis of variance summary in fawn March weight for Models 5, 6A, 6B, 7, 8A and 8B.

4.4.1.1: Numbers of records in each class of non-genetic effect in Model 9.

4.4.1.2: Analysis of variance in 15-month weight and the percentage of variation controlled (%VC) by each of the non-genetic effects using Model 9.

4.4.1.3: Ordinary least square estimates (LSE) and means (LSM) for sex and (herd x sex) interaction with their respective standard errors (S.E.) for Model 9.

4.4.1.4: Combined ordinary least square estimates of sex and (herd x sex) for Model 9.

4.4.2.1: Number of records in each class of non-genetic effect in Model 10.

4.4.2.2: Analysis of variance in 15-month weight using Model 10.
4.4.2.3: Ordinary least square estimates (LSE) and means (LSM) for sex and the regression coefficients for age at the 15-month weighing (age at wt) and dam post-fawning winter weight, with their respective standard errors (S.E.) for Model 10.

4.4.3.1: Analysis of variance summary in 15-month weight for Models 9 and 10.

5.2.1: Number of records in each class of non-genetic effect for the paternal half-sib estimation of the heritability of birth weight.

5.2.2: Variance components and heritability (h²) estimate with standard error (S.E.) for birth weight using Henderson's Method 3.

5.3.1.1: Number of records in each class of non-genetic effect for the paternal half-sib estimation of the heritability of March weight.

5.3.1.2: Variance components and heritability (h²) estimate with standard error (S.E.) for March weight using Henderson's Method 3.

5.3.1.3: Heritability estimates for March weight from paternal half-sib data using Henderson's Method 3 (HM3), Minimum Variance Quadratic Unbiased Estimation (MIVQUE), Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML) methods of variance component estimation.

5.3.2.1: The regression coefficients (β) and March weight heritability (h²) estimates from the offspring-dam regression with and without adjustment for non-genetic effects with their respective standard errors (S.E.).

5.4.1: Number of records in each subclass of non-genetic effect for the paternal half-sib estimation of the heritability of 15-month weight, genetic effect for the estimation of paternal half-sib 15-month weight heritability.

5.4.2: Variance components and the heritability (h²) estimate with standard error (S.E.) for 15-month weight using Henderson's Method 3.
6.2.1: Adjusted and unadjusted phenotypic correlations (r_p) between birth weight (bwt), March weight (mwt) and 15-month weight (ylg).

6.2.2: Adjusted phenotypic correlations (r_p) for dam winter liveweight at various ages.

6.3.1: Number of records in each class of non-genetic effect for the estimation of the paternal half-sib genetic correlation between birth weight and March weight.

6.3.2: Number of records in each class of non-genetic effect for the estimation of the paternal half-sib genetic correlation between March weight and 15-month weight.

6.3.3: Genetic correlation (r_G) between birth weight (bwt) and March weight (mwt) and between March weight and 15-month weight (ylg) with their respective standard errors (S.E.) using Henderson’s Method 3.

7.3.1: Genetic and phenotypic parameters used in the construction of the selection indices for the 15-month venison production objective.

7.3.2: Genetic and phenotypic parameters used in the construction of the selection indices for the 27-month venison and velvet antler production objective.

7.4.1: Selection index solutions for the objective of 15-month venison production, H_1 = a_1 CWT_{15}, based on the parameter estimates presented in Table 7.3.1.

7.4.2: Selection index solutions for the objective of 27-month venison and velvet antler production, H_2 = a_2 CWT_{27} + a_3 VWT, based on the parameter estimates presented in Table 7.3.2.

LIST OF FIGURES

5.3.1: The within sire variance for March weight adjusted for the non-genetic effects using Model 5 in one year plotted against that sire’s adjusted March weight variance in the adjacent year.
LIST OF APPENDICES

APPENDIX 1

9.1.1: Distribution of data used in Model 1. 161
9.1.2: Distribution of data used in Model 2. 161
9.1.3: Distribution of data used in Model 3. 162
9.1.4: Distribution of data used in Model 4. 162

APPENDIX 2

9.2.1: Distribution of data used in Model 5. 163
9.2.2: Distribution of data used in Model 6A. 165
9.2.3: Distribution of data used in Model 6B. 166
9.2.4: Distribution of data used in Model 7. 167
9.2.5: Distribution of data used in Model 8A. 168
9.2.6: Distribution of data used in Model 8B. 168

APPENDIX 3

9.3.1: Distribution of data used in Model 9. 169
9.3.2: Distribution of data used in Model 10. 170

APPENDIX 4

9.4.1: Distribution of data used for the estimation of birth weight heritability and the genetic correlation between birth weight and March weight. 171
9.4.2: Distribution of data used for the estimation of March weight heritability. 172
9.4.3: Distribution of data used for the estimation of 15-month weight heritability. 173

APPENDIX 5

9.5.1: Distribution of data used for the estimation of the genetic correlation between March weight and 15-month weight. 174