Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EVALUATION OF ALTERNATIVE DAIRY FARM MANAGEMENT PRACTICES USING A SIMULATION MODEL

A thesis presented in partial fulfilment of the requirements for the degree of Masters in Agricultural Science in Farm Management at Massey University.

Diego Escallón Robá
1994
Title of thesis: **Evaluation of Alternative Dairy Farm Management Practices Using a Simulation Model.**

(1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for months.

Signed

Date 06-05-94

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME and ADDRESS

DATE
ABSTRACT

New Zealand dairy farming is known worldwide for its on-farm efficiency, particularly for being one of the world’s most cost-effective milk producers. New Zealand farmers’ attempts to minimize costs by aiming to match the pattern of pasture growth with animal requirements. However, a more even production through the year may lower factory operating costs, would reverse the tendency to increase peak milk production during spring, and allow fresh products and products with a higher added value to be supplied all year round. For this reason a differential payment for the peak production periods will be introduced locally by Tui Milk Products Ltd.

On-farm efficiency is likely to be affected by changes to the payment system. In this study practices under the new payment system were evaluated. From among the large number of practices affecting dairy farm productivity, calving and drying off dates, stocking rate, supplementary feeding and nitrogen fertiliser, were identified as important variables in the design of alternative management systems. The variables were manipulated within a whole farm system, giving production and financial responses.

A computer simulation model, (UDDER), was used in a case-study approach to evaluate management alternatives for farms which supply the local dairy company. The effects of changes in those variables on the system’s physical and financial parameters were monitored. Improvements in gross margins were achieved in the model by changing calving and drying off dates, improving the match of animal requirements with pasture production. As stocking rate was increased, so did gross margin improve, giving better feed utilization and hence lower herbage losses. The above changes have also been combined with changes in supplementary feeding and nitrogen fertiliser.

The manipulation of calving and drying off dates, stocking rate, supplements fed, and nitrogen fertiliser applied, increase total milk production within the range 4% to 12%, and gross margins were increased within the range 6% to 22%, while peak production was affected by only 1% to 3% for the "improved" strategies for all farms. Hence, the potential to shift a proportion of total milk production into shoulder months, profitably, is small.
ACKNOWLEDGEMENTS

Thanks are due to my chief supervisor, Mrs Evelyn Hurley and my co-supervisors, Associate Professor Colin W. Holmes and Mr Alan McRae, for their patience, encouragement, interest, support and assistance throughout this project. Special thanks are due to Mrs Evelyn Hurley who gave me a great support and friendship through my stay in New Zealand. Similarly, to Associate Professor Colin W. Holmes for his advise not only in this paper, but also in other areas of my study in New Zealand. I would also like to thank Dr Hugo Varela for his dedicated assistance and friendship.

Recognition is also given to Mr Andrew Watters from Tui Milk Products, who gave permission and contact addresses for the case study farms. Thank are extended to the farmers who provided me the information: Mr and Mrs John and Ngari Burnette, Foxton; Mr and Mrs Ross and Anne Burnett, Rongotea; Mr and Mrs David and Beverly Spring, Eketahuna; and Mr and Mrs Alan and Dianne Ewington, Greytown. Appreciation is also offer to farm consultants of the case study farms, who gave a valuable support and advise, these are Mr Martin Boyle, Mr Mark Dod, and Mr Chris Lewis.

The New Zealand Ministry of Foreign Affairs and Trade and Massey University Research Funds are thanked for provision of post-graduate stipend and financial assistance towards the costs of this study.

The author would also like to acknowledge all the people who contributed to the development of this thesis.

Finally, thanks are extended to my family, for their invaluable support an encouragement throughout my studies.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1. INTRODUCTION .. 2

1.1. Problem statement .. 2
1.2. Hypothesis ... 3
1.3. Systems and farming systems 4
1.4. Modelling in agricultural research 6
1.5. Model application ... 7
1.6. Objectives .. 10

CHAPTER 2. NEW ZEALAND DAIRY INDUSTRY 11

2.1. Farms and factories in New Zealand 11
2.2. The New Zealand Dairy Board (NZDB) 13
2.3. Assessment of the dairy industry 14
 2.3.1. Strengths ... 14
 2.3.2. Weaknesses ... 16
 2.2.3. Opportunities 17
2.4. Tui Milk Products (TMP) 18
 2.4.1. Description of Tui Milk Products 18
 2.4.2. Milk Supply 20
 2.4.3. Milk Payments 22
CHAPTER 3. FACTORS AFFECTING MILK PRODUCTION FROM PASTURE

3.1. Introduction ... 29

3.2. Productivity of grassland dairy farms 30
 3.2.1. Pasture production 30
 3.2.2. Pasture utilization 31
 3.2.3. Sward dynamics 32
 3.2.4. Pasture species 33

3.3. Stocking rate on grazing systems 34
 3.3.1. Effects of stocking rate on pasture 34
 3.3.1.1. Pasture production and Quality 34
 3.3.1.2. Botanical Composition 36
 3.3.2. Effects of stocking rate on the animal 36
 3.3.2.1. Feed conversion efficiency 37
 3.3.2.2. Pasture intake per cow and per hectare 38
 3.3.2.3. Milkfat production per animal and per hectare 39
 3.3.2.4. Animal health 40
 3.3.2.5. Live weight and condition score (CS) 40
 3.3.2.6. Animal reproduction 41
 3.3.2.7. Animal genotype 42
3.3.2.8. Mathematical models quantifying animal output in relation to stocking rate 44
3.3.2.9. Effects of stocking rate on soil 44

3.4. Grazing management ... 45
3.4.1. Grazing methods ... 46

3.5. Fertilizers in pasture grazing systems 48
3.5.1. Nitrogen fertilizer .. 49
3.5.1.1. Herbage yield .. 49
3.5.1.2. Milk production and nitrogen fertilizer 51
3.5.2. Phosphorus fertilizer 52
3.5.2.1. Herbage yield .. 53
3.5.2.2. Milk production 53
3.5.3. Potassium fertilizer 54
3.5.4. Lime ... 54

3.6. Irrigation ... 55

3.7. Dairy cattle husbandry 56
3.7.1. Calving date .. 56
3.7.1.1. Herd calving "patterns" and milk production 59
3.7.1.2. Breeding programmes 59
3.7.2. Drying-off date ... 62
3.7.3. Genetic merit of the cows 63

3.8. Supplementary feeding 65
3.8.1. Pasture quality and availability 65
3.8.1.1. Qualitative deficiencies 65
3.8.1.2. Quantitative deficiencies 66
3.8.2. Effects of supplementation of herbage intake 68
3.8.2.1. Substitution effect 68
3.8.2.2. Effects on pasture cover and ingestive behaviour .. 70
3.8.3. Supplementary feeds 70
3.8.3.1. Conserved herbage 70
3.8.3.1.1. Silage ... 71
3.8.3.1.2. Hay ... 72
CHAPTER 4. METHODOLOGY ... 88

4.1. Selection of method .. 88
 4.1.1. The use of simulation models 88
 4.1.1.1. Advantages of simulation models 90
 4.1.1.2. Disadvantages of simulation models 91
 4.1.2. The use of case studies 92
4.2. Description of the simulation model udder: a desktop dairy farm for extension and research .. 93
4.3. Description of the farms 94
 4.3.1. Farm A .. 94
 4.3.2. Farm B .. 95
 4.3.3. Farm C .. 96
 4.3.4. Farm D .. 97
4.4. Method of study ... 100
CHAPTER 5. RESULTS ... 103

5.1. Farm A .. 103

5.1.1. Herbage Accumulation Rate (HAR) 103
5.1.2. Average Pasture Cover (APC) .. 106
5.1.3. Condition Score (CS) .. 107
5.1.4. Daily Milksolid Production .. 108
5.1.5. Physical Performance .. 110
5.1.6. Financial Performance .. 111

5.2. Farm B .. 113

5.2.1. Herbage Accumulation Rate (HAR) 113
5.2.2. Average Pasture Cover (APC) .. 116
5.2.3. Condition Score (CS) .. 117
5.2.4. Milk Production .. 118
5.2.5. Physical Performance .. 120
5.2.6. Financial Performance .. 121

5.3. Farm C .. 123

5.3.1. Herbage Accumulation Rates (HAR) 123
5.3.2. Average Pasture Cover (APC) .. 125
5.3.3. Condition Score (CS) .. 126
5.3.4. Milk Production .. 127
5.3.5. Physical Performance .. 129
5.3.6. Financial Performance .. 130

5.4. Farm D .. 132

5.4.1. Herbage Accumulation (HAR) .. 132
5.4.2. Average Pasture Cover (APC) .. 134
5.4.3. Condition Score (CS) .. 135
5.4.4. Milk Production .. 136
5.4.5. Physical Performance .. 138
5.4.6. Financial Performance .. 139
CHAPTER 6. DISCUSSION .. 140

6.1. Farm A ... 140
6.1. Farm B ... 143
6.2. Farm C ... 146
6.1. Farm D ... 148
6.5. Summary .. 151

CHAPTER 7. CONCLUSION ... 156

APPENDICES ... 159

Appendix 1. Assumptions taken in the simulations run by UDDER 159
Appendix 2. Simulations for Farm A ... 160
Appendix 3. Simulations for Farm B ... 164
Appendix 4. Simulations for Farm C ... 168
Appendix 5. Simulations for Farm D ... 172
Appendix 6. Summary of the physical performance of the actual strategies vs the "improved" strategy for each particular farm 176
Appendix 7. Summary of the financial performance of the actual strategies vs the "improved" strategy for each particular farm 177

REFERENCES ... 178
LIST OF TABLES

CHAPTER 2. NEW ZEALAND DAIRY INDUSTRY

Table 2.1. Changes in milk production and average herd size over the last decade (Livestock Improvement 1991/92) 11
Table 2.2. Gross Income and On-farm Cost in Four Countries (NZ$/Kg milkfat) (Holmes, 1990) ... 12
Table 2.3. International Comparisons of Average Herd Size 15
Table 2.4. Products Manufactured by TMP (1991/92 & 1992/93) 19
Table 2.5. Milkfat Production in 1991/92 and 1992/93 by TMP Suppliers ... 22
Table 2.6. Capacity utilisation index for dairy factories in several countries (Dawson, 1988) .. 24

CHAPTER 3. FACTORS AFFECTING MILK PRODUCTION FROM PASTURE

Table 3.1. Annual yield of perennial ryegrass-white clover as influenced by irrigation and fertilizer N (Williams, 1980) 56
Table 3.2. Average calving dates in commercial dairy farms in New Zealand (Holmes, 1993) ... 58
Table 3.3. Losses during hay and silage making and storing (Barry et al., 1980) ... 74
Table 3.4. Alternative forage crops - Estimated yields and harvesting dates (Douglas, 1980 in Holmes and MacMillan, 1982) 77
Table 3.5. Mean yield (kg DM/ha) for each cultivar at 76 and 133 days after sowing (DAS)(Millner, 1993) 79
Table 3.6. Effect of supplementation at different herbage allowances on substitution rate and animal performance (Mayne, 1990) 83
CHAPTER 4. METHODOLOGY

Table 4.1. Comparison between district averages and the farm and herd size, and milksolids production .. 98

CHAPTER 5. RESULTS

Table 5.1. Nitrogen application during spring, autumn, and winter. Estimated herbage accumulation rates during April, May, and June 105
Table 5.2. Total pasture accumulation, pasture utilization, and stocking rate for the "actual", "current", "early", and "late" strategies 105
Table 5.3. Average pasture cover and condition score at planned start of calving for Farm A .. 107
Table 5.4. Total milk production for the "actual", "current", "early", and "late" strategies for farm A .. 109
Table 5.5. A summary of the physical performance of the "actual", "current", "early" and "late" strategies for farm A 111
Table 5.6. Financial performance of the "actual", "current", "early" and "late" strategies for farm A .. 112
Table 5.7. Difference in gross margin between the "actual" strategy and the "current", "early" and "late" strategies for farm A 113
Table 5.8. Nitrogen application during spring, autumn and winter. Estimated herbage accumulation rates during March, April and May 115
Table 5.9. Total pasture accumulation, pasture utilization and stocking rate for the "actual", "current", "early" and "late" strategies 115
Table 5.10. Average pasture cover and condition score at planned start calving for Farm B .. 117
Table 5.11. Total milk production for the "actual", "current", "early" and "late" strategies for Farm B .. 119
Table 5.12. A summary of the physical performance of the "actual", "current", "early" and "late" strategies for Farm B 121
Table 5.13. Financial performance of the "actual", "current", "early" and "late" strategies for Farm B 122
Table 5.14. Difference in gross margin in relation to the "actual" strategy for the "current", "early" and "late" strategies for Farm B 122
Table 5.15. Nitrogen application during spring, autumn and winter. Estimated herbage accumulation rates during August, September and October ... 124
Table 5.16. Total herbage accumulation, pasture utilization and stocking rate for the "actual", "current", "early" and "late" strategies 124
Table 5.17. Average pasture cover and condition score at planned start of calving for Farm C .. 126
Table 5.18. Total milk production for the "actual", "current", "early" and "late" strategies for Farm C 128
Table 5.19. Physical performance of the "actual", "current", "early" and "late" strategies for Farm C 130
Table 5.20. Financial performance of the "actual", "current", "early" and "late" strategies for Farm C .. 131
Table 5.21. Difference in gross margin in relation to the "actual" strategy for the "current", "early" and "late" strategies for Farm C 131
Table 5.22. Nitrogen application during spring, autumn and winter. Estimated herbage accumulation growth rates during August, September and October ... 133
Table 5.23. Total herbage accumulation, pasture utilization and stocking rate for the "actual", "current", "early" and "late" strategies for Farm D ... 133
Table 5.24. Average pasture cover and condition score at planned start of calving for Farm D .. 135
Table 5.25. Total milk production for the "actual", "current", "early" and "late" strategies for Farm D .. 137
Table 5.26. Physical performance of the "actual", "current", "early" and "late" strategies for Farm D .. 139
Table 5.27. Financial performance of the "actual", "current", "early" and "late" strategies for Farm D 140

Table 5.28. Difference in gross margin in relation to the "actual" strategy for the "current", "early" and "late" strategies for Farm D 140

CHAPTER 6. DISCUSSION

Table 6.1. Summary of the changes in start of calving and drying-off dates, stocking rate, concentrates fed, supplements fed, nitrogen fertiliser applied and the variation in gross margin for the "best" strategies for each farm compared with the actual strategy 153
LIST OF FIGURES

CHAPTER 2. NEW ZEALAND DAIRY INDUSTRY

Figure 2.1. Multinational Food Companies Growth Trends (Crocombe et al., 1991) .. 17
Figure 2.2. Seasonal supply pattern (TMP, 1993) 21
Figure 2.3. Seasonal Pricing Structure (Watters, 1992) 27

CHAPTER 3. FACTORS AFFECTING MILK PRODUCTION FROM PASTURE

Figure 3.1. A simple illustration of the key elements of milk production per hectare, and of the factors which affect the key elements (Holmes, 1990) ... 30
Figure 3.2. Diagram of pasture utilization (Bryant and Holmes, 1985) 31
Figure 3.3. The influence of stocking rate on rates of herbage growth, senescence and net production (Hodgson, 1990) 35
Figure 3.4. Stocking rate the framework for the pasture balance (Holmes, 1993) ... 37
Figure 3.5. Productive performance of Jersey cows (J) and Friesian (F) cows (Bryant, 1992) ... 43
Figure 3.6. Seasonal pattern of pasture production in several climatic zones (Birrel, 1987 from Snaydon, 1987b) 67
Figure 3.7. The relationship of pasture intake to various pasture characteristics and methods of pasture allocation (Poppi et al., 1987) ... 68
Figure 3.8. Supplementary feeds and substitution effects (Hodgson, 1990) ... 69
Figure 3.9. Outline of the general pattern of field and storage losses of dry matter in different conservation systems as a function of moisture
content at the time of harvesting. Losses are expressed as a percentage of the material that was actually cut (Barry et al., 1980) .. 73

Figure 3.10. Factors affecting the response of cows to supplements (Rogers, 1985) .. 80

CHAPTER 4. METHODOLOGY

Figure 4.1. Map of the Manawatu, Eketahuna and Wairarapa regions showing locations of farms A, B, C and D. ... 99

CHAPTER 5. RESULTS

Figure 5.1. Effects of the different strategies on herbage accumulation rate in farm A .. 104
Figure 5.2. Effects of the different strategies on average pasture cover in farm A .. 106
Figure 5.3. Effects of the different strategies on condition score per cow in farm A .. 108
Figure 5.4. Effects of the different strategies in milk production per cow for Farm A .. 109
Figure 5.5. Effects of the different strategies in total milk production per farm for Farm A .. 110
Figure 5.6. Effects of the different strategies on herbage accumulation rate in Farm B .. 114
Figure 5.7. Effects of the different strategies on average pasture cover for Farm B .. 116
Figure 5.8. Effects of the different strategies on condition score per cow for Farm B .. 118
Figure 5.9. Effects of the different strategies on milk production per cow for Farm B ... 119
Figure 5.10. Effects of the different strategies in total milk production per farm for Farm B ... 120
Figure 5.11. Effects of the different strategies on herbage accumulation rate for Farm C ... 123
Figure 5.12. Effects of the different strategies on average pasture cover in Farm C .. 125
Figure 5.13. Effects of different strategies on average condition score per cow for Farm C ... 127
Figure 5.14. Effects of the different strategies on milk production per cow for Farm C .. 128
Figure 5.15. Effects of the different strategies on total milk production per farm for Farm C ... 129
Figure 5.16. Effects of the different strategies on herbage accumulation rate for Farm D ... 132
Figure 5.17. Effects of the different strategies on average pasture cover for Farm D ... 134
Figure 5.18. Effects of the different strategies on condition score per cow for Farm D ... 136
Figure 5.19. Effects of the different strategies on milk production per cow for Farm D .. 137
Figure 5.20. Effects of the different strategies in total milk production per farm for Farm D ... 138