Purification and Characterisation of a Secreted Glycosidase, from the Extreme Xerophile Wallemia ichthyophaga

A thesis presented in partial fulfilment of the requirement for the degree in

Master of Science

in

Biochemistry

at Massey University Palmerston North,

New Zealand

Taryn Angela Miller

2014
Acknowledgments

Firstly, I would like to thank my supervisor Gillian Norris for encouraging me to always strive for my best, for always believing in me, your irreplaceable advice, and for the countless hours spent editing. Your mentoring throughout my masters has helped me develop as a person and a scientist, and I will always be grateful.

I would also like to thank my co-supervisor Mark Patchett for always being available to bounce ideas off, for his invaluable advice, and for editing my thesis.

Thank you to Trever Loo, our lab guru, whose wealth of knowledge and character has helped me with my masters in so many ways. Thank you especially with all the advice and time spent on the chromatography and mass spectrometry experiments.

Also, thank you to Meekyung Ann for never giving up on me. Thank you for all the advice, encouragement, comfort food, and company throughout my journey. I could not have done it without you, and I am a stronger person because of you.

Thank you to my amazing mum and dad. I am so blessed to have such loving and caring parents, and I wouldn’t have gotten where I have or be the person that I am if it wasn’t for all their encouragement, support, and belief in me.

I would also like to thank the rest of my family as well as all my Auckland and Palmerston North friends for all the encouragement, cups of tea, and for believing in me every step of the way, even when I didn’t think I could do it. I would like to specifically thank my brother Gareth, Auntie Anita, Uncle Leon, Auntie Ida, Tracey Cropp, Andrew West, Rhiannon Moloney, Mackenna Dent, Fiona Given, Sarah Richardson, and Mark Thomas.

Special thanks to Natalie Gardner for always being there for me. Thank you for the support, for being a shoulder to cry on, and the many hours of entertainment spent in the decon room and tea room. Your friendship has been a constant source of inspiration.

Finally, thank you to all the other X-lab and IFS/IMBS people who have helped me throughout my thesis, whether it be through giving advice or assisting in an experiment.

Also, thank you to Massey University and LASRA for the opportunity and funding.
Abstract

With recent pressure to reduce the environmental impact of leather production, research has been focused on the development of an alternative depilation method, as the conventional method for depilation contributes up to 60% of the total pollution produced. Contaminated salted ovine pelts stored at LASRA were easily depilated when drum washed, and the resultant leather was of good quality. The pelts were visibly contaminated with microorganisms, and it was thought that these may be secreting enzymes that loosened the wool fibre without damaging key structural skin components. Identification of the enzyme or enzymes was thus of interest.

The microorganism/s responsible for the secretion of the depilation enzyme/s were isolated and identified through sequencing the 16S/18S ribosomal RNA genes. Depilation, using the crude secretome solutions, was then assessed using fresh ovine skin as well as SACPIC, a micro scale staining method used to assess skin structure. Unfortunately, none of the secretomes from either a single or a combination of the microorganisms isolated, had depilation activity.

The secretome of *W.ichthyophaga*, a xerophilic filamentous fungus, which was consistently isolated from the contaminated pelts, was chosen to be characterised using proteomic methods. 1D SDS-PAGE gel/CHIP separation of the proteins in the secretome showed it contained mainly glycosidases, with no lipases, esterases, or proteases identified. Some of the proteins identified had suggested roles in resistance to osmotic pressure, while the remaining proteins were intracellular. Overall, 21 proteins were identified.

A purification procedure involving AEX and SEC was successfully developed for the isolation of one of the glycosidases from the secretome. The resultant purified fractions formed a doublet band when analysed by SDS-PAGE. The reason for this remains unknown, but was shown not to be due to an impurity or heterodimerisation.
The purified glycosidase was identified as belonging to the GH3 family by mass spectrometry. It was found to have a pH optimum of pH 6.0, was optimally active at 10% NaCl, and was itself glycosylated. The glycosidase was able to hydrolyse both α- and β-linked glycosidic bonds in di- and polysaccharides. Interestingly, both the disaccharide and artificial ρ-nitrophenol forms of galactose were not cleaved by the enzyme.
Table of Contents

Acknowledgements ... i
Abstract ... iii
List of Figures ... ix
List of Tables ... xiii
List of Abbreviations ... xv

1.0 Introduction and Aims

1.1 Introduction

1.1.1 Conventional leather process .. 1
1.1.2 Re-evaluating the conventional leather process 2
1.1.3 Using enzymes as an alternative method for dewooling 2
1.1.4 Skin structure ... 3
1.1.5 Hair follicle ... 4
1.1.6 Factors effecting leather quality .. 6
1.1.7 Contaminated sheep pelts ... 6
1.1.8 Wallemia ichthyophaga ... 7
1.1.9 Fungal secretomes ... 11
1.1.10 Secretome analysis using a proteomic approach 14
1.1.11 Mass spectrometry ... 15
1.1.12 Glycosidases ... 16
1.1.13 Glycoside hydrolase family 3 .. 17

1.2 Aims

1.2.1 Aims ... 19
1.2.2 Overview of the methodology ... 19

2.0 Materials and Methods

2.1 Material .. 21
2.2 Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 MQ water</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2 Media</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Isolation by direct transfer</td>
<td>25</td>
</tr>
<tr>
<td>2.2.4 Isolation by liquid culture</td>
<td>25</td>
</tr>
<tr>
<td>2.2.5 PCR</td>
<td>26</td>
</tr>
<tr>
<td>2.2.6 PCR primers</td>
<td>27</td>
</tr>
<tr>
<td>2.2.7 Agarose gel electrophoresis</td>
<td>27</td>
</tr>
<tr>
<td>2.2.8 DNA sequencing</td>
<td>28</td>
</tr>
<tr>
<td>2.2.9 Database searches</td>
<td>28</td>
</tr>
<tr>
<td>2.2.10 Depilation: fresh skin</td>
<td>28</td>
</tr>
<tr>
<td>2.2.11 Depilation: Single section depilation method SACPIC visualisation</td>
<td>28</td>
</tr>
<tr>
<td>2.2.12 Secretome preparation for mass spectrometry</td>
<td>30</td>
</tr>
<tr>
<td>2.2.13 SDS-PAGE</td>
<td>30</td>
</tr>
<tr>
<td>2.2.14 Coomassie staining of SDS-PAGE gels</td>
<td>31</td>
</tr>
<tr>
<td>2.2.15 Colloidal Coomassie staining of SDS-PAGE gels</td>
<td>32</td>
</tr>
<tr>
<td>2.2.16 In-gel tryptic digest</td>
<td>32</td>
</tr>
<tr>
<td>2.2.17 Mass spectrometry</td>
<td>33</td>
</tr>
<tr>
<td>2.2.18 Database searches</td>
<td>33</td>
</tr>
<tr>
<td>2.2.19 Secretome preparation for chromatography</td>
<td>34</td>
</tr>
<tr>
<td>2.2.20 Chromatograph preparation</td>
<td>34</td>
</tr>
<tr>
<td>2.2.21 Chromatography fraction standardisation</td>
<td>35</td>
</tr>
<tr>
<td>2.2.22 Anion exchange chromatography conditions</td>
<td>35</td>
</tr>
<tr>
<td>2.2.23 Cation exchange chromatography conditions</td>
<td>35</td>
</tr>
<tr>
<td>2.2.24 Generalised AEX and CEX parameters</td>
<td>36</td>
</tr>
<tr>
<td>2.2.25 Batch chromatography</td>
<td>36</td>
</tr>
<tr>
<td>2.2.26 Size exclusion conditions</td>
<td>36</td>
</tr>
<tr>
<td>2.2.27 SEC standard curve</td>
<td>37</td>
</tr>
<tr>
<td>2.2.28 Protease activity assay</td>
<td>37</td>
</tr>
<tr>
<td>2.2.29 Glycosidase activity assay for purification</td>
<td>37</td>
</tr>
<tr>
<td>2.2.30 Lipase activity assay</td>
<td>37</td>
</tr>
<tr>
<td>2.2.31 Bradford assay</td>
<td>38</td>
</tr>
</tbody>
</table>
2.2.32 Assay conditions for characterisation of glycosidase.........................38
2.2.33 Stability of the glycosidase..38
2.2.34 Substrate specificity assays..38
2.2.35 PNGase F and Endo H deglycosylation of glycosidase......................39

3.0 Results and Discussion

3.1 Identification of microorganism from the contaminated salted ovine pelts

3.1.1 Isolation of microorganisms from the contaminated ovine pelts........41
3.1.2 Isolation of microorganisms from the contaminated ovine pelts using agar plates...44
3.1.3 Isolation of microorganisms from the contaminated ovine pelts using broths...45
3.1.4 Depilation activity...47
3.1.5 Addition of dried ground ovine skin to Wilson’s media....................49
3.1.6 Origin of the depilation activity from \(W. ichthyophaga \).................49

3.2 Analyse of the protein composition of the secretome of \(W. ichthyophaga \) using in-gel tryptic digest and EIS-Q-TOF mass spectrometry

3.2.1 Secretome concentration via precipitation.......................................51
3.2.2 Secretome concentration via ultrafiltration.......................................52
3.2.3 Addition of dried ground ovine skin..54
3.2.4 Protein identification through mass spectrometry............................54
3.2.5 Molecular weight of secreted proteins using SDS-PAGE...................60
3.2.6 Mass spectrometry results of the secreted proteins from \(W. ichthyophaga \)...62

3.3 Purification of a novel glycosidase enzyme from the secretome of \(Wallemia ichthyophaga \).

3.3.1 Anionic and cationic chromatography...69
3.3.2 Optimisation of anion exchange chromatography.............................70
3.3.3 Hydrophobic chromatography...80
3.3.4 Size exclusion chromatography...81
3.4 Characterisation of a secreted glycosidase from *W. ichthyophaga*

3.4.1 Quaternary structure of the glycosidase..97
3.4.2 Deglycosylation of the glycosidase using PNGase F and Endo H......................98
3.4.3 Mass spectrometry of the final purified glycosidase fraction............................102
3.4.4 Characterisation of the glycosidase..104
3.4.5 Optimum pH...105
3.4.6 The effect of NaCl on the activity of the glycosidase...107
3.4.7 The effect of metal ions on the activity of the glycosidase.................................108
3.4.8 Stability at 25°C..109
3.4.9 Inactivation of the glycosidase..110
3.4.10 Mini scale glucose test..111
3.4.11 Substrate specificity..111

4.0 Conclusion and Future Direction

4.1 Conclusion...115
4.2 Future direction...119

5.0 Reference List...121
List of Figures

1.0 Introduction and Aims

1.1 Introduction

Figure 1.1.1: Summary of the conventional leather process...1

Figure 1.1.2: Diagram of the different layers and structures present in human skin...4

Figure 1.1.3: Diagram of the structure of a human hair follicle and pore........5

Figure 1.1.4: Phylogenetic tree of Wallemiomycetes in the phylum Basidiomycota...7

Figure 1.1.5: Morphological responses of the three Wallemia species to different NaCl concentrations...10

Figure 1.1.6: Classical and non-classical secretory mechanisms used by fungi...13

Figure 1.1.7: General CAZyme mechanism..16

1.2 Aims

Figure 1.2.1: Summary of the methodology used to isolate and identify the enzyme/s responsible from the depilation activity observed from the contaminated pelts...19

3.0 Results and Discussion

3.1 Identification of microorganism from the contaminated salted ovine pelts

Figure 3.1.1: Methodology used to isolate the microorganisms from the contaminated salted ovine pelts. Cultures in broths were done in duplicate with a different pelt used for each replicate..................42

Figure 3.1.2: Examples of the different morphologies of colonies isolated from the contaminated pelts using both agar plates and broths of the three different media..43

Figure 3.1.3: SACPIC staining method...48
3.2 Analyse of the protein composition of the secretome of *W. ichthyophaga* using in-gel tryptic digest and EIS-Q-TOF mass spectrometry.

Figure 3.2.1. 7.5% acrylamide gel of the supernatant and pellet from the TCA-acetone precipitation of the secretome of *W. ichthyophaga*...........52
Figure 3.2.2: SDS-PAGE gel of a secretome from a 2 month old *W. ichthyophaga* culture grown in Wilson’s media made 20% with NaCl, and desalted by ultrafiltration...53
Figure 3.2.3: *Wallemia ichthyophaga* secretome composition from cultures started from 3 individual colonies..............................56
Figure 3.2.4: 7.5% acrylamide gel of the secretome of a *W. ichthyophaga* culture grown from colony..57
Figure 3.2.5: Methodology used to analyse each band from the SDS-PAGE gel of the whole secretome of *W. ichthyophaga*............................58
Figure 3.2.6: Methodology for the analysis of the proteins present in the whole secretome of *W. ichthyophaga*..59
Figure 3.2.7: Standard curve of the size marker from the SDS-PAGE of the secretome of *W. ichthyophaga*..62
Figure 3.2.8 Structural diagram of phytate..66

3.3 Purification of a novel glycosidase enzyme from the secretome of *Wallemia ichthyophaga*

Figure 3.3.1: Trial 1, AEX of the secretome of *Wallemia ichthyophaga* using Q sephadex resin...72
Figure 3.3.2: Trial 2: AEX of the secretome of *Wallemia ichthyophaga* using Q sephadex resin...73
Figure 3.3.3: Protein concentration and enzymatic activity in fractions obtained from AEX of the secretome of *Wallemia ichthyophaga*.............75
Figure 3.3.4: Bradford standard curves using 90μL of reagent to 10μL of sample

Figure 3.3.5: 7.5% acrylamide gel of fractions obtained from AEX, and enzymatic activities

Figure 3.3.6: 7.5% acrylamide gel of the fractions obtained from the separation of the secretome of *Wallemia ichthyophaga* using AEX

Figure 3.3.7: The 3 step gradient elution profile of the secretome of *Wallemia ichthyophaga* with 10% glycerol using Q sephadex resin

Figure 3.3.8: The elution profile of fraction F13, fractionated by superdex 200 column

Figure 3.3.9: 7.5% acrylamide gel of fractions separated by SEC

Figure 3.3.10: Bradford assays across fractions obtained from AEX

Figure 3.3.11: The elution profile of the secretome of *Wallemia ichthyophaga* with 10% glycerol from Q sephadex resin

Figure 3.3.12: Bradford assays of concentrated fractions obtained from AEX

Figure 3.3.13: Glycosidase activity across fractions obtained from AEX

Figure 3.3.14: 7.5% acrylamide gel of fractions obtained from AEX, and specific activity

Figure 3.3.15: SEC of the fractions C9 and C11 from AEX

Figure 3.3.16: Bradford assays of fractions obtained from SEC

Figure 3.3.17: The average protein concentration, measured by Bradford assays, on fractions obtained from SEC

Figure 3.3.18: Glycosidase activity of fractions obtained from SEC

Figure 3.3.19: 7.5% SDS-PAGE analysing the concentrated fractions obtained from SEC and specific activity

3.4 Characterisation of a secreted glycosidase from *W. ichthyophaga*

Figure 3.4.1: Size exclusion calibration curve using a sephadex 200 column

Figure 3.4.2: Cleavage sites of endoglycosidases PNGase F and Endo H

Figure 3.4.3: 7.5% SDS-PAGE of a PNGase digest of the glycosidase from *Wallemia ichthyophaga*
Figure 3.4.4: 7.5% SDS-PAGE of an Endo H digest of the glycosidase from *Wallemia ichthyophaga*..101

Figure 3.4.5: Graphical representation of the gene from the glycosidase purified from the secretome of *W. ichthyophaga* that was identified by mass spectrometry..103

Figure 3.4.6: Graphical representation of the possible protein domains present in the glycosidase purified from the secretome of *W. ichthyophaga*..104

Figure 3.4.7: Activity of the glycosidase from *Wallemia ichthyophaga* at different pH..106

Figure 3.4.8: Activity of the glycosidase from *Wallemia ichthyophaga* using 100mM MES..106

Figure 3.4.9: Activity of the glycosidase from *Wallemia ichthyophaga* over different pH ranges using 100mM citric acid:sodium phosphate..107

Figure 3.4.10: Activity of the glycosidase from *Wallemia ichthyophaga* at different NaCl concentrations in 100mM citric acid: sodium phosphate at pH 6.0..108

Figure 3.4.11: Activity of the secreted glycosidase from *Wallemia ichthyophaga* at different concentrations of EDTA in 100mM citric acid: sodium phosphate..109

Figure 3.4.12: The stability of glycosidase from *Wallemia ichthyophaga* at 25°C..110

Figure 3.4.13 Glucose assay kit reaction..110

Figure 3.4.14: Standard curve of different glucose concentrations using 1mL reactions from Glucose (GOD) assay kit (Sigma)...111
List of Tables

2.0 Materials and Methods

2.2 Methods
Table 2.2.1: PCR reaction mixture for rRNA gene amplification...........................26
Table 2.2.2: SDS-PAGE stacking gel components and volumes.............................31
Table 2.2.3: SDS-PAGE separation gel components and volumes.........................31
Table 2.2.4: Reaction mixtures for the PNGase F and Endo H treatment of the purified glycosidase...39

3.0 Results and Discussion

3.1 Identification of microorganism from the contaminated salted ovine pelts
Table 3.1.1: Summary of the microorganisms isolated from the contaminated salted ovine pelts using agar plates of various media incubated at 25°C..44
Table 3.1.2: Summary of the microorganisms isolated from the contaminated salted ovine pelts by culturing in broths of different media incubated at 25°C..46

3.2 Analyse of the protein composition of the secretome of W.ichthyophaga using in-gel tryptic digest and EIS-Q-TOF mass spectrometry
Table 3.2.1: Molecular weight of each band of the SDS-PAGE of the secretome of W.ichthyophaga using a standard curve...61
Table 3.2.2: Proteins identified in the secretome of W.ichthyophaga.....................62

3.3 Purification of a novel glycosidase enzyme from the secretome of Wallemia ichthyophaga.
Table 3.3.1: Protein concentrations of unbound fractions from CEX and AEX fractionation...70
Table 3.3.2: The gradient profile for anion exchange chromatography; trial one..71
Table 3.3.3: The two-step gradient profile run for the anion exchange chromatography; trial two...73

Table 3.3.4: The three-step gradient profile run for the anion exchange chromatography..78

Table 3.3.5: Glycosidase purification summary...93

Table 3.3.6: The overall percentage yield and purification fold for the purification of the glycosidase from *W.ichthyophaga*..94

3.4 Characterisation of a secreted glycosidase from *W.ichthyophaga*

Table 3.4.1: Protein identification of bands obtained from SEC and Endo H digestion gels using in-gel tryptic digestion and mass spectrometry..102

Table 3.4.2: Domains predicted to be present in the isolated glycosidase protein...105

Table 3.4.3: Substrate specificity of the glycosidase secreted from *Wallemia ichthyophaga*..112
List of Abbreviations

Listed in alphabetical and then numeral order

a.a Amino Acid
AEX Anion Exchange Chromatography
Abs Absorbance
APS Ammonium persulfate
Asn Asparagine
AU Absorbance Units
BLAST Basic Local Alignment Search Tool
BSA Bovine Serum Albumin
CEX Cation Exchange Chromatography
cRAP Common Repository of Adventitious Proteins
CV Column Volume
DC Direct Current
DNA Deoxyribonucleic acid
DPX Distrene, Plasticiser, Xylene
EDTA Ethylenediaminetetraacetic acid
Endo H Endoglycosidase H
EPS Extracellular Polymeric Substrates
ESI Electrospray Ionisation
ExPASy Expert Protein Analysis System
FAS Faciclin
Gdp1 Glycerol-3-phosphate Dehydrogenase
GHA Glycosidase Clan A
GH2 Glycosidase Family 2
GlcNac N-acetylglucosamine
GMC Glucose-methanol-choline
GOSs Galactooligosacchride
HIC Hydrophobic Chromatography
IEX Ion Exchange Chromatography
KDa Kilo Dalton
LASRA Leather and Shoe Research Association
LB Luria Broth
M Molar
MES 2-(N-morpholino)ethanesulfonic acid
MIB Sodium Malonate, Imidazole, and Boric acid
MS/MS Tandem Mass Spectrometry
M/Z Mass to Charge Ratio
PCR Polymerase Chain Reaction
PNGase F Peptide -N-Glycosidase F
ProDH Proline Dehydrogenase
PSCDH Pyrroline-5-carboxylate Dehydrogenase
Q-TOF Quadruple Time-of-Flight
RF Retardation Factor
RNA Ribonucleic Acid
RPLC Reverse-Phase Liquid Chromatography
SACPIC SAfranine Celestin blue Picric acid
SAGE Serial analysis of gene expression
SDS-PAGE Sodium Dodecyl Sulfate Poylacrylaminde Gel Electrophoresis
SEC Size Exclusion Chromatography
SSP Small Secreted Proteins
TCA Trichloroacetic acid
TEMED N,N,N’,N’- Tetramethylethylenediamine
TGFBlp Transforming Growth Factor-Beta-Induced Protein
UniProt Universal Protein Resource
UV Ultra Violet
w/v Weight to Volume
w/w Weight to Weight
1D One Dimension
2D Two Dimensions