The Effects of Joining a Strategic Alliance Group on Airline Efficiency, Productivity and Profitability

A thesis presented in partial fulfilment of the requirements for the degree of

Doctorate of Philosophy

In

Aviation

At Massey University, Palmerston North,

New Zealand

Bo Lin

2013
Abstract

A global airline strategic alliance group is a larger cooperation formed by several airlines in order to obtain strategic advantages in their business operations. Nowadays, airline strategic alliance groups have become an important sector of the airline industry and also tend to have dominance in airline business. Airlines want join a strategic alliance group in order expand their business and reduce their costs – and expect to. However, the true benefits of the effects of a strategic alliance group still remain unclear. Little research has been done on how airline alliance strategic groups affect changes in airline performance. This study adopts three different empirical quantitative analyses to reveal the effects of a strategic alliance group on airline performance. The performance indicators included airline technical efficiency, productivity and profitability. The research focuses on 20 international airlines during the 1995–2005 periods from two major categories: allied airlines, which included three global airline strategic alliance groups, and non-allied airlines. The research used data envelopment analysis and stochastic frontier analysis to assess the airlines’ technical efficiency, while panel regression analysis for airline productivity and profitability.

The results suggest that joining an airline strategic alliance group generally will have positive effects on its member airlines’ technical efficiency, productivity and profitability. However, the results are not statistically significant. This implies that the effects of an airline alliance group are practically unimportant to the airline performance, particularly during the study period. Thus this research reveals that airlines joining the alliance group may not necessarily achieve significant improvements in their performance. During the pre-maturity stage of the alliance group, joining an alliance does not necessary bring positive effects to the airlines’ performance. Secondly, the research suggests that alliance group membership numbers do not always have a positive impact on the airline performance, so alliance groups should consider their size. For newly entering airlines, choosing a relatively smaller alliance group can reduce the entry cost. Moreover, the research also shows that there is a minimum membership duration before an airline can receive alliance group membership benefits. It implies that airlines who seek to join the alliance group as a quick solution will not have their expectations met. Further, the research has confirmed the strong year effect existing in the airline industry, which further suggested that alliance group effects are limited and should not be considered as a universal solution.
Acknowledgments

I dedicate this thesis to my parents, my father Lin Guangji and my mother Chen Xiaohua, for their generous support throughout my very long PhD journey.

I give my deepest thanks to my main supervisor, Dr. James Obben, for giving me the opportunity to continue my research, and also for his unfailing encouragement, support and advice throughout this period. His knowledge of the economic literature and his willingness to exchange and shape ideas has provided new directions for this study. His guidance and support have definitely influenced my life. I cannot describe my gratitude for his sincere dedication, encouragement and generosity. He has become a true friend and respected mentor. I owe him my deepest thanks and appreciation for all that I have accomplished.

I also express thanks to my co-supervisor, Dr. Andrew Gilbey, who has been very kind in helping me during the supervisor change, as well as providing useful comments on my research.

My special thanks and appreciation go to my best friend, Qiu Yifan, and his wife, Liu Jia, who let me realise that ‘He that travels far knows much.’ I am grateful for how they encouraged and supported me in following my dreams.

I must also express thanks to the following people and organisations who have accompanied me and provided great support during such a long period, especially the people from the School of Aviation: Captain Ashok Poduval, Carolyn Gibson, Frank Sharp, Linda Haddon, Anke Smith, Sherryn Irvine, Dr Jose Perez-Gonzalez, Professor Nigel Long and Dr Ross St George. To the people from Palmerston North Surf Life Saving Club, thanks for accepting me as be one of the team. Thanks also to the friends I love and appreciate: Dr Robert Yaansah, who brought me into the academic world and gave me useful guidance through my early PhD study; Donald Crawford and Xin Yan for lending me a room to stay in Palmerston North; Xie Qun, Chen Lulu and their family; Xu Feng, Xu Shuping and their family; Ma Fei; Guo Hengjia and his wife, Shi Yipu; Zhu Xiaoli; Miao Jia; Li Chunchen; ToTo Gao; Cao Ao; Cao Wenqian; Su Liu and Miao Ruyi – the great friends I made in my PhD life.
Table of Contents

Abstract ... i

Acknowledgments ... ii

Table of Contents .. iii

List of Tables ... viii

List of Figures ... ix

Glossary of Abbreviations / Acronyms ... x

1. **Introduction** ... 1
 1.1 Background... 1
 1.2 Research Questions.. 2
 1.3 Research Gaps ... 3
 1.4 Research Objectives .. 4
 1.5 Hypotheses.. 5
 1.5.1 The Effects of Strategic Alliance Groups on Airline Performance..... 5
 1.5.2 Effects of Alliance Group Membership Numbers and Membership Duration .. 6
 1.6 Importance of the Research ... 7
 1.7 Research Limitations ... 10

2. **An Overview of the Airline Industry and Airline Alliances** 11
 2.1 Introduction.. 11
 2.2 History of the Airline Industry ... 11
 2.3 Airline Business Models ... 14
 2.4 Global Airline Operations: Big, Fragile and Resilient 16
 2.5 Airlines as a Special Industry .. 21
 2.6 Appearance of Airline Alliances ... 33
2.6.1 Airline Alliance Development ... 33
2.6.2 Past Airline Alliances ... 34
 2.6.2.1 European Quality Alliance (EQA) .. 34
 2.6.2.2 Global Excellence .. 35
 2.6.2.3 Atlantic Excellence .. 37
 2.6.2.4 Qualiflyer .. 37
 2.6.2.5 Wings .. 38

2.7 The Modern Airline strategic alliance group 40
 2.7.1 Star Alliance .. 40
 2.7.2 SkyTeam .. 44
 2.7.3 OneWorld ... 47

3. Literature Review .. 49

3.1 Introduction .. 49
3.2 Review of the Theoretical Literature .. 49
 3.2.1 Origins of Strategies and Alliances .. 49
 3.2.2 Adoption of Strategy and Alliance in Business 50
 3.2.3 Alliances and the Airline Industry .. 54
 3.2.4 Alliances as a Strategy Option for Airlines 58
 3.2.5 Importance of Alliance Partnership .. 59
 3.2.6 Benefits of Airline Alliance Partnerships 61
 3.2.7 Potential Risks of Alliance Partnerships 64
3.3 Review of Empirical Literature on Airline Alliances 67
 3.3.1 Previous Research into Airline Alliances 67
 3.3.2 Previous Research in Airline Performance Analysis 69
 3.3.2.1 Efficiency Analysis ... 69
 3.3.2.2 Data Envelopment Analysis (DEA) ... 73
 3.3.2.3 The DEA-based Malmquist Productivity Index (MPI) 75
 3.3.2.4 The Stochastic Frontier Analysis (SFA) 77
 3.3.2.5 Regression Model of Productivity and Profitability 78
 3.4 Summary of Related Literature ... 78
4. Data and Methodology ... 84

4.1 Data Collection and Construction of Variables 84

4.1.1 Data Collection .. 84

4.1.2 Construction of Key Variables ... 85

4.1.3 Description of Other Variables .. 88

4.1.3.1 Independent Variables ... 89

4.1.3.2 Control Variables ... 89

4.1.3.3 Dependent Variables .. 90

4.2 Methodology ... 91

4.2.1 Data Envelopment Analysis ... 91

4.2.1.1 Introduction to DEA .. 91

4.2.1.2 DEA Modelling .. 94

4.2.1.3 Scale Efficiencies and the MPI .. 97

4.2.1.4 The Malmquist Productivity Index (MPI) 99

4.2.2 Stochastic Frontier Analysis (SFA) 102

4.2.2.1 Introduction to SFA .. 102

4.2.2.2 Problems in Stochastic Frontier Modelling 108

4.2.2.3 Stochastic Frontier and Technical Inefficiency Effects Model 109

4.2.2.4 The Functional Form of the Stochastic Frontier Cobb–Douglas Production Model ... 112

4.2.2.5 The Functional Form of the Stochastic Frontier Trans-log Production Function Model .. 113

4.2.3 Panel Regression Analysis (PRA) 115

4.2.3.1 Introduction to PRA ... 115

4.2.3.2 The Regression Model .. 118

5 Results and Analysis ... 121

5.1 Data Envelopment Analysis (DEA) Results 121

5.1.1 General DEA Results ... 121

5.1.2 Airline Efficiency and Alliance Membership 135

5.2 Stochastic Frontier Analysis (SFA) results 142
7.4 Contributions .. 182
 7.4.1 Contributions to the Theory... 182
 7.4.2 Contribution to Research Methodology .. 183
 7.4.3 Contributions to the Airline Industry .. 186
7.5 Implications of the Study.. 187
 7.5.1 Implications for Managers... 187
 7.5.2 Implications for Policy and Practice.. 188
7.6 Overall Conclusions ... 189
References .. 191
Appendix ... 220
List of Tables

Table 1.1: Airline Strategic Alliance Group Facts .. 2
Table 2.1: International Freedoms of the Air for Commercial Aviation .. 24
Table 2.2: Star Alliance Member Airlines, Year of Joining and Country of Origin 42
Table 2.3: SkyTeam Alliance Member Airlines, Year of Joining and Country of Origin 45
Table 2.3: OneWorld Alliance Member Airlines, Year of Joining and Country of Origin 48
Table 3.1: Major Studies of Airline Alliances within the Timeline .. 80
Table 5.1: Airline Constant Returns to Scale Technical Efficiency (CRS-TE) Scores during 1995–2005 .. 122
Table 5.2: Categorisation of Airlines and Years with Respect to Technical Efficiency Performance 125
Table 5.3: Airlines’ Scale Efficiency (SE) Scores during 1995–2005.. 128
Table 5.4: Categorisation of Airlines and Years with Respect to Scale Efficiency (SE) Scores 129
Table 5.5: Number of Airlines Achieving Different Levels of Return to Scale in Each Year 130
Table 5.6: DEA-based Malmquist Productivity Index (MPI) (Productivity Changes) 133
Table 5.7: Annual Average of MPI Productivity Changes and its Components 135
Table 5.8: Time Series of the Average TE Scores of Allied and Non-Allied Airlines 136
Table 5.9: Tobit Regression Results of Technical Efficiency (TE) and Scale Efficiency (SE) 139
Table 5.10: OLS Regression Results of Productivity Change and its Components 141
Table 5.11: The Cobb–Douglas and Trans-log Estimates of the Stochastic Frontier Model 143
Table 5.13: Categories of Average TE Scores by Airline and Year under the Cobb–Douglas Production Frontier Model .. 150
Table 5.14: Estimated TE Scores under the Trans-log Production Frontier Model: 1995–2005...... 152
Table 5.15: Categories of Average TE Scores by Airline and Year under the Trans-log Production Frontier Model .. 153
Table 5.16: Average Annual TE Scores from the Cobb–Douglas and Trans-log Frontier Functions 154
Table 5.17: Airline Period Average Efficiency Scores and Ranks ... 156
Table 5.18: Panel Regression Result for Alliance Group Effects on Airline Productivity and Profitability ... 159
Table 7.1: Comparison of the DEA, SFA and PRA Methods ... 184
List of Figures

Figure 2.1: International Revenue Passenger and Freight Tonnes during the Recession 19
Figure 2.2: Passenger Traffic Growth by Ticket Type during the Recession 19
Figure 2.3: Change in International Passenger Demand during 2004–2011 .. 20
Figure 2.4: Change in International Premium Passenger Demand during 2004–2011 21
Figure 2.5: Annual Crude Oil and Jet Fuel Prices (Nominal Prices), 1993–2010 28
Figure 2.6: Comparative Prices of Crude Oil and Jet Fuel from Mid-2007 to Early 2012 29
Figure 2.7: Factors in Improved Airline Efficiency ... 31
Figure 3.2: Degree of Cooperation in a Relationship ... 51
Figure 4.1: Calculations of Scale Economies in DEA by using CRS and VRS frontiers 99
Figure 5.1: Time Series Graphs of TE Estimates using DEA CRS .. 124
Figure 5.2: TE Scores of American Airlines ... 126
Figure 5.3: Average Annual TE Scores of the Sample Airlines .. 127
Figure 5.4: Time Series Graphs for the Malmquist Productivity Index (MPI) 134
Figure 5.5: Individual Time Series Graphs of the TE Scores from the Cobb–Douglas Production Frontier Model: 1995–2005 .. 149
Figure 5.6: Individual Time Series Graphs of the TE scores from the Trans-log Production Frontier Model: 1995–2005 ... 151
Figure 5.7: Time Series of Average Annual Efficiency Scores in Each Model 157
Glossary of Abbreviations / Acronyms

AA = American Airlines
AC = Air Canada
AF = Air France
AI = Air India
ATAG = Air Transport Action Group
BA = British Airways
BC = Before Christ
BCC = Banker – Charnes – Cooper
BMI = British Midland International
CCR = Charnes – Cooper – Rhodes
CD = Cobb – Douglas
CP = Cathay Pacific
CRS = Constant Returns to Scale
CZ = Czech Airlines
DE = Delta Air Lines
DEA = Data Envelopment Analysis
DMU = Decision Making Unit
drs = decreasing returns to scale
EQA = European Quality Alliance
FA = Finnair
FFP = Frequent Flyer Programme
FSCs = Full – Service Carries
FTK = Freight Tonne Kilometres
GDP = Gross Domestic Product
GPE = Ground Property and Equipment
IATA = International Air Transport Association
IB = Iberia Lineas
ICAO = International Civil Aviation Organisation
irs = increasing returns to scale
KA = Korean Airlines
LCCs = Low – Cost Carries
LF = Load Factors
LU = Lufthansa
MA = Malaysia Airlines
Mgteff = Airline’s Management Efficiency Change
MLE = Maximum Likelihood Estimation
MPI = Malmquist Productivity Index
MPSS = Most Productivity Scale Size
OAG = Official Airline Guide
OLS = Ordinary Least Squares
PP = Proportion of Passenger Business
PRA = Panel Regression Analysis
Prod = Airline’s Productivity Change
PTE = Pure Technical Efficiency
RPK = Revenue Passenger Kilometres
RTK = Revenue tonne kilometres
SARS = Severe Acute Respiratory Syndrome
SAS = Scandinavian Airlines
Scaleff = Airline’s Scale Efficiency Change
SE = Scale Efficiency
SFA = Stochastic Frontier Analysis
SIA = Singapore Airlines
SL = Stage Length
TA = Thai Airways
TE = Technical efficiency
Techgl = Airline’s Technical Efficiency Change
THY = Turkish Airlines
TL = Trans – Log Production Function
U.S.A. = United States of American
UA = United Airlines
UK = United Kingdom
US = United State
VA = Virgin Atlantic Airways
VRS = Variable Returns to Scale
YR = Year