Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

STUDIES ON EMBRYO TRANSPLANTATION PROCEDURES

USING BOOROOLA-MERINO X PERENDALE EWES

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science at Massey University

 $\underset{\approx}{\mathsf{RAYMUNDO}} \underset{\approx}{\mathsf{RANGEL}} \mathsf{SANTOS}$

Sugar

1987

Instructions:

- Please complete two of these forms, by providing title (1)details and striking out one option from each of the sections 1-3.
- If you select option b of any section you must include a (2)specific time period. The maximum permitted period is 24 months.
- (3)Include the two forms with the copies of your thesis submitted to your supervisor.
- (4)The Library must receive the original of your thesis.
- We strongly recommend that you provide the Library with (5)two copies of your thesis if it has colour plates.

Massey University Library. Thesis Copyright Form

Title of thesis: STUDIES ON EMBRYO TRANSPLANTATION PROCEDURES

USING BOOROOLA-MERINO X PERENDALE EWES

- I give permission for my thesis to be made available to (1) (a) readers in the Massey University Library under conditions determined by the Librarian.
 - I do not wish my thesis to be made available to readers (b) without my written consent for months.
- (2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
 - I do not wish my thesis, or a copy, to be sent to another (b) institution without my written consent for _____ months.
- I agree that my thesis may be copied for Library use. (3) (a) V
 - I do not wish my thesis to be copied for Library use for (b) months.

Signed RAYMUNDO RANGEL S. Date 27/3/87

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

MASSEY UNIVERSITY LIBRARY

ABSTRACT

A study was carried out to develop an embryo transfer programme under farm conditions. For this embryos were collected from donor ewes 5-6 days after single-sire mating by rams of the same crossbreed as the ewes. Then the embryos were transplanted soon after collection or after they had been initially frozen and later on thawed before their transfer. To enable this study to be carried out, one hundred and sixty-one Booroola-Merino x Perendale ewes aged between 3 and 6 years and of 34-69 kg live weight were examined. These animals were classified as either carriers (F+) or non-carriers (++) of the fecundity gene on the basis of the number of ovulations recorded at laparoscopy carried out a few days after progestagen sponge treatment to induce oestrus synchronisation, and in a few cases on the basis of previous lambing data. The aims of the study therefore were also to identify ewe carriers or non-carriers of the fecundity gene, and to evaluate their ovulatory response to several doses of Pregnant Mare Serum Gonadotrophin (T1=0, T2=350, T3=700 and T4=1050 i.u. of PMSG) given during the embryo transfer programme.

On the basis of the criteria used to classify F+ and ++ ewes, 76 ewes were considered as carriers and 85 as non-carriers of the fecundity gene.

ii

Immediately after progestagen synchronisation treatment the incidence of oestrus and the distribution of onset of oestrus was similar in both groups of ewes, and also following PMSG treatment given in the succeeding cycle.

Ovulation rate after the progestagen sponge treatment was significantly affected by genotype and age of the ewes, but it was not associated with the live weight of the ewes. The least-squares means for number of ovulations in F+ and ++ ewes and in 3 and 4-6 years old animals were 3.02, 1.73, 2.14 and 2.45 respectively. Higher sensitivity to PMSG treatment was observed from the right ovary than from the left ovary (3.40 v. 2.82 ovulations respectively).

No significant effect of dose of PMSG was found on the percentage of embryos recovered, the overall recovery rate being 66%. Of the ova or potential embryos recovered 78% had been fertilised and had developed to embryos. There were no significant differences between the 3 rams in the fertilisation rate in the ewes compared on a per ewe basis.

The reproductive performance of donor ewes which had been flushed, was considerably influenced by the efficiency of the embryo recovery procedures, since every embryo not recovered represents a potential pregnancy and such a situation sometimes is not desirable. In this study 30% of the ewes that were flushed, subsequently became pregnant and produce lambs as a result of one or more embryos not being recovered at surgery.

The number of ovulations after PMSG treatment was significantly affected by the dose-level of PMSG and the genotype, age and live weight of the ewes. F+ ewes recorded a significantly higher ovulation rate than ++ ewes. Their respective least-squares means were 3.61 and 2.31 corpora lutea. No significant difference was found between treatments 1 and 2 and between treatments 3 and 4. However, the response from the last two treatments was significantly higher than that from the first two treatments. Their respective least-squares means were 2.10, 2.01, 3.74 and 4.37 corpora lutea. Ewes 4-6 years old recorded a significantly higher number of ovulations than younger ewes (3 years old). Small significant effect of live weight was found on the ovulatory response of the ewes. Analysis within each genotype showed a similar trend in both genotypes, but small significant effect of weight was only detected in the ++ ewes.

The pregnancy rate that occurred after the transfer of two fresh embryos (86%) was significantly affected by the genotype of the recipient ewe (F+ ewes 75% v. ++ ewes 96%). The number of ovulations in the recipients and whether or not they had received PMSG before transfer had no effect on the incidence of pregnancy.

The pregnancy rate achieved after the transfer of frozen embryos (35%) was significantly influenced by the number of embryos transferred, but not by the ovulation rate in the recipient ewe or the time elapsing from flushing until freezing. Pregnancy rate was significantly higher after the transfer of 2 embryos compared to the transfer of single embryos (43% v. 0%), but only 8 transfers were made

iv

in the later category.

On the basis of the number of ovulations, it can be concluded that ewe carriers of the fecundity gene recorded significantly higher ovulation rate after oestrus synchronisation and were more sensitive to PMSG stimulation than non-carrier ewes.

There was an encouraging pregnancy rate obtained with frozen embryos, even although the small number of transfers carried out limits conclusions that can be drawn. However, the eighty-six percent pregnancy rate achieved after the transfer of two fresh embryos per recipient, shows the feasibility of the embryo transfer programmme under conditions where suitable recipients are available. Where recipients are limited then additional embryos might be frozen and stored until ready for transplantation.

v

ACKNOWLEDGEMENTS

The author wishes to thank the following persons:

To my supervisor: Dr. M.F. McDonald for his invaluable guidance and assistance during the experimental work, and for helpful suggestions and critical reading of the manuscript.

Miss. M. Dattena for her invaluable and constant assistance during the project.

Dr. G. A. Whickham for suggestions at the beginning of the experiment.

Mr. P. H. Whithehead and farm staff; especially L. Williams for the management of the animals.

Mr. M. G. Divehall and M. A. Wycherley for practical assistance during the experiment.

Prof. R. D. Anderson and J. M. Rendel for helpful suggestions with the statistcal procedure.

All the members of the Animal Science Depatrment for shearing their knowledge and experience.

E. Dixon for helping with equipement and materials.

vi

Mr. C. Sosa for critical reading and suggestions to the manuscript.

The New Zealand Government and Universidad Autonoma Chapingo for giving me the oportunity to achieve my goals.

Miss. I. Simon for typing the manuscript.

Lastly but not the least to my parents: Sr. A. Rangel and Ma. del C. Santos and brothers Jose Angel, Rosa Maria, Jose Manuel and Imelda for their moral support while I was studying.

TABLE OF CONTENTS

Chapter	Page
ABSTRACT	ii
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xviii
LIST OF FIGURES	xxi
LIST OF APPENDICES	xxii

CHAPTER 1

INTRODUCTION	1
	1

CHAPTER 2

REVIE	OF LIT	ERATURE	4
2.1.	Identif	ication of Ewes Carring the	
	High Fe	cundity Gene	4
2.2.	0estrus	Synchronisation	7
2.3.	Superov	ulation	8
2.4.	Factors	which Affect the Ovulatory	
	Response	e to PMSG Treatment	9
	2.4.1.	Dose-level of gonadotrophin	10
	2.4.2.	Season	12
	2.4.3.	Day of injection	14
	2.4.4.	Age	15
	2.4.5.	Breed	15
	2.4.6.	Live weight	18

Chap	t	e	r
------	---	---	---

2.5.	Service of Donor Ewes	19				
2.6.	Embryo Recovery from Donor Ewes	20				
2.7.	Embryo Searching and Evaluation					
2.8.	Embryo Transfer	25				
2.9.	Factors which Affect the Success					
	of Embryo Transfer	26				
	2.9.1. Number of embryos transferred	26				
	2.9.2. Synchronisation	28				
	2.9.3. Site of transfer	31				
2.10.	Preservation of Embryos	32				
	2.10.1. Medium for freezing	32				
	2.10.2. Cryoprotectants	32				
	2.10.3. Addition of cryoprotectant	34				
	2.10.4. Containers for freezing embryos	34				
	2.10.5. Process of freezing	35				
	2.10.6. Seeding	37				
	2.10.7. Thawing process	37				
	2.10.8. Removal of cryoprotectant	38				
	2.10.9. Post-thaw embryo assessment	39				
2.11.	Factors Affecting Efficiency of					
	Freezing Technique	40				
	2.11.1. Embryo quality	40				
	2.11.2. Time from collection to freezing	40				

ix

Page

Chapter

Page

CHAPTER 3

MATER	RIALS ANI	D METHODS	42
3.1.	Experin	mental Animals and their	
	Manager	ment	42
3.2.	Experim	mental Plan	43
	3.2.1.	Oestrus synchronisation	43
	3.2.2.	Laparoscopy	46
3.3.	Embryo	Transfer Procedure	46
	3.3.1.	PMSG treatment	46
	3.3.2.	Service of donor ewes	47
	3.3.3.	Embryo recovery from donor ewes	47
	3.3.4.	Embryo searching and evaluation	48
	3.3.5.	Transfer of fresh embryos	49
3.4	Preserva	ation of Embryos	49
	3.4.1.	Solutions for embryo preservation	50
	3.4.2.	Addition of the cryoprotectant	50
	3.4.3.	Freezing procedure	51
	3.4.4.	Thawing	53
	3.4.5.	Removal of the cryoprotectant	54
	3.4.6.	Transfer of frozen embryos	54
3.5.	Prepara	ation of Material and Equipment	55
3.6.	Analys:	is of Data	55

х

Chapter

Page

CHAPTER 4

RESUL	TS	•••••••••••••••••••••••••••••••••••••••	58	
4.1.	Ewes carring the high fecundity gene			
	4.1.1.	Distribution of ewe carriers		
		(F+) and non-carriers (++) of		
		the high fecundity gene	58	
	4.1.2.	Distribution of ovulation rate	61	
	4.1.3.	Factors affecting ovulation rate	61	
		4.1.3.1. <u>Genotype</u>	61	
		4.1.3.2. <u>Age</u>	61	
		4.1.3.3. Live weight	62	
4.2.	Inciden	ce and Distribution of Oestrus		
	After H	lormonal Treatment	63	
	4.2.1.	Efficiency of intravaginal dispositive	63	
	4.2.2.	Incidence and time of onset of		
		oestrus after progestagen sponge		
		treatment	63	
		4.2.2.1. Effect of genotype on the		
		incidence of oestrus	63	

xi

Chapt	er			Page
	4.2.3.	Incidence	e and distribution of	
		oestrus	after PMSG treatment	67
		4.2.3.1.	Effect of genotype on the	
			incidence of oestrus	
			after PMSG treatment	67
		4.2.3.2.	Effect of dose of PMSG	
			on the incidence of	
			<u>oestrus</u>	71
		4.2.3.3.	Effect of day of PMSG	
			injection on the	
			incidence of oestrus	73
4.3.	Ovarian	Response	to PMSG Treatment,	
	Embryo	Recovery a	and Fertilisation	
	Rate	• • • • • • • • •		74
	4.3.1.	Ovulatory	/ response	74
	4.3.2.	Embryo re	ecovery	75
		4.3.2.1.	Efficiency of embryo	
			recovery	75
	4.3.3.	Fertilisa	ation Rate	76
		4.3.3.1.	Influence of ram on	
			fertilisation rate	76

xii

~~	-	7	٦.
	ᆂ	ᆂ	т.

Chapt	er		Page
4.4.	Reprodu	ctive Performance of Donor	
	Ewes Af	ter Embryo Recovery	78
	4.4.1.	Incidence of oestrus in donor	
		ewes after embryo recovery	78
	4.4.2.	Effect of efficiency of embryo	
		recovery on the incidence of	
		oestrus after flushing	79
		4.4.2.1. Ewes not returning	
		to oestrus	79
		4.4.2.2. Ewes returning	
		to oestrus	80
	4.4.3.	Pregnancy rate in donor ewes	81
		4.4.3.1. Pregnancy rate of	
		flushed_ewes	81
		4.4.3.2. Pregnancy rate of	
		non flushed ewes	81
	4.4.4.	Total reproductive rate	82

xiv

Chapte	er			Page
4.5.	Factors	Affecting	the Ovulatory Response	
	to PMSG	Treatment		82
	4.5.1.	Analysis	including both genotypes	83
		4.5.1.1.	Effect of genotype	83
		4.5.1.2.	Effect of dose-level	
			of PMSG	83
		4.5.1.3.	Effect of the interaction	
			of genetic group by	
			treatment on the	
			ovulatory response	84
		4.5.1.4.	Effect of age on the	
			ovulatory response	
			after PMSG treatment	87
		4.5.1.5.	Effect of live weight on	
			the ovulatory response	
			to PMSG treatment	87

Chapte	er			Page
	4.5.2.	Analysis	within genotype	89
		4.5.2.1.	Effect of age on the	
			ovulatory response	
			after PMSG treatment	89
		4.5.2.2.	Effect of PMSG treatment on	
			the ovulatory response	89
		4.5.2.3.	Effect of the interaction	
			of age by treatment on	
			the ovulatory response	90
		4.5.2.4.	Effect of live weight on	
			the ovulatory response	
			to PMSG treatment	90
4.6.	Factors	Affecting	g the Success of Fresh	
	Embryo '	Transfer.	•••••••••••••••••••••••••••••••••••••••	93
	4.6.1.	Effect of	genotype on	
		pregnancy	7 rate	93
	4.6.2.	Effect of	e ovulation rate on	
		pregnancy	v rate	94
	4.6.3.	Effect of	PMSG treatment on	
		pregnancy	v rate	94
	4.6.4.	Embryo su	nrvival	95

xv

ΧV	Т.

Chapt	er		Page	
4.7.	Factors Affecting the Success of Frozen			
	Embryo	Transfer	96	
	4.7.1.	Effect of number of embryos		
		transferred on pregnancy rate	96	
	4.7.2.	Effect of ovulation rate on		
		pregnancy rate	97	
	4.7.3.	Effect of time elapsing from		
		flushing to freezing on pregnancy		
		rate	98	
	4.7.4.	Embryo survival	98	
4.8.	Observa	tions After Freezing Procedure	100	

CHAPTER 5

DISCUS	SSION	•••••••••	••		102
5.1.	General	Discussion	of	Results	102

5.2. Feasibility of Embryo Transfer and Storage	
of Embryos from Selected Sheep	121
5.2.1. Example 1	121
5.2.2. Example 2	123
5.2.3. Problems found through the experiment	129
5.2.4. Potential application of the	
programme at Massey	131
5.3. Areas Needing Further Research	132
5.4. Conclusions	134

xvii

Chapter	Page
CHAPTER 6	
REFERENCES	136
APPENDICES	172

LIST OF TABLES

Table		Page
2.1.	Number of F1 progeny of several	
	Booroola-type sires, and the proportion	
	with at least one record of ≥ 3 litter	
	<pre>size/ovulation rate in 3-6 records</pre>	6
2.2.	Mean and range ovulation rates in ewes treated	
	with PMSG on day 12 of the cycle	11
2.3.	Embryo development in sheep	22
3.1.	Distribution of ewes among groups and	
	oestrus synchronisation timetable	44
4.1.	Distribution of ewe carriers (F+) and	
	non-carriers (++) of the high fecundity	
	gene by group	59
4.2.	Ovulation rate in ewe carriers (F+) and	
	non-carriers (++) of the high fecundity	
	gene by group	60
4.3.	Factors affecting ovulation rate after	
	oestrus synchronisation: Analysis of	
	variance	62
4.4.	Effect of genotype of the ewe	
	on the incidence of oestrus after	
	sponge removal	64
4.5.	Distribution of onset of oestrus after	
	sponge removal	65

xviii

4.6.	Effect of genotype of the ewe on the	
	incidence of oestrus after sponge	
	treatment	67
4.7.	Effect of genotype of the ewe on	
	the incidence of oestrus after	
	PMSG treatment	68
4.8.	Distribution of onset of oestrus after	
	PMSG treatment	69
4.9.	Incidence of oestrus after PMSG treatment	
	in ewe carriers (F+) and non-carriers (++)	
	of the high fecundity gene	71
4.10.	Effect of dose-level of PMSG on the	
	incidence of oestrus	72
4.11.	Effect of day of PMSG injection on the	
	incidence of oestrus	73
4.12.	Number of ovulations after PMSG treatment	
	and their distribution between ovaries	74
4.13.	Efficiency of embryo recovery	76
4.14.	Effect of ram on fertilisation rate	77
4.15.	Activity of ewes after flushing	78
4.16.	Effect of embryo recovery on oestrus	
	activity after flushing	79
4.17.	Influence of efficiency of embryo	
	recovery on ewes returning to oestrus	80
4.18.	Factors affecting ovulation rate after	
	PMSG treatment: Analysis of variance	
	including both genotypes	88

xix

4.19.	Least-squares means of ovulation rate in	
	ewes classified as carriers (F+) or	
	non-carriers (++) of the fecundity gene	84
4.20.	Factors affecting ovulation rate after	
	PMSG treatment: Analysis of variance of	
	data for F+ genotype ewes	91
4.21.	Factors affecting ovulation rate after	
	PMSG treatment: Analysis of variance of	
	data for ++ genotype ewes	92
4.22.	Effect of genotype of the ewe on pregnancy	
	rate after the transfer of two fresh	
	embryos	93
4.23.	Effect of ovulation rate on pregnancy rate	
	after the transfer of two fresh embryos	94
4.24.	Effect of hormonal treatment on pregnancy	
	rate after the transfer of two fresh embryos	95
4.25.	Effect of number of embryos transferred	
	on embryo survival	96
4.26.	Effect of number of embryos transferred on	
	pregnancy rate	97
4.27.	Effect of ovulation rate on pregnancy rate	98
4.28.	Effect of time elapsing from flushing	
	until freezing on pregnancy rate	99
4.29.	Effect of number of embryos transferred	
	on embryo survival	100

xx

LIST OF FIGURES

Figure		Page
2.1.	Ovulatory response to PMSG by animals	
	selected for fecundity	17
2.2.	Embryo freezing procedures used	
	<pre>successfully</pre>	36
3.1.	Experimental plan of an embryo transfer	
	programme using BMxP ewes. Number in	
	rectangles = No of ewes allocated	45
3.2.	Freezing procedure used in the present	
	experiment	52
4.1.	Distribution of oestrus after sponge	
	removal from ewes classified as carriers	
	(F+) and non-carriers (++) of the	
	fecundity gene	66
4.2.	Distribution of oestrus after PMSG	
	treatment in ewes classified as carriers	
	(F+) and non-carriers (++) of the	
	fecundity gene	70
4.3.	Effect of dose of PMSG on ovulation rate	85
4.4.	Effect of dose of PMSG on ovulation rate	
	in ewes classified as carriers (F++) or	
	non-carriers (++) of the fecundity gene	86
5.1.	Sequence of events of an embryo transfer	
	programme and results achieved	128

LIST OF APPENDICES

App	endix	Page
1.	Bartlett's test for homogeneity of variance of	
	ovulation rate data: Normal ovulation rate	172
2.	Bartlett's test for homogeneity of variance of	
	ovulation rate data: Ovulation rate after PMSG	
	treatment in both genotypes	174
3.	Bartlett's test for homogeneity of variance of	
	ovulation rate data: Ovulation rate after PMSG	
	treatment within genotype	177

xxii