Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An Automated Pollen Recognition System

A Thesis submitted to
Massey University, Turitea, Palmerston North, New Zealand
in fulfilment of the requirements for the degree of
Master of Engineering.

By
Gary Allen

December 2006

Institute of Information Sciences and Technology

Massey University
Abstract

A system was developed with the aim of demonstrating that the tedious tasks of classifying and counting pollen on slides could be performed automatically to a standard comparable with that of human experts. Automation of pollen classification and counting will advance the science and range of applications of palynology.

The system developed is a completely functioning prototype. After initial set up and training it is automatic in operation.

System tests have demonstrated that the concept is viable and that the prototype developed is at a stage that it is of practical use to palynologists. There are opportunities for improvements and added functionality. Now that the system is developed and characterised, it provides a benchmark for gauging the efficacy of future improvements and adaptations.

The system is presently adaptable to many different classification problems within palynology and would be adaptable for other automated microscopic classification or imaging tasks.
Acknowledgements

Thesis supervisors were Prof. Bob Hodgson and Rory Flemmer and their efforts are well appreciated.

Special thanks go to Prof. Bob Hodgson, who offered the project to me, and spent many hours in helpful discussions and reading reports and drafts.

The Pollen Research Team at Massey University includes: Prof. Bob Hodgson, Prof. John Flenley, Prof. David Fountain, Dr. Stephen Marsland, Greg Arnold. They are an integral part of this project and provided sound and experienced advice and help along the way.

Thank you to Dr. Roger Brown who checked my work on depth of field.

Many thanks are owed to Steve Denby and the crew at the special works and mechanical workshop of the Institute of Fundamental Sciences, Massey University, who built the AutoStage.

Manual pollen counters were: Xun Li (PhD), Kevin Butler (laboratory technician), Alistair Clements (student), Prof. John Flenley and Prof. David Fountain. Many thanks for the time taken to count these slides and again to David, for supplying the pollen for the slides.

Thanks to Xiuying Zou for conventional image capture of reference pollen.

And to my wife, Linda, who encouraged and supported my decision to study again, my love.
Contents

ABSTRACT ... I

ACKNOWLEDGEMENTS ... II

CONTENTS ... III

LIST OF TABLES AND FIGURES .. V

1 INTRODUCTION ... 1

 1.1 AIMS AND OBJECTIVES .. 3
 1.2 DESIGN SPECIFICATION: BASIC REQUIREMENTS ... 3
 1.3 CONTRIBUTION OF THE AUTHOR TO THIS PROJECT ... 5
 1.4 PUBLISHED PAPER .. 6

2 BACKGROUND ... 7

 2.1 PALYNOLGY – THE STUDY OF POLLEN .. 7
 2.2 MICROSCOPY .. 10
 2.3 AUTOMATED POLLEN RECOGNITION .. 12
 2.4 NEURAL NETWORKS .. 13
 2.5 SYSTEM BUILDING ... 17

3 THE CAPTURE OF AN IMAGE FROM A SLIDE .. 19

 3.1 OVERVIEW .. 19
 3.2 THE SLIDE .. 20
 3.3 THE XY STAGE: SPECIFICATION AND OPERATION .. 21
 3.4 AUTO-FOCUS .. 24

4 MICROSCOPES .. 31

 4.1 LOW MAGNIFICATION DIGITAL MICROSCOPE .. 31
 4.2 HIGH MAGNIFICATION DIGITAL MICROSCOPE ... 33

5 LIGHTING .. 44

 5.1 DARK FIELD ILLUMINATION ... 45

6 THE SEGMENTATION OF POLLEN .. 48

 6.1 SEGMENTATION AND SEGMENTATION OF TOUCHING OBJECTS 48
 6.2 THE SEGMENTATION OF LOW MAGNIFICATION IMAGES .. 49
 6.3 THE SEGMENTATION OF HIGH MAGNIFICATION IMAGES .. 52

7 FEATURES EXTRACTION AND CLASSIFICATION OF POLLEN .. 55

 7.1 POLLEN FEATURES .. 55
 7.2 CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK 56
 7.3 AUTOStage REPORTS .. 60

8 TESTING AND COMPARISON WITH EXPERTS ... 61

 8.1 CLASSIFICATION TESTS ... 62
 8.2 A COMPLETE SYSTEM TEST ... 69

9 THESIS CONCLUSIONS AND FUTURE WORK ... 77

 9.1 THESIS CONCLUSIONS ... 77
 9.2 FINAL STATE OF THE PROJECT ... 77
 9.3 FUTURE WORK ... 78

10 BIBLIOGRAPHY ... 84
11 APPENDICES ... 11-1

A. Defining Depth of Field for AutoStage .. 11-2
B. Published Paper ... 11-5
C. Data Sheets ... 11-12
D. Raw Data from Verification Testing .. 11-14
E. MLPFWD – NETLAB Help File .. 11-15
F. MLP - NETLAB Help File .. 11-16
G. Software Description ... 11-18
H. Software Source Code – MATLAB M Files .. 11-23
List of Tables and Figures

TABLE 4-1: MICROSCOPE OPTICAL DATA WITH SYMBOLS USED IN FORMULAE BELOW ... 33
TABLE 8-1: IMAGES OF POLLEN TYPES USED IN VERIFICATION TESTING ... 70

FIGURE 1-1: THE AUTOStage Prototype ... 2
FIGURE 2-1: A SECTION OF POLLEN WALL SHOWING STRUCTURE AND SOME FEATURES ... 8
FIGURE 2-2: GOLDEN ROD (ECHINATE), OAK POLLEN (COLPI) AND BIRCH POLLEN (PORES). SCANNING ELECTRON MICROSCOPE (SEM) IMAGES OF POLLEN FROM “NATIONAL POLLEN AND AEROBIOLOGY RESEARCH UNIT” WEB SITE [58] ... 9
FIGURE 2-3: POLLEN GRAIN ON A CAMELLIA PETAL AT 1500X FROM A COMMERCIAL (KEYENCE) DIGITAL MICROSCOPE .. 11
FIGURE 2-4: OLYMPUS BX51 AS USED TO CAPTURE CONVENTIONAL MICROSCOPE IMAGES FOR COMPARISON STUDIES ... 11
FIGURE 2-5: A MODEL OF A NEURON [30] .. 14
FIGURE 2-6: THREE SIMPLE ACTIVATION FUNCTIONS, \(\phi \): FROM LEFT TO RIGHT: A) THRESHOLD, B) PIECEWISE-LINEAR, C) SIGMOID .. 14
FIGURE 2-7: FULLY CONNECTED FEED-FORWARD NETWORK WITH ONE HIDDEN LAYER [30] .. 15
FIGURE 2-8: DATA FOR SIZE VERSUS ROUNDNESS OF TWO POLLEN TYPES GRAPHED .. 16
FIGURE 3-1: ELEMENTS OF AUTOStage IMAGE CAPTURE ... 19
FIGURE 3-2: GLASS SLIDE SHOWING REFRACTION EFFECTS ... 20
FIGURE 3-3: DIAGRAM OF LOW MAGNIFICATION IMAGES ON A SLIDE ... 23
FIGURE 3-4: LOCATION OF AN OBJECT IN AN IMAGE FROM THE SLIDE REFERENCE POINT. R AND C ARE IN PIXELS. PIXEL DISTANCE FROM THE CENTRE IS CALCULATED AND CONVERTED TO STEPS TO BE ADDED TO X AND Y, KNOWN IN STEPS ... 24
FIGURE 3-6: Focus Function. This figure from Groen et al. [28], defines the properties required of a good focus function. \(f \) should be small and reproducible while \(\eta \) is large, ideally \(\varepsilon = 0 \). This figure can be used to evaluate the graphs in Figure 3-10 .. 26
FIGURE 3-7: Focus Measures; Squared Gradient Compared to Vollath5 [39] ... 27
FIGURE 3-8: Cropped Image Series; #18, #19, #20. #19 Was Selected As ‘In-Focus’ By The Focus Algorithm .. 28
FIGURE 3-9: The Entire In-focus Image, #19 of Series Used to Produce Associated Graphs, The First of Which Is Shown Above, to the Right. More Graphs of Function Values Versus Focus Step Are Shown in Figure 3-10, and a Second Image Series Example Is Shown in Figure 3-11 .. 28
FIGURE 3-10: Focus Graphs; Focus Algorithm Values Versus Image Series Number. The Focussed Image Is Shown Above. A Cross Marks Any Local Peaks and a Dotted Line Across Marks a Noise Floor Calculated Level, Below Which Peaks Are Ignored. All Algorithms Detect Image #19 But the Shapes Vary As Shown .. 29
FIGURE 3-11: Focus Graphs for a Second Image (Shown Below) ... 29
FIGURE 3-12: A Second Image Series Used for Focus Data: In-focus Image #21 ... 30
FIGURE 4-1: LOW MAGNIFICATION MICROSCOPE IMAGES SHOWING, FROM LEFT TO RIGHT, 100MICRON SPACED LINES AND POLLEN ON A SLIDE. THE WHITE MASS NEAR THE EDGE IS A WAX SEAL .. 32
FIGURE 4-2: SCANNING ELECTRON MICROSCOPE (SEM) IMAGES OF SCOTS PINE GRAIN (LEFT) BIRCH POLLEN GRAIN (CENTRE) GRASS POLLEN GRAIN (RIGHT). SCALE IS UNKNOWN. [58] .. 35
FIGURE 4-3: AN INTERESTING COMPARISON OF POLLEN CAPTURED ON AUTOStage, COMPARED TO THE SEM IMAGES IN FIGURE 4-2. FROM LEFT TO RIGHT THEY ARE PINE (RADIATA), SILVER BIRCH, AND GRASS (BROWN TOP) A SILVER BIRCH POLLEN MAY VARY FROM 15 TO 28 MICRONS DIAMETER. THE PINE POLLEN ARE ABOUT 50-70 MICRONS ACROSS. RELATIVE SCALE OF IMAGES IS APPROXIMATE ONLY .. 35