Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Aetiology and consequences of reproductive tract diseases in dairy cows

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy
in
Veterinary Science

at Massey University, Palmerston North,
New Zealand

Melle Wietze de Boer

Institute of Veterinary, Animal and Biomedical Sciences
Massey University
Palmerston North, New Zealand
2014
Abstract

Reproductive tract diseases of dairy cows are common world-wide and results in a decrease in reproductive performance. The research presented in this thesis evaluates the available diagnostic methods for reproductive tract diseases, including the quality of published reports describing these methods in dairy cows. To improve the accuracy of cow-side diagnostic tests for reproductive tract diseases more research is needed, specifically to establish optimal cut-points, timing of examination and test variability (i.e. intra- and interobserver agreement). Moreover, future manuscripts reporting on diagnostic methods for reproductive tract diseases could be improved by using checklists for quality of design and reporting as a guideline.

Research was also done to assess the presence of intrauterine bacteria in early postpartum New Zealand dairy cows and their association with the subsequent reproductive tract infection, inflammation and reproductive performance. The isolation of intrauterine bacteria, irrespective of type, at 23 days postpartum was associated with a decrease in pregnancy within three weeks for the start of the seasonal breeding programme (planned start of mating; PSM; P = 0.05). *Escherichia coli* isolated at 23 days postpartum tended to increase the time to pregnancy (P = 0.09). However, the presence of *E. coli* within the first week postpartum was not significantly associated with isolation of *Trueperella pyogenes* three weeks later (P = 0.53). An interesting finding was the positive association between the elevated recruitment of polymorphonuclear cells in the early postpartum period and a decreased time to pregnancy (P = 0.05).

Susceptibility data, based on minimum inhibitory concentration (MIC), was generated for a range of antimicrobials against *E. coli* and *T. pyogenes* from intrauterine origin. Between-herd and between age-
group differences in MIC were detected ($P \leq 0.05$). Cows diagnosed with intrauterine *E. coli* with an MIC of $\geq 8 \, \mu g/mL$ at 23 days postpartum tended to be at lower risk of pregnancy within six weeks of PSM relative to an MIC of $<8 \, \mu g/mL$ ($P = 0.09$). No interpretative criteria are available for MIC data of antimicrobials against uterine isolates. Hence, more research is required on pharmacokinetic and pharmacodynamic profiles for veterinary antimicrobials.

This thesis describes the first isolation of apparent antibodies to bovine herpesvirus type 4 and the DNA of bovine lymphotropic herpesvirus in New Zealand dairy cattle, both of which may play an important role in the pathogenesis of reproductive tract diseases. Further studies are required to investigate the true impact of these viruses.

The research presented in this thesis provided data useful for further improvement of diagnosis and treatment of reproductive tract diseases in dairy cows.
Acknowledgements

As I’m sitting here surrounded by piles of paper collected over the last number of years, notes, draft versions of manuscripts, and multiple printouts of peer-reviewed manuscripts I’m reflecting on the last few years that have been entirely dedicated towards the creation of this thesis. Returning to New Zealand to start this PhD project was life-changing in many ways. I am pleased to have this opportunity to thank a large number of people. Without them this demanding journey would have been an ordeal.

Foremost, I would like to sincerely thank Scott McDougall, who I call my main supervisor. Scott brought me back to New Zealand and gave me the opportunity to do this PhD. His energetic drive and (positive) pressure to meet deadlines were detrimental to normal working hours but kept me going. His efforts and extensive knowledge obviously assisted greatly with the completion of this thesis. Scott, thank you for everything; I am very pleased to have had the opportunity to work with you. Cord Heuer, who I call my chief supervisor, and Bryce Buddle, who I call my micro(biology) supervisor, completed my supervisory team. Although Bryce’s hope to turn me into a full-time laboratory-based microbiologist probably quickly vanished, hopefully I did not disappoint him too much. Bryce, your knowledge and scientific views, even though you are very modest about that, were of great help. Cord had the joyful task of educating me the world of statistics. This was initially nearly impossible, as at first I enrolled into the EpiCentre’s advanced statistical course (‘821’) before the beginner courses (‘720’ and ‘721’). Cord, while this totally freaked me out, I am convinced that you did your very best. Together with Cord, I have to thank Hilli for all dinner invitations when visiting Palmerston North. Hilli, you are an amazing cook!

There were also ‘unofficial supervisors’ to whom I owe gratitude. With regards to microbiology part of this thesis, Hassan Hussein and Tao Zheng were enthusiastic and knowledgeable tutors. All discussions
we had were very helpful in giving me the confidence to do all the laboratory work. It is much appreciated to have worked alongside each of you. That Stephen LeBlanc was going to do his sabbatical in New Zealand was exciting news and his timing of arrival was impeccable. Stephen assisted with some sample collection at the time that I was absolutely exhausted. Additionally, the many discussions about reproductive tract diseases and life in general were fantastic. Stephen’s input into this thesis was well beyond expectations and greatly appreciated. Stephen, thank you very much.

I would also like to express my gratitude to all co-authors of the systematic review (Chapter 2 of this thesis): Scott and Stephen, as mentioned above, but also Jocelyn Dubuc, Susanne Meier, Wolfgang Heuwieser, Sebastian Arlt, and Robert Gilbert. It turned out to be a truly big project with input from everybody involved. As one of you described it once to me: “Thanks for this revisit of grad school. My fault.” Thank you all for your patience and help.

Funding is instrumental for any kind of research. The primary financial support was provided by Cognosco, the research subsidiary of Anexa Animal Health (formerly known as Animal Health Centre). Additional funding, in alphabetical order, came from AgResearch, Hopkirk Research Institute, Bayer New Zealand Ltd, Animal Health, New Zealand dairy farmers through DairyNZ, Pfizer Animal Health NZ LTD and Pfizer VMRD. Support from all funders is greatly appreciated.

Anexa Animal Health and its staff are acknowledged for their support and putting up with me. In particular staff at Cognosco. A special thank you is for Sébastien Hudault. Séb’s assistance with sample collection went well beyond expectations. Without any animal handling experience, you learned very quickly. You were well organised and your work ethics were remarkable! Jaimie Hunnam, thank you for all your support, feedback on manuscripts drafts, sushi lunches, hugs during trying times, and probably more. Conversely, your timing of getting pregnant was poor, very poor...how could you?! Lucky the end result was worth it. Tom Brownlie, while at Anexa and thereafter, thank you for all your advice on how
to deal with supervisors and academic processes. Raglan was a true safe haven! We have done it! Chris Compton is acknowledged for his input behind the scenes. It was good to hear things from a slightly different perspective. Good luck with your PhD, a brave decision. Cathy Yanez, Jo Niethammer, Elizabeth Blythe, Amanda Hallett, and Laura Clausen, you girls rock! Thanks. All Anexa farmers and their staff participating in my studies are acknowledged with thanks for their enormous help and flexibility.

IT support and database creation was primarily from Andy Taylor. Your SQL input and work ethics were incredible. Thank you for all last minute work and some very late hours to help me achieve deadlines. Alongside Andy were Ian Potts and Simon Verschaffelt for further computer support. What would the world do without you guys?

The first contact with conducting research was during my final years of Vet School. In my opinion, Utrecht University was very progressive in accommodating students to spend three months on a small research project and it is encouraging that other vet schools now have similar concepts in their curriculum. I was fortunate to be able to do two projects. The choice of pursuing a PhD after working in clinical veterinary practice was greatly influenced by Herman Barkema, Ryan O’Handley, Fabienne Uehlinger, and in particular Wendela Wapenaar. Wen, I thought I knew how tough it was…now I know.

This project would not have been feasible without the many friends, old and new, in New Zealand and overseas. Thank you for putting up with me and your understanding, or often not: What is it you are doing? Why? Some of you literally put me in your house, from a bed for a night up to an extended house sitting stay: Thank you, Bryce and Noelle, Katie and Mike, Chris and Jane, Tom, Jo and Chris, Steve and Nenita, Scott and Fiona, Debbie, Cate, Jacky, Cord and Hilli, Nelly and Séb. However, special thanks are for Annie Watts. Annie, you are an amazing lady! I cannot express my gratitude towards you in any way that would cover what you have done for me. When moving overseas away from family, some become
like family. Annie of course is one of them. Nick and Johanna, and Jan and Dorine are part of that as well. To all friends, there will be more time to catch up again! Looking forward to that!

Above all, and as always, my profoundest thanks goes to my family, including she who knows but doesn’t want to be named here. It’s not always easy to live on the other side of the world, but she makes life a lot better!
Abbreviations

Al Artificial insemination
BCS Body condition score
BHBA β-hydroxybutyric acid
BHI Brain heart infusion
BLAST Basic local alignment search tool
BLHV Bovine lymphotropic herpesvirus
BoHV-4 Bovine herpesvirus type 4
bp Base pair
BUN Blood urea nitrogen
CCFA Ceftiofur crystalline free acid
CFU Colony forming unit
CL Corpus luteum
CLSI Clinical and Laboratory Standards Institute
DIM Days in milk
ELISA Enzyme-linked immunosorbent assay
EnPEC Endometrial pathogenic Escherichia coli
EUCAST European Committee on Antimicrobial Susceptibility Testing
MAC Macrophages
MIC Minimum inhibitory concentration
MIC_{50} The antimicrobial concentration that inhibits 50% of the bacterial isolates
MIC_{90} The antimicrobial concentration that inhibits 90% of the bacterial isolates
NEFA Non-esterified fatty acid
OD Optical densities
ONPG An enzymatic test for Ortho-nitrophenyl-β-galactosidase
OUMI ONPG, urase, motility, indol agar tests
PBMC Peripheral blood mononuclear cells
PGE₂ Prostaglandin E₂
PGF₂α Prostaglandin F₂α
PMN Polymorphonuclear cells
PSM Planned start of mating (the seasonal start of the breeding season)
PVD Purulent vaginal discharge
RFM Retained foetal membranes
ROC Receiver-operating characteristic analysis
Se Sensitivity (the proportion of diseased animals that test positive)
Sp Specificity (the proportion of non-diseased animals that test negative)
TAGS Tests in absence of a gold standard
TSI Triple sugar iron agar test
VDS Vaginal discharge score
List of publications

2014

2013

2012

2011

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General introduction</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>NEW ZEALAND PASTURE-BASED AND SEASONAL DAIRY SYSTEM</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>DEFINITIONS OF REPRODUCTIVE TRACT DISEASE</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>REPRODUCTIVE TRACT IMMUNOLOGY AND RISK FACTORS</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>DIAGNOSTIC METHODS</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>INTRAUTERINE BACTERIA</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>THERAPY</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>BOVINE HERPESVIRUS TYPE 4 (BOHV-4)</td>
<td>9</td>
</tr>
<tr>
<td>1.9</td>
<td>STRUCTURE AND CONTENT OF THE SUBSTANTIVE CHAPTERS</td>
<td>10</td>
</tr>
<tr>
<td>1.10</td>
<td>REFERENCES</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Systematic review of diagnostic tests for reproductive-tract infection and inflammation in dairy cows</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>ABSTRACT</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>INTRODUCTION</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>METHODS</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>RESULTS AND DISCUSSION</td>
<td>26</td>
</tr>
</tbody>
</table>
Associations between intrauterine bacterial infection, reproductive tract inflammation and reproductive performance in pasture-based dairy cows ... 60

3.1. ABSTRACT .. 61
3.2. INTRODUCTION .. 62
3.3. MATERIALS AND METHODS .. 64
 3.3.1. Herds and Cows ... 64
 3.3.2. Sampling Methods ... 65
 3.3.3. Bacteriology ... 66
 3.3.4. Cytology ... 68
 3.3.5. Power Statistics ... 68
 3.3.6. Analysis .. 68
3.4. RESULTS .. 71
 3.4.1. Descriptive Statistics ... 71
 3.4.2. Microbiology and Cytology ... 71
 3.4.4. Bacteriological Multivariable Associations .. 72
 3.4.5. Associations with Reproductive Tract Inflammation ... 73
 3.4.6. Variables Affecting Time from the Start of Breeding Program to Conception 74
3.5. DISCUSSION .. 74
3.6. ACKNOWLEDGEMENTS .. 82
3.7. REFERENCES ... 82

Chapter 4.. 87
Minimum inhibitory concentrations of a range of antimicrobials against *Escherichia coli* and *Trueperella pyogenes* of bovine uterine origin ... 87

4.1. ABSTRACT ... 88

4.2. INTRODUCTION .. 89

4.3. MATERIALS AND METHODS ... 90
 4.3.1. Herds, Cows and Isolate Collection .. 90
 4.3.2. Microbiology .. 91
 4.3.3. Susceptibility Testing ... 91
 4.3.4. Statistical Analysis .. 93

4.4. RESULTS .. 94
 4.4.1. Quality Assurance .. 94
 4.4.2. Frequency Distribution and MIC$_{50}$ and MIC$_{90}$.. 95
 4.4.3. Variables Associated with MIC ... 95

4.5. DISCUSSION .. 96
 4.5.1. Conclusions .. 104

4.6. ACKNOWLEDGEMENTS .. 105

4.7. REFERENCES ... 105

Chapter 5 ... 110

Detection of bovine herpesvirus type 4 antibodies and bovine lymphotropic herpesvirus in New Zealand dairy cows .. 110

5.1. ABSTRACT ... 111

5.2. INTRODUCTION .. 112

5.3. MATERIALS AND METHODS ... 113

5.4. RESULTS .. 116

5.5. DISCUSSION .. 116

5.6. ACKNOWLEDGEMENTS .. 121

5.7. REFERENCES ... 121

Chapter 6 ... 124

General discussion .. 124

6.1. INTRODUCTION .. 124

6.2. STUDY DESIGN .. 125

6.3. DIAGNOSTIC METHODS FOR REPRODUCTIVE TRACT DISEASES ... 126

6.4. THERAPY OF REPRODUCTIVE TRACT DISEASES .. 127

6.5. IMPORTANCE OF PATHOGENS ON THE EFFECT OF REPRODUCTIVE TRACT DISEASES 130
6.6. IMMUNE RESPONSE AND REPRODUCTIVE TRACT DISEASE .. 131
6.7. TOPICS FOR FURTHER RESEARCH .. 133
 6.7.1. Diagnostic Tests .. 133
 6.7.2. Involvement of Pathogens in Reproductive Tract Diseases .. 135
 6.7.3. Treatment .. 136
6.8. CONCLUSION ... 136
6.9. REFERENCES ... 137

Appendices ... 143

 Appendix 1 .. 143
 Appendix 2 .. 146
 Appendix 3 .. 150
 Appendix 4 .. 152
List of Figures

Figure 2.1. Flowchart of selection process of papers identified on 6 February 2013 by using the search terms “dairy AND (cow* OR cattle OR bovine) AND (vaginitis OR purulent vaginal discharge OR cervicitis OR endometritis OR subclinical endometritis OR clinical endometritis OR cytological endometritis OR salpingitis OR oophoritis)” in the 3 databases CAB Abstracts, MEDLINE, and Web of Science simultaneously within the search engine Web of Knowledge for quality appraisal and data synthesis..27

Figure 3.1. Study design to assess associations between intrauterine bacterial isolation (Bacteriology), reproductive tract inflammation as diagnosed by Metrichck and cytobrush (Cytology), and reproductive performance in pasture-based dairy cows (n=272) from six herds bred from the start of the seasonal breeding programme (planned start of mating; PSM). ...65

Figure 3.2. Diagram of associations between sample days (i.e. Days 0, 21 and 42) found between E. coli (including phylogenetic groups; group) and T. pyogenes (T. pyo) isolated from the uterus, culture positive irrespective of bacterial species (bacteria), purulent vaginal discharge (PVD), percentage polymorphonuclear cells (PMN%), anoestrus treatment (anoestrus) and reproductive outcomes of 253 dairy cows from six herds. Each association is presented by relative risk (95% CI), except when specified as β-coefficient (β-coef; 95% CI) from linear regression or hazard ratio (HR; 95% CI) from Cox’s proportional hazard regression. P-values are giving by the weight of the arrows (dashed: P ≤ 0.10, solid thin: P ≤ 0.05, and solid thick: P ≤ 0.01). ...75

Figure 3.3. Frequency distribution of the percentage of intrauterine polymorphonuclear cells (PMN%) diagnosed at (a) Day 0 and (b) Day 21 from 253 cows from six New Zealand dairy herds.77

Figure 3.4. Survival curves for time to pregnancy up to the end of the seasonal breeding program in 253 dairy cows from six herds and categorized by intrauterine presence of E. coli (n = 59) at Day 21 (median: 23 DIM). Median days from the start of the seasonal breeding program to pregnancy (95% CI; P-value) were 14 (12-18) and 17 (9-24; 0.08) for cows without and with E. coli isolation, respectively. ..79

Figure 3.5. Survival curves for time to pregnancy up to the end of the seasonal breeding program in 253 dairy cows from six herds and categorized by affected by polymorphonuclear cells (PMN; ≥ 25%; n = 157) at Day 0 (median: 2 d in milk). Median days from the start of the seasonal breeding program
to pregnancy (95% CI; P-value) were 16 (12-24) and 14 (11-18; 0.05) for cows with < 25% and those with ≥ 25% PMN, respectively.

Figure 4.1. Distribution (percentage of isolates within herd) of the minimum inhibitory concentration (MIC) of (a) ceftiofur and (b) oxytetracycline for *E. coli* from intrauterine origin (*n* = 175) by herd.

.. 80

Figure 4.2. Distribution (percentage of isolates within age category) of the minimum inhibitory concentration (MIC) of ceftiofur for *T. pyogenes* from intrauterine origin (*n* = 26) categorized by age.

.. 103

Figure 5.1. The alignment of partial DNA sequences (175 bp) of the DNA polymerase gene of bovine lymphotropic herpesvirus of New Zealand isolates (BLHVnz) with that from isolates of a BLHV and a BoHV-4 (GenBank accession numbers: AF031808 and AF031811, respectively). ‘-’ denotes identical nucleotide with that of the BLHVnz, a letter includes an alternate base, and ‘*’ denotes a gap.

.. 118

Figure 6.1. Diagram of possible variables influencing reproductive performance of dairy cows. Specific areas addressed in this thesis, either partially or in detail, have been highlighted in red.

.. 134
List of Tables

Table 2.1. Summary of cut points for the proportion of polymorphonuclear leucocytes (PMN) in uterine cytology, leucocyte esterase, protein and pH reagent test strips, and the optical density (OD) of fluid retrieved following uterine lavage for diagnosis of endometritis in dairy cows. Only cut-points that were analyzed using different statistical methods on original data are provided; described or referenced cut-points are not included .. 30

Table 2.2. Reported intra- and interobserver agreements of diagnostic methods for reproductive-tract disease in papers (n = 7) included in a systematic review .. 36

Table 2.3. Reported agreements between diagnostic methods of reproductive-tract disease in papers included in a systematic review (n = 12) .. 37

Table 2.4. Sensitivity (Se) and specificity (Sp) of tests for reproductive-tract disease relative to other, validated diagnostic tests reported in papers included in a systematic review (n = 7) 40

Table 2.5. Sensitivity and specificity of tests for reproductive-tract disease with reproductive outcomes as the reference outcome reported in papers included in a systematic review (n = 6) 45

Table 3.1. Descriptive statistics of number of cows (%) used for intrauterine sample collection at Day 0 (median 2 d in milk), Day 21 and Day 42 in six commercial spring-calving dairy herds in Waikato, New Zealand ... 67

Table 3.2. PCR primers used for the phylogenetic grouping of E. coli and the identification of T. pyogenes. .. 69

Table 3.3. Number of cows (n) and proportion (% of cows enrolled in that herd) with E. coli, T. pyogenes or any bacterial growth irrespective of species (Any bacteria) at Days 0 (median 2 d in milk) and 21, by study herd a .. 72

Table 3.4. Number of cows (n) and proportion (%) among cows with E. coli isolated from the uterus stratified by phylogenetic groups, at Days 0 (median 2 d in milk) and 21 postpartum, by study herd. ... 73

Table 4.1. The CLSI, the broth microdilution plate manufacturer (Trek Diagnostic Systems LTD, UK) suggested and calculated diagnostic reference ranges for E. coli and T. pyogenes ATCC® type cultures used as quality control. .. 94
Table 4.2. Frequency distribution (% of all isolates; n = 209) of minimum inhibitory concentrations (MIC) for a range of antimicrobials against *E. coli* isolated between 2 (±1.2; SD) and 43 (±2.3) DIM from postpartum bovine uteri.

Table 4.3. Frequency distribution (% of all isolates; n = 35) of minimum inhibitory concentrations (MIC) for a range of antimicrobials against *T. pyogenes* isolated between 2 (±1.2; SD) and 43 (±2.3) DIM from postpartum bovine uteri.

Table 4.4. P-values (dark shaded: ≤0.05; light shaded: ≤0.10) of Fisher’s exact analyses for the bivariate associations between herd (n = 6), age (categorized as 3 and 4, 5 and 6, and ≥7 years), breed (categorized as Friesian, Jersey, and crossbreed), days in milk (DIM) at sampling (day; categorized as 2 (±1.2; SD) and 23 DIM (±1.2)) and genetic differentiation of pathogen into phylogenetic group (phylo group; categorized as A, B1, and B2 and D) with the distribution of minimum inhibitory concentrations (MIC) of a range of antimicrobials for *E. coli* (n = 175) and *T. pyogenes* (n = 26) for bovine intrauterine origin.

Table 5.1. Interpretation of the Sample to Positive control ratio (S/P%) of the indirect ELISA to detect bovine herpes type 4 antibodies in serum as assigned by the manufacturer (BIO-X BHV-4 ELISA KIT, Bio-X Diagnostics Jemelle, Belgium).

Table 5.2. Data from cows that were ELISA positive for bovine herpesvirus type 4 (BoHV-4) antibodies and the result of subsequent testing for the presence of bovine lymphotropic herpesvirus (BLHV) in peripheral blood monocytes (PBMC) samples collected from heparin blood samples.

Table 5.3. Sequences of primers (DFA, ILK, KG1, TGV, and IYG) used for a pan-herpesvirus nested polymerase chain reaction (PCR), and of primers (pUC/M13) used to confirm a successful cloning of pan-herpesvirus PCR products and to sequence those products.