Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
EFFECT OF ORGANIC CROP ROTATION
ON SOIL FERTILITY

A thesis presented in partial fulfilment of the requirements for
the degree of Master of Agricultural Science in Soil Science
Massey University, New Zealand.

ANGSANA SUTASSANAMALEE

1995
ABSTRACT

Studies of soil nutrient fertility status of the organic and conventional plots at the Flock House cropping and organic units, Bulls, were undertaken to investigate the effects of organic crop rotation system on soil chemical fertility. Soil samples (0-75 mm, 75-150 mm, 150-300 mm depths) were collected from two organic plots lying adjacent to conventional plots of identical soil type (Manawatu silt loam) in Autumn and Spring. The crop rotation plots were established in 1988. Soil samples were analysed for total C, total N, mineralizable N, extractable P (Olsen), exchangeable K, CEC and pH. Earthworm surface casts collected from the surface of these plots were also analysed for exchangeable K and CEC.

Results of this study showed that after seven years of conversion to organic management, there were significant quantitative increases in the soil nutrient levels at topsoil depth 0-75 mm. Organic plot number 3 (OP3), now under clover based pasture showed higher percent of organic C and N than the organic plot under continuous cultivation (OP5) and conventional plot (CP8). Mineralizable N was significantly higher in the soil of OP3 and the mean topsoil (0-75 mm) value increased from 104 to 139 μg g\(^{-1}\) (67%) from Autumn to Spring collected soils. Crop rotation under continuous cultivation resulted in decrease of mineralizable N from 90 to 30 μg g\(^{-1}\) (150%) from Spring to Autumn collected soils at depth 0-75 mm. Extractable soil P (Olsen) remained significantly high in CP8 in both Autumn and Spring seasons.
Soil Ca and Mg were significantly higher in the organic plots during Autumn but there was no significant difference observed in Spring collected soils. Exchangeable K levels were similar under both organic and conventional management system and generally showed higher amounts at topsoil (0-75 mm) as a result of mixing with earthworm surface casts which contained appreciably high amounts of K, Ca and Mg. Soil CEC was generally higher in organic plots.

Surface casting by earthworm was significantly higher (> 1000 casts m\(^{-2}\)) in OP3 as compared to 380 casts m\(^{-2}\) and 300 casts m\(^{-2}\) in OP5 and CP8 respectively. This coincided with greater a cation nutrient status observed in the Spring collected soil samples.

Organic management under different crop rotation system resulted in significantly variable levels of soil nutrient fertility. Seven years of crop rotation under the organic system was sufficient to maintain sustainable levels of soil nutrient fertility.
ACKNOWLEDGEMENTS

I would like to thank the following persons for their contribution towards the completion of this thesis:

My supervisor, Dr. A.N. Macgregor, for his supervision, guidance, patience, encouragement and constructive criticisms during the course of my study.

Assoc.Prof. P.E.H. Gregg for his support and assistance.

Flock House AgResearch Centre for the use of the plots for this study and Mr. Willi Stiefel who readily supplied plot information.

Mr. Shivaraj Gurung for his help with some chemical analysis, computer work and final preparation of this thesis, and his friendship during my study.

Other postgraduate students and technicians in the Department of Soil Science, for their assistance and friendship.

The Ministry of Foreign Affairs and Trade, New Zealand for the Scholarship grant under NZ overseas Development Assistance Programme (NZODA).

To my parents and my sister for their support, love and constant encouragement.

To my daughter Napawan
TABLE OF CONTENTS

Abstract ... ii
Acknowledgements ... iv
Table of contents .. v
List of figures ... ix
List of tables ... xi
List of appendices ... xii

CHAPTER 1

1.1 Introduction .. 1
1.2 Objective .. 5

CHAPTER 2

LITERATURE REVIEW ... 6
2.1 Introduction ... 6
2.2 Management practices in organic farming ... 7
 2.2.1 Crop rotation ... 8
 2.2.2 Crop residue and green manure ... 12
 2.2.3 Organic manuring ... 16
 2.2.4 Microbial biomass .. 18
 2.2.5 Grazing management .. 20
2.3 Nutrient dynamics in organic farming ... 23
2.3.1 Nitrogen (N) ... 25
2.3.2 Phosphorus (P) ... 29
2.3.3 Potassium (K) .. 30
2.3.4 Cation exchange capacity (CEC) .. 31
2.3.5 C:N Ratio .. 31
2.3.6 Soil pH .. 32
2.4 The role of organic matter in soil fertility ... 34
2.5 Effects of cultivation on soil fertility .. 37
2.6 The role of earthworm in organic farming .. 39
2.7 Organic farming versus conventional farming system 42
2.8 Summary .. 45

CHAPTER 3

MATERIALS AND METHODS ... 46
3.1 Site location and management history ... 46
3.2 Soils on the organic site ... 46
3.3 Soil sampling .. 47
3.4 Surface casts of earthworm ... 47
3.5 Laboratory methods

- Soil pH
- Total C
- Total N
- Mineralizable N
- Olsen-P
- Exchangeable K
- Cation exchange capacity (CEC)

3.6 Statistical analysis of analytical data

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Soil chemical fertility

- Soil pH
- Total C and N
- Mineralizable N (Min-N)
- Olsen-P
- Exchangeable K
- Cation exchange capacity (CEC)
- Surface casts of earthworm
- Soil nutrient status
CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS.......................... 76

REFERENCES.. 90
LIST OF FIGURES

Figure 2.1 Simplified N-P-K nutrient cycling in organic crop rotation system. Arrows indicate direction of flow of nutrients. Shaded areas are sources of nutrient pool while unshaded boxes represent nutrient cycling processes with the system. Diagram adapted from López-Hernández et al. (1993).......

Figure 4.1 Seasonal variation of pH in conventional (CP8) and organic plots (OP3 & OP5). LSD (5%) bars are for mean variation between soil depths in Autumn (——) and Spring (-----). Bars marked with asterisk (*) are significant at 5% level between seasons..................

Figure 4.2 Correlation between total C and total N contents of the soil for the organic and conventional plots (0-300 mm depth)..............

Figure 4.3 Seasonal variation of mineralizable N in conventional (CP8) and organic plots (OP3 & OP5). LSD (5%) bars are for mean variation between soil depths in Autumn (——) and Spring (-----). Bars marked with asterisk (*) are significant at 5% level between seasons..................

Figure 4.4 Seasonal variation in the ratio of mineralizable N to organic C between organic (OP3 and OP5) and conventional plots at soil depth 0-300 mm..........

Figure 4.5 Seasonal variation of Olsen-P in conventional (CP8) and organic plots (OP3 & OP5). LSD (5%) bars are for mean variation between soil depths in Autumn (——) and Spring (-----). No significant difference between seasons..............
Figure 4.6 Seasonal variation of exchangeable K in conventional (CP8) and organic plots (OP3 & OP5). LSD (5%) bars are for mean variation between soil depths in Autumn (——) and Spring (-----). No significant difference between seasons..........................69

Figure 4.7 Seasonal variation of CEC in conventional (CP8) and organic plots (OP3 & OP5). LSD (5%) bars are for mean variation between soil depths in Autumn (——) and Spring (-----). Bars marked with asterisk (*) are significant at 5% level between seasons..71
LIST OF TABLES

Table 2.1 Nutrient status in biodynamic versus conventionally farmed soils at depth 0-100 mm (from Reganold et al. 1993) ... 43

Table 4.1 Chemical analyses of soils from organic and conventional plots: Autumn sampling ... 54

Table 4.2 Chemical analyses of soils from organic and conventional plots: Spring sampling ... 55

Table 4.3 Abundance and chemical properties of the earthworm surface cast: Spring sampling ... 73
LIST OF APPENDICES

Appendix 1. Flock House cropping and organic units at Bulls, New Zealand. Shaded plots with approximate sample locations were used in this study. OP=Organic plots, CP=Conventional plots, xo=sample locations, = Sampling profile.................78

Appendix 2. Management history of the plots used located at Flock House AgResearch Centre (1988-1994)..........................79

Appendix 3. Monthly total rainfall at Flock House area for 1994. Numbers on top of bars refers to number of days of rainfall. Data from AgResearch Centre, Flock House, Bulls, NZ..80

Appendix 4. Experimental design to determine soil nutrient fertility under organic cropping system. OP = Organic plot, CP = Conventional plot.......................81

Appendix 5. Comparative trends in selected soil chemical properties of organic versus conventional plots (data from AgResearch, Flock House). Boxed area shows the trends for Autumn and Spring, 1994 data analysed in this study.................................82

Appendix 6.

TableA1. Summary of ANOVA (SAS) of variation between plot and soil depth in soil chemical properties for Autumn collected soils..83

TableA2. Summary of ANOVA (SAS) of variation between plot and soil depth in soil chemical properties for Spring collected soils..85

TableA3. ANOVA(SAS) of season variation with soil depth in soil chemical properties..86
Table A4. ANOVA (SAS) of variation of earthworm surface cast and soil chemical properties (Spring sampling)