Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
COCCIDIA (PROTOZOA: APICOMPLEXA) OF THE DOMESTICATED

GOAT CAPRA HIRCUS IN NEW ZEALAND

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF PHILOSOPHY IN VETERINARY SCIENCE AT MASSEY
UNIVERSITY

AYE KYAWT SOE
SEPTEMBER, 1989
Thesis Copyright Form

Title of thesis: Cecidia (Protozoa: Apicomplexa) of the Domesticated Goat Capra hircus in New Zealand

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ___ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ___ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ___ months.

Signed __________________
Date 9/9/87

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

__
__
__

DATE

__
__
__
I dedicate this thesis to my parents.
ABSTRACT

The literature on the history of the identification of *Eimeria* species infecting domesticated goats, and their morphological characteristics, the general life cycle of coccidia and epidemiology of infections, together with clinical signs, diagnosis and treatment is reviewed. In total 13 *Eimeria* species which are generally considered valid have been described from goats but relatively little has been published on their biology or significance.

Studies on the identification and seasonal prevalence of *Eimeria* species infecting domesticated goats were conducted on three farms in the Palmerston North area of New Zealand from August 1987 to August 1988. On one farm (Old West Road), 20 kids & 20 adult Saanen goats were sampled at 14 day intervals and monthly intervals, respectively; on a second farm (Ballantrae) 17 kids and 20 adult New Zealand 'feral' type were sampled at monthly intervals; on a third farm (Kimbolton) 23 Angora kids were sampled at 14 day intervals.

Faecal samples collected directly from the rectum were used for oocyst counts and to provide oocysts for sporulation for identification of species. More than 98% of the faecal samples from each group of kids and adults contained coccidial oocysts. Mixed infections were the rule, 59% of the faecal samples contained 6-8 species. The *Eimeria* species identified in this study were: ten previously described species - *E. christenseni*, *E. tunisiensis*, *E. jolchejevi s.s.*, *E. arloingi*, *E. hirci*, *E. caprina*, *E. caprovina*, *E. apsheronica*, *E. ninakohlyakimovae* and *E. alijevi*; two others whose species status is uncertain - temporarily designated *E. jolchejevi 'large form'* and *E. hirci 'small form'*; three previously undescribed species - temporarily designated *E. nt*, *E. n2* and *E. n3*. The morphological characteristics of sporulated oocysts of the *Eimeria* species found in the present survey are described in detail and illustrated by microphotographs and schematic diagrams. Statistical analysis of oocyst and sporocyst dimensions of these species and, where necessary for differentiation of species, statistical comparisons are also given. In addition to these species, a single oocyst of *E. punctata* which was not recorded during the study period, was found later in a pooled sample kept as reference material.

E. jolchejevi 'large form' had many of the characteristics of *E. jolchejevi* as described in the literature but differed in size and shape from it. Comparisons of the large form with published data indicate that it represents a previously overlooked species infecting goats and that there may be an equivalent species in sheep. *E. hirci* oocysts observed did not differ from published descriptions but analysis showed that they were divisible into two distinct groups on the basis of size and shape. These may represent separate species but
further investigation is needed to verify this.

The species designated *E. n1*, *E. n2* and *E. n3* are shown to be clearly distinguishable from previously described species from goats. *E. n1* may represent the equivalent of *E. weybridgeensis* from sheep but the other two species do not appear to have an ovine equivalent. Further work is needed to confirm their species status and investigate their biology.

Kids less than 1 year old had considerably higher oocyst counts than adults. Mean oocyst counts were at their highest from 2-6 months of age but they tended to decrease with time and from May on were at relatively low levels. The seasonal patterns of oocyst counts in the groups of kids differed between farms. This was associated with different management systems and breeds. The highest oocyst counts occurred in Saanen kids raised on milk-replacer in a heavily contaminated pen; the predominant species were *E. christensenii* and *E. arloingi*. Counts were lower in Angora kids reared on milk-replacer in pens that were cleaned daily and which opened onto a small paddock. Counts were lowest in 'feral' kids reared by natural suckling at pasture. In adults, on one farm there was no detectable seasonal trend in oocyst counts and on the other there was a tendency for mean counts to rise from December on. On both farms there were, in addition, some short-term fluctuations in mean counts with peaks associated with high counts in a few individuals.

Seasonal variations in the occurrence of individual *Eimeria* species were examined by considering the oocyst counts for each species, the percentage of the total oocyst counts represented and the prevalence of positive faecal samples. The mean percentages of total oocyst counts represented by each species over the whole year were compared. *E. arloingi* was found to be the most predominant species. Other species which were dominant in the coccidial population were *E. hirici* and *E. n2*. The seasonal patterns differed between species although the patterns on the different farms were, on the whole, very similar. This indicates substantial differences between species in host-parasite relationships and it is suggested that these may chiefly involve the prolificacy and immunogenicity of the various species. Further work is needed to investigate this. All of the species recorded were found in all the groups of goats examined.

The sporulation of *E. christensenii* oocysts at various constant temperatures was examined. The log temperature:log development time relationship yielded a correlation coefficient of $r = -0.99$. The time required for 90% of the oocysts to complete each development stage was taken as the endpoint. Sporulation was completed in 7 days at 27°C, in 10 days at 20°C, in 11 days at 15°C, 14 days at 10°C and in 32 days at 4°C.
ACKNOWLEDGEMENTS

I would particularly like to thank Dr. W.A.G. Charleston, my Chief Supervisor, for his invaluable guidance, encouragement and both during my study and the preparation of the thesis.

Special thanks must also go to my other Supervisors, Mr. W.E. Pomroy and Dr. D.M. West, for their willing assistance and constructive criticism throughout the course of my work.

Thanks are due to Professor E.D. Feilden, until recently Dean of the Faculty of Veterinary Science, Massey University and Professor B.W. Manktelow, Head of the Department of Veterinary Pathology and Public Health, Massey University for granting me the opportunity to pursue this study. Thanks also to Professor R.D. Jolly for allowing me to make extensive use of his computer facilities.

I wish to acknowledge with gratitude the support of the Phyllis Irene Grey Fellowships in Veterinary Science, who funded this research.

My special thanks to the farm owners, Mr. K.J. Nesdale and family and Dr. F.G. Martley and family, who were totally co-operative at all times; Mr. K. Betteridge and Mr. Brian Devantier from the D.S.I.R. Ballantrae Farm were also unfailingly patient and helpful.

Other Massey University staff whose help is gratefully acknowledged are: Mr. T.G. Law for photographic work, Mrs. Allain Scott for assistance with typing of this thesis, Mr. P. Wildbore for administrative assistance, Ms. Barbara Adlington and Miss Shirley Calder for their friendship and support; my thanks also to my flatmate, Miss Anna Scherrer for her encouragement and giving me peace of mind during my stay in Palmerston North.

I am very grateful to Mr T. Cox whose support and advocacy at the outset led to me being given the golden opportunity to pursue this study.

Family members are very special in providing support and love which are essential to one's wellbeing. I am very grateful to my parents who have encouraged me throughout and particularly to my father, U Hla Tin, who is himself a fine example of perseverance and a great learner. I owe a special debt of gratitude to Miss Mya Mya Thu, my dear cousin for never doubting that the work would be completed and whose love and understanding have greatly helped me in my studies.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>CHAPTER ONE - GENERAL INTRODUCTION AND LITERATURE REVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.2 HISTORY</td>
<td>1</td>
</tr>
<tr>
<td>1.3 MORPHOLOGICAL CHARACTERISTICS OF NAMED Eimeria SPECIES INFECTING DOMESTICATED GOATS</td>
<td>9</td>
</tr>
<tr>
<td>A Species with a micropylar cap</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Eimeria korcharli Musaev, 1970</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Eimeria christenseni Levine, Ivens & Fritz, 1962</td>
<td>9</td>
</tr>
<tr>
<td>1.3.3 Eimeria tunisiensis Musaev & Mamedova 1981</td>
<td>17</td>
</tr>
<tr>
<td>1.3.4 Eimeria jolchejevi Musaev, 1970</td>
<td>17</td>
</tr>
<tr>
<td>1.3.5 Eimeria arloingi Marotel, 1905 amend Martin, 1909</td>
<td>17</td>
</tr>
<tr>
<td>1.3.6 Eimeria punctata Landers, 1955</td>
<td>17</td>
</tr>
<tr>
<td>1.3.7 Eimeria hirci Chevalier, 1966</td>
<td>18</td>
</tr>
<tr>
<td>B Species without a micropylar cap</td>
<td>18</td>
</tr>
<tr>
<td>1.3.8 Eimeria caprina Lima, 1979</td>
<td>18</td>
</tr>
<tr>
<td>1.3.9 Eimeria caprovina Lima, 1980</td>
<td>18</td>
</tr>
<tr>
<td>1.3.10 Eimeria apsheronica Musaev, 1970</td>
<td>19</td>
</tr>
<tr>
<td>1.3.11 Eimeria ninakohlyakimovae Yakimoff & Rastegaieff, 1930 emend. Levine, 1961</td>
<td>19</td>
</tr>
<tr>
<td>1.3.12 Eimeria alijevi Musaev 1970</td>
<td>19</td>
</tr>
<tr>
<td>1.3.13 Eimeria pallida Christensen, 1938</td>
<td>19</td>
</tr>
<tr>
<td>1.4 LIFE CYCLE OF Eimeria SPECIES</td>
<td>20</td>
</tr>
<tr>
<td>1.4.1 General Considerations</td>
<td>20</td>
</tr>
<tr>
<td>1.4.2 Life Cycles of Eimeria Species of goats</td>
<td>21</td>
</tr>
<tr>
<td>(i) Eimeria arloingi Marotel, 1905 amend Martin, 1909</td>
<td>21</td>
</tr>
<tr>
<td>(ii) Eimeria christenseni Levine, Ivens & Fritz, 1962</td>
<td>22</td>
</tr>
</tbody>
</table>
(iii) *Eimeria ninakohlyakimovae* Yakimoff & Rastegaleff, 1930
 emend. Levine, 1961

(iv) *Eimeria caprina* Lima, 1979a

(v) *Eimeria alijevi* Musaev, 1970

1.5 **EPIDEMIOLOGY**

1.5.1 Prevalence of *Eimeria* species of domesticated goats

1.5.2 Host Determinants

(i) Resistance

(ii) Animals at risk

1.5.3 Parasite Determinants

1.5.4 Environmental Determinants

(i) Effects On Parasites

(ii) Effects On Animals

1.6 **CLINICAL SIGNS**

1.7 **DIAGNOSIS**

1.8 **TREATMENT**

CHAPTER TWO • MATERIALS AND METHODS

2.1 **SOURCES OF SAMPLES**

2.1.1 Old West Road Farm

2.1.2 Ballantrae Farm

2.1.3 Kimbolton Farm

2.2 **COLLECTION OF FAECAL SAMPLES FROM KIDS AGED <2 MONTHS**

2.3 **EXAMINATION OF INDIVIDUAL SAMPLES**

2.3.1 Oocyst counting

2.3.2 Separation of oocysts for sporulation for samples with >500 OPG

2.3.3 Separation of oocysts for sporulation for samples with <500 OPG

2.3.4 Recovery of sporulated oocysts

2.3.5 Method of Identification of species
CHAPTER THREE - EIMERIA SPECIES IDENTIFIED

3.1 RESULTS

3.1.1 Morphological characteristics of name species with a micropylar cap
 (i) *Eimeria christenseni* Levine, Ivens & Fritz, 1962
 (ii) *Eimeria tunisiensis* Musaev & Mamedova, 1970
 (iii) *Eimeria jolchejevi* Musaev, 1970
 (iv) *Eimeria arloingi* Marotel, 1905
 (v) *Eimeria hirici* Chevalier, 1966

3.1.2 Morphological characteristics of named species without a micropylar cap
 (i) *Eimeria apsheronica* Musaev, 1970
 (ii) *Eimeria caprina* Lima, 1979a
 (iii) *Eimeria caprovina* Lima, 1980a
 (iv) *Eimeria ninakohlyakimovae* Yakimoff & Rastegaieff, 1930 emend. Levine, 1961
 (v) *Eimeria alijevi* Musaev 1970

3.1.3 Morphological characteristics of undescribed species with a micropylar cap
 (i) *Eimeria n1*
 (ii) *Eimeria n2*

3.1.4 Morphological characteristics of undescribed species without a micropylar cap
 (iii) *Eimeria n3*

3.2 DISCUSSION

CHAPTER FOUR - SEASONAL PATTERNS OF INFECTION

A. TOTAL OOCYST COUNTS
CHAPTER FIVE - RESULTS OF EXPERIMENT FOR THE DETERMINATION OF SPORULATION TIME AND THE SPORULATION STAGES OF *E. CHRISTENSENI* OOCYSTS AT VARIOUS TEMPERATURES 103

DISCUSSION 107

CONCLUSION 109

REFERENCES 110

APPENDICES 121
LIST OF THE TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Eimeria species of goats and their ovine counterparts</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Morphological Characteristics of Named Eimeria species from domesticated goats</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Percentage prevalence of Eimeria species in faecal samples of goats by other authors</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>Sources of samples</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Morphological Characteristics of Eimeria species of domesticated goats found in New Zealand</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean percentage of total year's oocyst counts and overall prevalence of individual species in kids and adults</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of faecal samples containing different number of species</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Time (days) to achieve the different stages of sporulation stages of E. christensenii oocysts in various temperatures</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A longitudinal section of coccidian merozoite showing the apical complex</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>A structure of sporulated Eimeria oocyst.</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Flotation and recovery of coccidial oocysts using a petri dish lid</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Photomicrographs of the sporulated oocysts of Eimeria species (with a micropylar cap) identified in goat faeces.</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagrams of the sporulated oocysts of Eimeria species (with a micropylar cap) identified in goat faeces.</td>
<td>48</td>
</tr>
<tr>
<td>3.3a</td>
<td>Frequency distribution of oocyst length of E. jolchejevi s.s. and E. jolchejevi 'large form'</td>
<td>50</td>
</tr>
<tr>
<td>3.3b</td>
<td>Frequency distribution of oocyst width of E. jolchejevi s.s. and E. jolchejevi 'large form'</td>
<td>50</td>
</tr>
<tr>
<td>3.4a</td>
<td>Frequency distribution of oocyst length of E. hirci 'small form' and E. hirci 'large form'</td>
<td>51</td>
</tr>
<tr>
<td>3.4b</td>
<td>Frequency distribution of oocyst width of E. hirci 'small form' and E. hirci 'large form'</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Photomicrographs of the sporulated oocysts of Eimeria species (without a micropolar cap) identified in goat faeces.</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic diagrams of the sporulated oocysts of Eimeria species (without a micropylar cap) identified in goat faeces.</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Seasonal pattern of oocyst output of kids from Old West Road farm</td>
<td>61</td>
</tr>
</tbody>
</table>
4.2 Seasonal pattern of oocyst output of kids from Kimbolton farm
4.3 Seasonal pattern of oocyst output of kids from Ballantrae farm
4.4 Comparison of seasonal pattern of oocyst output of kids
4.5 Seasonal pattern of oocyst output of adults from Ballantrae farm
4.6 Seasonal pattern of oocyst output of adults from Old West Road farm
4.7 Comparison of seasonal pattern of oocyst output of adults
4.8 Percentage of total year's oocyst count by species of kids and adults
4.9 Seasonal variations of *E. christseni* from kids
4.10 Seasonal variations of *E. tunisiensis* from kids
4.11 Seasonal variations of *E. jolchejevi* from kids
4.12 Seasonal variations of *E. arloingi* from kids
4.13 Seasonal variations of *E. hirici* from kids.
4.14 Seasonal variations of *E. caprina* from kids
4.15 Seasonal variations of *E. caprovina* from kids
4.16 Seasonal variations of *E. apsheronica* from kids
4.17 Seasonal variations of *E. ninakohlyakimovae* from kids
4.18 Seasonal variations of *E. alijevi* from kids
4.19 Seasonal variations of *E. n1* from kids
4.20 Seasonal variations of *E. n2* from kids
4.21 Seasonal variations of *E. n3* from kids

4.22 Seasonal variations of *E. christensenii* from adults

4.23 Seasonal variations of *E. tunisiensis* from adults

4.24 Seasonal variations of *E. jolchejevi* from adults

4.25 Seasonal variations of *E. arloingi* from adults

4.26 Seasonal variations of *E. hirai* from adults

4.27 Seasonal variations of *E. caprina* from adults

4.28 Seasonal variations of *E. caprovina* from adults

4.29 Seasonal variations of *E. apsheronica* from adults

4.30 Seasonal variations of *E. ninakohlyakimovae* from adults

4.31 Seasonal variations of *E. alijevi* from adults

4.32 Seasonal variations of *E. n1* from adults

4.33 Seasonal variations of *E. n2* from adults

4.34 Seasonal variations of *E. n3* from adults

5.1 Schematic diagram of sporulation stages of *E. christensenii* oocysts.

5.2 Photomicrographs of sporulation stages of *E. christensenii* oocysts.

5.3 *E. christensenii* oocysts: (a) Fully sporulated showing rosette-like arrangement of sporocyst residuum. (b) Oocyst with disintegrated sporont. (c) Oocyst with abnormal appearance of sporocyst contents caused by incubation at 37°C.

5.4 *E. christensenii* oocysts: Regression of log development rate on log temperature