
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

An Automated Pollen Recognition System

A Thesis submitted to
Massey University, Turitea, Palmerston North, New Zealand

in fulfilment of the requirements for the degree of
Master of Engineering.

By
Gary Allen

December 2006

Institute of Information Sciences and Technology

Massey University

 i

Abstract

A system was developed with the aim of demonstrating that the
tedious tasks of classifying and counting pollen on slides could be
performed automatically to a standard comparable with that of human
experts. Automation of pollen classification and counting will advance
the science and range of applications of palynology.

The system developed is a completely functioning prototype. After
initial set up and training it is automatic in operation.

System tests have demonstrated that the concept is viable and that the
prototype developed is at a stage that it is of practical use to
palynologists. There are opportunities for improvements and added
functionality. Now that the system is developed and characterised, it
provides a benchmark for gauging the efficacy of future improvements
and adaptations.

The system is presently adaptable to many different classification
problems within palynology and would be adaptable for other
automated microscopic classification or imaging tasks.

 ii

Acknowledgements

Thesis supervisors were Prof. Bob Hodgson and Rory Flemmer and
their efforts are well appreciated.

Special thanks go to Prof. Bob Hodgson, who offered the project to me,
and spent many hours in helpful discussions and reading reports and
drafts.

The Pollen Research Team at Massey University includes: Prof. Bob
Hodgson, Prof. John Flenley, Prof. David Fountain, Dr. Stephen
Marsland, Greg Arnold. They are an integral part of this project and
provided sound and experienced advice and help along the way.

Thank you to Dr. Roger Brown who checked my work on depth of field.

Many thanks are owed to Steve Denby and the crew at the special
works and mechanical workshop of the Institute of Fundamental
Sciences, Massey University, who built the AutoStage.

Manual pollen counters were: Xun Li (PhD), Kevin Butler (laboratory
technician), Alistair Clements (student), Prof. John Flenley and Prof.
David Fountain. Many thanks for the time taken to count these slides
and again to David, for supplying the pollen for the slides.

Thanks to Xiuying Zou for conventional image capture of reference
pollen.

And to my wife, Linda, who encouraged and supported my decision to
study again, my love.

 iii

Contents

ABSTRACT ..I
ACKNOWLEDGEMENTS... II
CONTENTS...III
LIST OF TABLES AND FIGURES ..V
1 INTRODUCTION.. 1

1.1 AIMS AND OBJECTIVES ... 3
1.2 DESIGN SPECIFICATION: BASIC REQUIREMENTS .. 3
1.3 CONTRIBUTION OF THE AUTHOR TO THIS PROJECT ... 5
1.4 PUBLISHED PAPER... 6

2 BACKGROUND... 7
2.1 PALYNOLOGY – THE STUDY OF POLLEN... 7
2.2 MICROSCOPY .. 10
2.3 AUTOMATED POLLEN RECOGNITION... 12
2.4 NEURAL NETWORKS ... 13
2.5 SYSTEM BUILDING .. 17

3 THE CAPTURE OF AN IMAGE FROM A SLIDE ... 19
3.1 OVERVIEW .. 19
3.2 THE SLIDE... 20
3.3 THE XY STAGE: SPECIFICATION AND OPERATION.. 21
3.4 AUTO-FOCUS .. 24

4 MICROSCOPES .. 31
4.1 LOW MAGNIFICATION DIGITAL MICROSCOPE... 31
4.2 HIGH MAGNIFICATION DIGITAL MICROSCOPE .. 33

5 LIGHTING ... 44
5.1 DARK FIELD ILLUMINATION.. 45

6 THE SEGMENTATION OF POLLEN.. 48
6.1 SEGMENTATION AND SEGMENTATION OF TOUCHING OBJECTS ... 48
6.2 THE SEGMENTATION OF LOW MAGNIFICATION IMAGES ... 49
6.3 THE SEGMENTATION OF HIGH MAGNIFICATION IMAGES... 52

7 FEATURES EXTRACTION AND CLASSIFICATION OF POLLEN.. 55
7.1 POLLEN FEATURES.. 55
7.2 CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK .. 56
7.3 AUTOSTAGE REPORTS .. 60

8 TESTING AND COMPARISON WITH EXPERTS .. 61
8.1 CLASSIFICATION TESTS ... 62
8.2 A COMPLETE SYSTEM TEST .. 69

9 THESIS CONCLUSIONS AND FUTURE WORK .. 77
9.1 THESIS CONCLUSIONS... 77
9.2 FINAL STATE OF THE PROJECT .. 77
9.3 FUTURE WORK.. 78

10 BIBLIOGRAPHY .. 84

 iv

11 APPENDICES ... 11-1
A. DEFINING DEPTH OF FIELD FOR AUTOSTAGE ... 11-2
B. PUBLISHED PAPER .. 11-5
C. DATA SHEETS ... 11-12
D. RAW DATA FROM VERIFICATION TESTING ... 11-14
E. MLPFWD – NETLAB HELP FILE .. 11-15
F. MLP - NETLAB HELP FILE... 11-16
G. SOFTWARE DESCRIPTION.. 11-18
H. SOFTWARE SOURCE CODE – MATLAB M FILES ... 11-23

 v

List of Tables and Figures

TABLE 4-1: MICROSCOPE OPTICAL DATA WITH SYMBOLS USED IN FORMULAE BELOW..................................... 33
TABLE 8-1: IMAGES OF POLLEN TYPES USED IN VERIFICATION TESTING ... 70

FIGURE 1-1: THE AUTOSTAGE PROTOTYPE ... 2
FIGURE 2-1: A SECTION OF POLLEN WALL SHOWING STRUCTURE AND SOME FEATURES..................................... 8
FIGURE 2-2: GOLDEN ROD (ECHINATE), OAK POLLEN(COLPI) AND BIRCH POLLEN (PORES). SCANNING

ELECTRON MICROSCOPE (SEM) IMAGES OF POLLEN FROM “NATIONAL POLLEN AND AEROBIOLOGY
RESEARCH UNIT” WEB SITE[58]. .. 9

FIGURE 2-3: POLLEN GRAIN ON A CAMELLIA PETAL AT 1500X FROM A COMMERCIAL (KEYENCE) DIGITAL
MICROSCOPE. .. 11

FIGURE 2-4: OLYMPUS BX51 AS USED TO CAPTURE CONVENTIONAL MICROSCOPE IMAGES FOR COMPARISON
STUDIES .. 11

FIGURE 2-5: A MODEL OF A NEURON [30]... 14
FIGURE 2-6: THREE SIMPLE ACTIVATION FUNCTIONS, ϕ ·  FROM LEFT TO RIGHT: A) THRESHOLD, B)

PIECEWISE-LINEAR, C) SIGMOID. ... 14
FIGURE 2-7: FULLY CONNECTED FEED-FORWARD NETWORK WITH ONE HIDDEN LAYER [30]........................... 15
FIGURE 2-8: DATA FOR SIZE VERSUS ROUNDNESS OF TWO POLLEN TYPES GRAPHED .. 16
FIGURE 3-1: ELEMENTS OF AUTOSTAGE IMAGE CAPTURE... 19
FIGURE 3-2: GLASS SLIDE SHOWING REFRACTION EFFECTS.. 20
FIGURE 3-3: DIAGRAM OF LOW MAGNIFICATION IMAGES ON A SLIDE. ... 23
FIGURE 3-4: LOCATION OF AN OBJECT IN AN IMAGE FROM THE SLIDE REFERENCE POINT. R AND C ARE IN

PIXELS. PIXEL DISTANCE FROM THE CENTRE IS CALCULATED AND CONVERTED TO STEPS TO BE ADDED TO
X AND Y, KNOWN IN STEPS. ... 24

FIGURE 3-5: A GRADIENT SQUARED MEASURE OF FOCUS SHOWING THE THREE FOCUS LEVELS OF A SLIDE. THE
PEAKS FROM LEFT TO RIGHT INDICATE: THE SLIDE BOTTOM, THE SLIDE/COVER-SLIP WITH THE POLLEN
SUSPENSION, AND THE TOP OF THE COVER SLIP. THE SLIDE IS QUITE DIRTY WHICH IS INDICATED BY THE
OUTER SURFACES HAVING MORE DETAIL AND THEREFORE HIGHER FOCUS MEASUREMENT VALUES. 25

FIGURE 3-6: FOCUS FUNCTION. THIS FIGURE FROM GROEN ET AL. [28], DEFINES THE PROPERTIES REQUIRED OF
A GOOD FOCUS FUNCTION. V SHOULD BE SMALL AND REPRODUCIBLE WHILE η IS LARGE, IDEALLY ε = 0.
THIS FIGURE CAN BE USED TO EVALUATE THE GRAPHS IN FIGURE 3-10. ... 26

FIGURE 3-7: FOCUS MEASURES; SQUARED GRADIENT COMPARED TO VOLLATH5 [39]..................................... 27
FIGURE 3-8: CROPPED IMAGE SERIES; #18, #19, #20. #19 WAS SELECTED AS ‘IN-FOCUS’ BY THE FOCUS

ALGORITHM. ... 28
FIGURE 3-9: THE ENTIRE IN-FOCUS IMAGE, #19 OF SERIES USED TO PRODUCE ASSOCIATED GRAPHS, THE FIRST

OF WHICH IS SHOWN ABOVE, TO THE RIGHT . MORE GRAPHS OF FUNCTION VALUES VERSUS FOCUS STEP
ARE SHOWN IN FIGURE 3-10, AND A SECOND IMAGE SERIES EXAMPLE IS SHOWN IN FIGURE 3-11. 28

FIGURE 3-10: FOCUS GRAPHS; FOCUS ALGORITHM VALUES VERSUS IMAGE SERIES NUMBER. THE FOCUSSED
IMAGE IS SHOWN ABOVE. A CROSS MARKS ANY LOCAL PEAKS AND A DOTTED LINE ACROSS MARKS A
NOISE FLOOR CALCULATED LEVEL, BELOW WHICH PEAKS ARE IGNORED. ALL ALGORITHMS DETECT
IMAGE #19 BUT THE SHAPES VARY AS SHOWN. ... 29

FIGURE 3-11: FOCUS GRAPHS FOR A SECOND IMAGE (SHOWN BELOW) .. 29
FIGURE 3-12: A SECOND IMAGE SERIES USED FOR FOCUS DATA: IN-FOCUS IMAGE #21.................................... 30
FIGURE 4-1: LOW MAGNIFICATION MICROSCOPE IMAGES SHOWING, FROM LEFT TO RIGHT, 100MICRON SPACED

LINES AND POLLEN ON A SLIDE. THE WHITE MASS NEAR THE EDGE IS A WAX SEAL. 32
FIGURE 4-2: SCANNING ELECTRON MICROSCOPE (SEM) IMAGES OF SCOTS PINE GRAIN (LEFT) BIRCH POLLEN

GRAIN (CENTRE) GRASS POLLEN GRAIN (RIGHT). SCALE IS UNKNOWN. [58]... 35
FIGURE 4-3: AN INTERESTING COMPARISON OF POLLEN CAPTURED ON AUTOSTAGE, COMPARED TO THE SEM

IMAGES IN FIGURE 4-2. FROM LEFT TO RIGHT THEY ARE PINE (RADIATA), SILVER BIRCH, AND GRASS
(BROWN TOP) A SILVER BIRCH POLLEN MAY VARY FROM 15 TO 28 MICRONS DIAMETER. THE PINE
POLLEN ARE ABOUT 50-70 MICRONS ACROSS. RELATIVE SCALE OF IMAGES IS APPROXIMATE ONLY....... 35

 vi

FIGURE 4-4: FIELD CURVATURE DISTORTION .. 36
FIGURE 4-5: CIRCLE OF CONFUSION FOR DEPTH OF FOCUS .. 36
FIGURE 4-6: LIGHT THROUGH AN APERTURE SHOWING AIRY DISK, DIFFRACTION PATTERNS. 37
FIGURE 4-7: AIRY DISK INTENSITY PROFILES (INTENSITY VERSUS DISTANCE ACROSS DISK) SHOWING SPARROW

CRITERION .. 38
FIGURE 4-8: GLASS SLIDE SHOWING REFRACTION EFFECTS.. 39
FIGURE 4-9: RAY DIAGRAM FOR DEPTH OF FIELD. AN IMAGE FORMING LENS AND ITS HALF ANGULAR

DIAMETER, β. IMAGE DISTANCE, V, DIVIDED BY OBJECT DISTANCE, U, IS MAGNIFICATION, M. FOR A
GIVEN CIRCLE OF CONFUSION ABOUT THE IMAGE POINT, THERE IS AN ASSOCIATED DEPTH OF FIELD
AROUND THE OBJECT POINT. A THICK LENS SIMPLY CREATES TWO PRINCIPAL PLANES THAT AFFECT THE
VALUES OF PARAMETERS BUT DO NOT AFFECT THE RELATIVE MEASURES USED IN THE ASSOCIATED
EQUATIONS. .. 41

FIGURE 4-10: HIGH MAGNIFICATION MICROSCOPE CONSTRUCTION.. 43
FIGURE 4-11: HIGH MAGNIFICATION IMAGES CROPPED TO THE CENTRAL PORTION (500X500) OF THE IMAGE.

THE POLLEN ON THE LEFT IS ABOUT 40 MICRONS ACROSS AND THE PAIR IN THE RIGHT HAND IMAGE ARE
ABOUT 20 MICRONS DIAMETER. .. 43

FIGURE 5-1: LIGHT-FIELD AND DARK-FIELD ILLUMINATION (RESPECTIVELY) SHOWING POLLEN GRAINS
STANDING OUT MORE AMONGST DETRITUS IN THE DARK-FIELD IMAGE... 46

FIGURE 5-2: DARK-FIELD LIGHTING. LEFT: IMPLEMENTED. RIGHT: SIMPLE ALTERNATIVE - IN THREE
DIMENSIONS THIS LIGHTING FORMS A HOLLOW CONE OF LIGHT WITH APEX AT THE OBJECT AND THE
OBJECTIVE LENS INSIDE THE HOLLOW... 46

FIGURE 6-1: EXAMPLES OF CLUMPING. THE IMAGE ON THE LEFT SHOWS CLUMPING WITH OVERLAPPING AND ON
THE RIGHT, POLLEN GRAINS OVERLAP WITH DETRITUS. THE TRANSLUCENT NATURE OF THE POLLEN IS
APPARENT IN THESE IMAGES. .. 49

FIGURE 6-2: TWO LOW MAGNIFICATION IMAGES AND THEIR SEGMENTED IMAGE BELOW, FROM A SERIES OF
IMAGES OF A SLIDE OF FOSSIL POLLEN FROM A CORE SAMPLE TAKEN FROM EASTER ISLAND BY PROF.
JOHN FLENLEY. .. 50

FIGURE 6-3: IMAGES OF SEGMENTATION SEQUENCE. TOP LEFT TO BOTTOM RIGHT ARE: 51
FIGURE 6-4: ILLUSTRATION OF THE SAME POLLEN BEING SELECTED TWICE. THE LEFT IMAGE IS EVALUATED

FIRST, THEN THE RIGHT IMAGE. THE LARGER POLLEN IS THE TARGET IN THE FIRST IMAGE AND THE
SMALLER POLLEN IS THE TARGET IN THE SECOND. THE TARGET POLLEN GRAINS ARE TENDING TO APPEAR
BELOW AND LEFT OF CENTRE OF THE IMAGE. IF THE CENTRE, OR POSITION AT WHICH A POLLEN IS
EXPECTED, IS ALTERED TO BE BETWEEN THE LAST FOUND POLLEN AND TRUE CENTRE (SHOWN AT THE
NARROW CROSS) THEN THE CORRECT POLLEN IS MORE LIKELY FOUND EACH TIME................................. 53

FIGURE 7-1: UNDER/OVER-FITTING: THE EXAMPLE DATA POPULATION IS SINUSOIDAL. THE DATA CAN BE
FITTED WITH A STRAIGHT LINE, A SINUSOID, OR A POLYNOMIAL OF SUFFICIENT ORDER TO CUT EVERY
POINT EXACTLY. THE POLYNOMIAL MODELS ANY NOISE PRESENT AND IS THUS “OVER-FITTED”, AS IT
DOES NOT REPRESENT THE POPULATION DATA AS WELL AS THE SINUSOID.. 57

FIGURE 7-2: OPTIMISATION BETWEEN EARLY-STOPPING AND OVER-FITTING.. 59
FIGURE 8-1: SLIDE-A RESULTS... 71
FIGURE 8-2: SLIDE-B RESULTS .. 71
FIGURE 8-3: SLIDE-C RESULTS ... 72
FIGURE 8-4: SLIDE-D RESULTS.. 72
FIGURE 8-5: DATA POINTS FOR ALL TESTS. SLIDES A, B, C, D ARE IN COLUMNS; POLLEN TYPES PNN ARE IN

ROWS; X-AXIS IS POLLEN COUNT; Y-AXIS IS PERSON/MACHINE. ... 73
FIGURE 8-6: OLYMPUS BX61. A COMMERCIAL AUTOMATIC MICROSCOPE WITH DIGITAL CAMERA,

AUTO-FOCUS, XY STAGE MOVEMENT AND SLIDE STACKER VALUED AT ABOUT $AUS150,000 75
FIGURE 9-1: THE TWO MOST IN-FOCUSSED IMAGES OUT OF NINE USED FOR FOCUS INTEGRATION (LEFT AND

CENTRE) AND THE RESULT (RIGHT) ... 79
FIGURE 9-2: DARK FIELD ILLUMINATION USING DETUNED INTERFERENCE FILTERS... 83
FIGURE 11-1: CIRCLE OF CONFUSION AND DEPTH OF FIELD ... 11-2
FIGURE 11-2: THE AIRY DISK AND ITS LIMITS OF MOVEMENT ON THE IMAGE SENSOR THAT WILL DEFINE A

CIRCLE OF CONFUSION USED FOR DEPTH OF FIELD CALCULATION. ... 11-3
FIGURE 11-3: IMAGE SIDE RAY DIAGRAM SHOWING DEPTH OF FOCUS AND CIRCLE OF CONFUSION 11-4

 1

1 Introduction

This project is the aggregation, integration and augmentation of
previous research outcomes in the design and development of a system
now called “AutoStage”. With the development here of a complete
working system, and an evaluation of it that shows it to be viable, a
longstanding requirement for the study of pollen (palynology) is ready
to be integrated into working laboratories.

AutoStage is an aid to palynology and all the important uses to which
pollen identification can be put. The broad requirements of AutoStage
are to locate pollen grains on a prepared microscope slide, extract
feature data from images of the pollen grains, classify the pollen by
genus and produce a count of each type. The system developed aims to
be an intelligent assistant for use in palynology.

The core system operations are (described in subsequent paragraphs):
• the capture of images from a slide
• the segmentation of pollen in the images
• the extraction of features from pollen images
• the classification and count of pollen types

The capture of an image from a slide involves two focusable
microscopes, lighting, and a mechanism to hold and move the slide
with precision. A low magnification microscope allows quick coverage of
the entire slide to determine pollen locations while a high
magnification microscope captures images suitable for feature data
extraction and identification of the pollen grains. The light source is a
filtered and cooled halogen lamp. The slide holder is situated between
the light source and the microscope objectives. The slide holder is
movable in two dimensions with a resolution less than the smallest
pollen of interest. Pollen grains are 10-100 microns diameter. Image
capture system parts are detailed in §3, §4 & §5.

The segmentation of pollen in the images requires an algorithm to
recognise shapes in a low magnification image that are likely to be
pollen and ignore those that are not. A series of images is taken to
cover the slide. The location on the slide of each likely pollen grain is
determined from their position in the image. The high magnification
microscope is driven to each location and segmentation is again
performed to find objects, determine which was originally located, and
test further for it being a valid pollen grain. If valid, then an image

 2

slightly larger than the bounding rectangle of the object found is saved
for feature extraction. Details of segmentation are in §6.

The extraction of features from pollen images occurs after all the pollen
grains have been found and their closely cropped images stored. The
values of the grey levels of the image pixels are used to estimate
geometric, textural and statistical qualities. The features used were
determined in a previous study [74] and a description appears in §7.1.

The classification of pollen types is performed by an artificial neural
network. The network is trained using features from images of known
pollen types. The features from pollen images taken from slides are
then able to be classified by the trained network. The numbers of
pollen grains of each type found on a slide are reported. This is the
main system output. Classification details are found in §7.2.

Figure 1-1: The AutoStage Prototype

 3

1.1 Aims and Objectives
The Aim of this project is to build a workable system to:

1. demonstrate that automation of pollen identification and counting
from slides is possible, with an accuracy comparable to that
achieved by experienced palynologists

2. be suitable as an experimental platform to improve the accuracy
and repeatability of pollen classification and counting, and enable a
second generation system to be specified

The Objectives of this project are to build and evaluate a system as
described above. Previous projects reported by Zhang [74] and
Holdaway [34], have resulted in the determination of a set of features
to allow pollen classification and the initial design of a suitable digital
microscope respectively. Objectives for this project are to:

1. build and test the dual microscope system

2. develop a suitable lighting system

3. develop a two dimensional XY movement to securely hold and
accurately position a microscope slide

4. develop focus capability and develop algorithms for auto-focussing

5. develop segmentation algorithms to locate pollen in microscope
images and determine their precise location on the slide, and
extract an image of the pollen suitable for features extraction.

6. define a classification system using previously selected features
and to consider the multi-layer perceptron

7. integrate all the above into a coherent and operational system
that will fulfil the aim of the project

8. test and evaluate the system with regard to the aim of this project

1.2 Design Specification: basic requirements
Features were developed to be used for a classification system. A high
magnification visible light microscope was designed for capturing
digital images suitable for feature extraction. These were considered
when specifying other system components.

The specifications for the components of the system are listed below
with implementations below each:
1. A slide holder was required to keep a slide located with precision

and repeatability. It was required to maintain the slide orthogonal
to the optical axis and allow light to pass through the slide.

 4

a. A standard microscope slide holder suited the requirements
and was built into the structure. Orthogonality to the optical
axis is achieved to a degree that the slide can be imaged by
the low magnification microscope with a single focus setting.
Pollen grain positions between the slide and cover slip vary
enough that focussing on each grain using the high
magnification microscope was required.

2. The precision movement of the slide holder, under computer
control, was required to place a pollen grain of 10 microns diameter
within the 0.5mm square field-of-view of a microscope. It would
also need to recall that pollen grain to a position within the
microscope field of view; preferably to the same location within a
few microns. As the XY stage holds and moves the slide holder, the
XY directions required orthogonality to the optical axis at any
position.

a. A precision commercial XY stage was built into the structure
of the AutoStage. The X and Y linear movement sections are
specified for repeatability of movement of 3 microns. The
movement is driven by stepper motors that add to the
repeatability error and 20 microns resulted in the maximum
error.

3. A computer controlled focus mechanism capable of stepping at
intervals of focus such that at least one and preferably more than
one steps contain in-focus portions of a 10micron diameter pollen
grain.

a. A standard microscope focus mechanism was used to convert
the rotary motion of a stepper motor to linear motion of the
camera along the optical axis. The result just meets the
requirement for the smallest pollen grain however the
stepper motor driver does not drive the motors evenly and at
every tenth step there is a larger step which can cause slight
non-optimal focus. Depth of field has a corrective effect;
however consistency suffers as a result.

4. A second microscope with a larger field of view for locating pollen
grains on the slide with a minimal number of images was added.
The constraints were to maximise field of view while remaining
capable of detecting the smallest pollen of interest defined as 10
microns diameter. Auto-focus was considered to be a requirement.

a. An available digital camera was used for the second
microscope. An adjustment to the distance along the optical
axis, from its lens to its sensor, was made to alter the
magnification. A magnification of 1x met the detection and
field of view constraints. The camera was attached to the
high magnification camera so the focus mechanism could be
shared.

 5

5. Lighting suitable for both microscopes needed to be adequate for
the integration times of the sensors and associated electronics. All
images should be of consistent exposure.

a. Stable power supplies to power the incandescent lamp
affords constancy of illumination. A Meanwell S-150 series
power supply is used. It is a mains in, 12 volt out, 150 Watt
switched mode power supply. With the specified combined
line and load regulation of 0.6%, the luminous intensity
would change by less than 2%. Locations for four quartz
halogen lamps is provided but one 35 Watt, 8000 candela
lamp is used.

6. Frame construction required a physical stability and vibration
damping to keep the microscope stationary and minimise blurring
of the image.

a. The frame construction and mechanical assembly was
undertaken by the mechanical laboratory in the department
of fundamental sciences at Massey University. A dense
rubber mat was placed under the solid base with four shock
absorbing feet added at the corners so the rubber is partially
compressed by taking some of the weight with the feet
taking the rest. This helps to isolate the unit from vibrations
from the bench upon which it sits.

7. Software, suitable for quick development and rapid changes, while
capable of performing all or most tasks required for the project, was
desirable.

a. Matlab is essentially a prototyping software package that
fits the requirements well. It was used to develop the feature
algorithms so no translation was required, and has built in
functions for image processing. A Matlab toolbox for
communication to the cameras was purchased which allowed
the entire design to be written using the one programming
language.

1.3 Contribution of the Author to this Project
The 43 features used for classification were selected in a previous
project. The high magnification microscope was designed in a previous
project. The author’s contribution has been the design, development,
integration and testing of the system including a performance
comparison with expert palynologists, all tasks as outlined in the eight
objectives of this report including controlling software as presented in
appendix H. The AutoStage prototype was built in a mechanical
workshop to a specification determined in this project.

 6

1.4 Published Paper
A paper entitled “Automatic Recognition of Light-Microscope Pollen
Images.” was published and presented at the Image and Vision
Computing New Zealand 2006 conference [20]. The paper is reproduced
in Appendix B.

 7

2 Background

Introduction

This section introduces topics related to the project to
add background knowledge, put the subsequent
discussions into perspective, and cover literature in the
various fields.

2.1 Palynology – the study of pollen
Pollen is technically termed “the multinucleate gametophyte
generation of flowering plants” [8]. It carries the male gametes, or sex
cells, for fertilization of plants. Wind and insects are the main carriers
of pollen with the grains themselves having characteristics that
promote, usually one or the other of the two methods of transport.
Birds and bats help out the insects in that task. Spores, included in
studies under palynology, are “asexual reproductive bodies of lower
vascular plants” and “algae, fungi, and mosses”[8]. They are asexual in
that they are themselves able to grow into an organism. Wind is an
inefficient method of transport so, for wind dispersal, vast numbers of
pollen or spores are produced: roughly one million per cone for pine and
up to 500 million for a single marijuana plant shoot [8].

Palynology has numerous applications. Fossil pollen analysis
(palaeopalynology) is used to identify the plant taxa, from which, can
be deduced [8, 27]:
• vegetation variations with time
• climate and its temporal variation
• evidence of human activities including

o land clearing
o burning
o atmospheric pollution (also natural, e.g. volcanic)
o salinity
o soil degradation and changes

• archaeological information
o dating of sediment levels and ages of artefacts found
o what people may have eaten
o what was buried with them – flowers etc.

• oil deposit locations

 8

Honey type, and location of origin, can be indicated by the pollen found
in the honey (melissopalynology). Inhalant allergy sufferers can be
advised of high pollen counts in the air (Aeropalynology) [18]. Forensic
investigations can be aided by determining if an object has been in a
certain general location by identifying the pollen grains attached [9].

The layers making up a pollen grain wall are labelled in Figure 2-1.

Figure 2-1: A section of pollen wall showing structure and some features.

The taxa, or type, of pollen can be determined by pollen morphology, or
structure. Large data bases of images and diagrams are being built so
pollen can be identified by referring to them. Pores, (holes), culpi,
(furrows), and the numbers of them are clues to pollen taxa.

The exine (Figure 2-1) is made of sporopollenin. Sporopollenin is a
substance composed of oxidative copolymers of carotoid and carotenoid
esters. It is an extremely durable substance and can be found in
anaerobic sediments dating back hundreds of millions of years. A pore
is shown in the diagram but these may be elongated to a furrow and
are called colpi [70]. The number of pores or culpi, and their
arrangement on the sphere surface, is a strong indication of type.
Surface features are used for identification using mathematical feature
extraction in AutoStage. Some of the surface features can be seen in
the scanning electron microscope images of pollen in Figure 2-2.

 9

Figure 2-2: Golden Rod (echinate), Oak pollen(colpi) and Birch pollen
(pores). Scanning Electron Microscope (SEM) images of pollen from
“National Pollen and Aerobiology Research Unit” web site[58].

Modern “pollen rain”, or the spatial distribution of pollen, is modelled
to determine the vegetation taxa and climatic conditions that would
have caused the pollen distribution found in sediment core samples [8].
Sample cores are extracted from lake beds, swamps etc., sliced
horizontally to divide into samples of sequential depths, and analysed
to make stratigraphic maps of the region. Carbon dating and other
techniques are used to compare depth relationships to dates of
deposits. The thickness of each core slice taken, determines the
temporal resolution. Fine resolution [26], down to one year
representing perhaps a millimetre of core depth, is often required but
requires the preparation of hundreds of samples and many slides of
pollen to prepare and count. A greater number of cores, taken in close
proximity, will increase the reliability of the data and add information
regarding localised variation. Regionalised layer variation is obtained
by multiple core sampling at larger spacings. The counting of pollen
from core samples requires experts to identify the pollen taxa as they
count pollen grains on a slide. This is very time consuming and
laborious work for trained people whose time could well be spent on
less mundane tasks. This is one reason that AutoStage is being
developed.

The AutoStage will also aid pollen counting by aeropalynologists who
advise of pollen counts in the air for benefit of inhalant allergy and
asthma sufferers. At present there are a number of pollen counting
stations, mainly in Europe [58] and North America [3]. Many have
volunteer based counting [2], where volunteers spend 2-3 hours per
day, 3 days a week counting pollen captured in pollen traps.

A PhD student who uses Palynology as a prime research tool may
spend up to 30 months of microscope work counting pollen. Any study
using palynology would be advanced considerably if the counting were
performed automatically and the time taken to collect research data
reduced consequentially.

 10

Preparation of samples is also time consuming and important to the
outcome of the counting process. Fossil samples are treated to remove
as much foreign materials as possible by sieving and chemical
treatments. Density gradient centrifugation may have a part to play in
the classification of pollen but at least it appears that it will be helpful
in separating pollen from organic matter not removed by chemicals and
sieving [16, 17, 56]. The problem of organic matter remaining is
applicable to automatic pollen counting as the organic matter, as seen
in the images in Figure 6-2, reduces segmentation effectiveness.
Ultrasonic filtration [66], is an advance that may prove useful.
Preparation is a separate part of the process but important to the aim
of this project in two ways:
• preparation involves laborious, time consuming work
• preparation quality can influence the AutoStage processes and the

reliability of the results

A requirements list has been developed to begin integrating
preparation into the whole automatic pollen counting process (§3.2.1).

2.2 Microscopy
Microscopy is significant to palynology considering the 10 to 100
micron diameters of the objects under study. Of the many types of
microscopy existing, the scanning electron microscope (SEM) would be
a better tool than the light microscope, if it were not for the speed and
cost of such systems [67]. Resolution is the advantage of SEMs as they
are able to capture detail of pollen surfaces that are unable to be
resolved or captured using visible wavelengths (see comparison images
Figure 4-2 and Figure 4-3). The extra detail in SEMs holds information
that can better distinguish between pollen types. A key to the utility of
a system such as AutoStage is simplicity of use and affordability. Light
microscopy is more suitable in those regards. The effort, therefore, is to
optimise the images from a light microscope. The microscope, as
designed and built, is adequate for a prototype and for the aim (§1.1) of
this project. Any improvements to the microscopes for this project is a
subject for future work (§9).

Pollen grains are usually counted and classified by viewing slide
mounted samples under a microscope. Collection of pollen for
aeropalynology often uses ‘sticky’ rods or tapes which are then placed
on a slide. One project under development for automation of airborne
pollen counts is “Microbus”, by Omnibus [10]. This project has a tape
only system for continuous monitoring and includes a preparation
module within a unit that may be located, in its entirety, at some
remote site. AutoStage is developed for slide microscopy in a

 11

laboratory, however the use of other mediums is not precluded from
future adaptations.

Digital microscopes are not new and are commercially available. For
example, Keyence produce some functionally sophisticated
microscopes, some of which use short wavelength laser to produce up to
1500x images [1] (see Figure 2-3). A digital microscope can readily be
made at home [60]. The digital microscope was considered for use in
this project by Holdaway [34], who made a careful analysis of the
consequences in changing from conventional microscopy to direct
digital imaging.

Figure 2-3: pollen grain on a camellia petal at 1500x from a commercial
(Keyence) digital microscope.

The conventional microscope used for the capture of images for
comparisons with images captured from AutoStage was an Olympus
BX51 used at 40x objective magnification and a 10x eye-piece
magnification giving 400x optical magnification. Images were captured
via an Optronics magnaFIRE SS99802 digital camera with
MagnaFIRE frame-grabbing software on a 2GHz Pentium computer.

Figure 2-4: Olympus BX51 as used to capture conventional microscope
images for comparison studies

 12

 Lighting is an integral part of microscopy and affects the resolution
and contrast of the image. The character of the light source produced
by optics and the manner of transferring it to the object, affects the
characteristics of the object that are represented in the image [23].

Differences of intended light paths, to actual paths through lenses,
cause: chromatic aberration, spherical aberration, coma, astigmatism,
distortion, chromatic differences in magnification, and curvature of
field [23]. The use of a manufactured objective lens for AutoStage,
designed to minimise most of these, is expedient. Two aberrations,
“curvature of field” and “distortion”, could be of issue and are
considered in §4.2.1.

2.3 Automated Pollen Recognition
Flenley, was first to identify the need to automate in 1968 [14]. He
stated that two problems existed: infinite possible orientations of pollen
grains and partial focus of grain under the microscope. Since then,
Flenley [33, 40-44, 64, 67, 68, 75] has inspired others to help overcome
those and other problems of automation, culminating in this project
and the development of AutoStage.

White was also early when he wrote about automation, concentrating
on an image analysis system [72]. White’s concentration on the
imaging problem only, as is true for most authors, was noted by
Rodriguez-Damian et al. [59]. This is understandable considering that
a workable classification criterion should be developed before
continuing with the overall design which may seem straightforward or
obvious. However, it has been our experience that all is not obvious
until the system as a whole is explored, by theoretical design and
prototyping. France et al. [19], who have written a good account of
what is required and what problems are inherent in an entire system,
were credited with an holistic effort by Rodriguez-Damian et al. [59].
That publication was very recent which indicates continued interest in
automated pollen counting.

“Nobody has yet developed a satisfactory automatic method for
counting pollen” [58]. This statement is on the web-site of the United
Kingdom’s National Pollen and Aerobiology Research Unit. There are
studies and projects [10, 19, 59] with an aim to automation but the
statement seems to still hold true. AutoStage is very close to being of
practical use.

Green, a proponent of numerical palynology, stated in 1997 that
sporadic attempts over 30 years to produce automated systems, have
produced no system of widespread use [27]. Numerical palynology

 13

attempts to mathematically model pollen dispersal and its relationship
to the vegetation present. Given the complexities involved and
interpretations of pollen diagrams often being made by “eyeballing”
them, aids to interpretation are possible through the modelling. The
collection of sufficient data is a limitation and automation of the
counting of pollen would allow improved progress in this area.

Earlier interest in automation concentrated on the image recognition,
but was hindered by slow computers with insufficient memory. Even
now, the processing required takes some time but is not prohibitive.

A workable set of features has been selected by Zhang [33, 74, 75], and
the study of image capture, resulting in a digital microscope proposal,
by Holdaway [34], have paved the way to a complete system that will
usefully automate palynology.

2.4 Neural Networks
Artificial Neural networks were originally formulated in order to model
how the human brain was thought to operate. The first was introduced
by McCulloch and Pitts in 1943. “Artificial” is often not used now, as
neural networks have become a useful tool in their own right for
machine learning and classification tasks. Neural networks are
massively parallel distributed processes made up of simple processing
units and emulate the brain in two ways [30]: 1) knowledge is acquired
by the network from its environment, 2) interneuron connection
strengths, known as synaptic weights, are used to acquire knowledge.

Hebb [31], a neuropsychologist, proposed a cellular level change to be
the basis of learning, “when an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some
growth process or metabolic changes take place in one or both cells
such that A’s efficiency as one of the cells firing B, is increased.”

Haykin [30], expands and rephrases this as a two part rule, the second
part was not contained in Hebb’s original rule:

1. If two neurons on either side of a synapse (connection) are
activated simultaneously (synchronously), then the strength of
that synapse is selectively increased

2. If two neurons on either side of a synapse (connection) are
activated asynchronously, then that synapse is selectively
weakened or eliminated.

A synapse as described above is called a “Hebbian synapse”. Weights in
the model described next are equivalents to the synapses.

 14

Figure 2-5: A model of a neuron [30]

A single neuron, shown in Figure 2-5, is a summing node with a
number of inputs that are weighted, biased by what is essentially an
extra input, and presented to an activation function to form the output.
The bias eliminates any chance of the inputs summing to zero. This
model is named a McCulloch-Pitts model [30].

The activation function shown as ϕ(·) in Figure 2-5, may be a simple
decision to output 1 of the input, vk, is positive and -1 if negative. Three
simple activation functions are shown in Figure 2-6.

Figure 2-6: Three simple activation functions, ϕ ·

From left to right: a) threshold, b) piecewise-linear, c) sigmoid.

Taking one neuron and forming a network creates an artificial neural
network. Figure 2-7 below, shows a feed-forward fully connected
network with one hidden layer. If the input nodes are weighted and
connected directly to the output neurons then it is a single layer
network. Using the Perceptron model of neurons, the network may
have an additional “hidden layer”, as shown in Figure 2-7, to become
what is called a Multi-Layer Perceptron, or MLP, which is the type
used for AutoStage. It is possible to add more hidden layers.

 15

Figure 2-7: Fully connected feed-forward network with one hidden layer
[30]

While ‘unsupervised’ neural networks will sort unknown data into
groups of similar type, ‘supervised’ networks, as described here, are
trained on known data and can then sort new data into the groups it
has been trained on. Training, for a supervised network, occurs in the
network described above by setting known data at the inputs, setting
goals or targets for the neural network outputs as required to indicate
the known inputs, and adjusting the weights until the output matches
the targets set. Training a neural network is some method of
successively altering the weights to arrive at the given target. An
output error may be quantified by subtracting the network output from
the target, squaring the result, and adjusting the weights with the aim
of making this ‘sum of squares error’ as near zero as possible. The path
this error value takes over successive weight changes is differentiated
to find its slope and direction to determine by what value to adjust the
weights to continue this gradient descent. Unfortunately, when a
minimum in the error is found, this may be a local minimum and not
the global minimum so various techniques are implemented in an
attempt to overcome this problem.

The inputs are multiplied by the weights to the hidden summing nodes
and then multiplied by more weights and summed for input to the
activation function making this a “feed-forward” network. The error is
calculated at the output and is fed back to the hidden layer; weights
there are adjusted and fed back further to the input for the input

 16

weights to be adjusted and this process is called back-propagation (of
error).

The amount of data in an image of pollen is generally too much for a
contemporary computer running a neural network and data beyond
that which is necessary may confound the neural network and actually
cause degradation in performance. Consequently, features are
extracted to represent the image using minimal data. Feature selection
is important to the success of the classification as the data must, in
some way, be separable by the network. A simple example is the given
by using the size and shape of two pollen types.

Figure 2-8: Data for size versus roundness of two pollen types graphed

In Figure 2-8, the data for two pollen types has ‘size” plotted on the x-
axis and “roundness” on the y-axis. If the two numbered circular points
did not exist, the pollen type could be determined simply by size being
greater or less than the x-axis value of the vertical dashed line. Now
adding in the measured pollen indicated by ‘1’, the angled dashed line
may be used and the data can be transformed, perhaps by rotating the
axes making the angled dashed line perpendicular to a new axis. If the
numbered ‘2’ circular point is added then a non-linear division is
required. Then, if the Os were actually a random mixture of two pollen
types, another feature would need to be added that distinguished those
two types and a three dimensional graph would be displayed. Adding
more features adds dimensionality and we can no longer visualise them
and must use mathematics for representation. Forty three features are
used for representing images of pollen in this project. It is, however,
possible to make a series of graphs of two features per graph, so that
each feature is graphed against each of the others. If displayed in a
matrix, patterns may be observed. Pattern recognition is something

 17

that humans do extremely well. Artificial neural networks also employ,
“the process whereby a received pattern/signal is assigned to one of a
prescribed number of classes (categories)”, which is the formal
definition of pattern recognition given by Haykin [30].

2.5 System Building
Scientific and engineering methods have been used to develop a
prototype of a system called AutoStage. Certain design criteria and
constraints (§1.2) were considered and the prototype was built
accordingly. Then the system was checked for conformation to the
criteria. The criteria were sufficient for success but not over specified
so that given a successful outcome, the system was inexpensive,
adaptable, and easy to produce with room for enhancements.

Taguchi et al. [65] determined means for design of quality products to
include system design, parameter design and tolerance design. System
design uses scientific and engineering knowledge to produce a
prototype. Parameter design and tolerance design use the prototype,
and experience in its production, to help determine parameters to
improve the prototype in a manner that is manufacturable. This
project corresponds to the system design phase. The parameters
defined here can be used to determine to what level the AutoStage can
be developed to improve its performance in areas such as repeatability
and speed of operation. Tolerance will then determine what level of
component ‘quality’ and level of manufacturing processes will suffice to
meet the parameter design. At that stage, the compromise of price,
accounting also for ability to manufacture, versus capability, is
considered. At this design stage, the prototype was developed to meet
critical functional levels to meet the aim of the project. Steps were to:
1. identify basic requirements (listed in §1.2)
2. develop initial prototype (described in this document)
3. review functions with knowledge workers

The third item, the reviewing of functions, has occurred with Massey
University internal reports and Pollen Group review meetings.
Experienced palynologists are within that group and constitute the
“knowledge workers”.

Systems Building, like any complex operation, has many theories as to
how to go about it in a methodical and time saving fashion. There are
many traps to fall into while developing a product. For example,
“creeping elegance” where, as something is developed to plan, new and
exciting things are thought of to add to the design. The risk is that the
product is not completed on time and many difficulties with the new

 18

idea are not foreseen because of the lack of early investigations and
analyses. The timings of sub-module creation and intermediate testing
are important, so that the testing results remain meaningful and not
altered by subsequent additions or the interaction of the module with
subsequent modules.

For the AutoStage, preliminary investigations of features and
microscopy are done. System analysis and design are required to ‘fit’
the required parts together in this system integration project.
Development is the main body of work with testing and
implementation proving that the system is capable of meeting the aim
of this project: to demonstrate capability of classifying and counting a
slide as well as a trained palynologist.

 19

3 The Capture of an Image from a Slide

Introduction

This section describes the preparation of the pollen
bearing microscope slides and the system for focussing
the microscopes and traversing the slides to enable the
capture of images of pollen. An overview of the system is
first presented so that the next sections, which detail
the microscopes and lighting, are put into context.
Figure 3-1 represents the AutoStage image capture
mechanism.

3.1 Overview

Figure 3-1: Elements of AutoStage Image Capture

 20

A prepared slide is placed on the XY movement or “stage” where, under
computer control, it is positioned between the light source and
microscopes for transmission lighting microscopic image capture. An
object of interest on the slide can, by the same XY movement, be
positioned under either of the two microscopes. The Z direction of
movement, under computer control, determines focus for both
microscopes. The microscopes, once focussed, can then image the
portion of slide in view; see Figure 3-2. Images are then uploaded to the
PC for processing.

3.2 The Slide

Figure 3-2: glass slide showing refraction effects.

As transmission lighting is used, light travels through the slide so the
glass needs to be of a quality that does not distort the light. Light is
modified within the slide by refraction, reflection and diffraction
depending on the object features. The light emanating from the object
toward the objective lens is refracted while transitioning from cover
slip to air. It is refracted outward so that less arrives at the objective
lens, consequently reducing resolution (§4.2.2). The refractive index of
the cover slip glass should be as small as possible to limit refraction
into the air. The cover slip glass itself must be flat, with smooth
parallel surfaces. Oil immersion lenses are sometimes used in high
magnification microscopy to reduce the diffraction effect by increasing
the refractive index of the medium between slide and lens, making its
refractive index nearer to that of glass so the dispersion of light is
minimised.

Auto-focus can be adversely affected by objects on the bottom of the
slide but especially on the top of the cover-slip, which is thin compared
to the slide and its upper surface is very close to the focal plane of
interest. In addition, the segmentation algorithms could be

 21

compromised and images captured would be degraded if dust or oil
were present, even with out-of-focus contamination.

To improve the efficacy of the system the slides should be prepared in a
prescribed and suitable manner. It is important that this be similar to
current practice so that the system can be used without requiring
changes to systems already in place.

3.2.1 Slide Preparation

The prescription proposed is for the pollen samples to be suspended in
some setting gel with a refractive index similar to that of glass. Silicon
oil may be desirable if the slides are to be checked on a conventional
microscope, as are agar or glycerine if an aqueous medium is required.
The suspension should have a concentration that results in no more
than 500 pollen grains per slide to reduce clumping. Adding a drop of
detergent to a last rinse before drying in any treatment of pollen will
also help reduce clumping. The slide is placed on a warmer to help air
bubbles escape the gel. The sample suspension volume is such that
when dropped onto the slide and the cover slip is placed on top, the oil
does not travel past the outer edges of the cover slip. Molten wax is
dropped onto the slide at the edge of the cover slip to ‘wick’ under the
cover slip and seal the pollen suspension in. the slide is removed from
the warmer plate so the wax solidifies, contains the suspension and
holds the cover slip firmly in place on the slide.

The slide surfaces can now be cleaned without moving the cover slip or
pollen grains within the slide.

Fossil pollen grains are usually in mixtures of silicates, clays,
vegetation etc and must undergo rigorous chemical and sieving
treatments. These treatments are well documented and outside the
scope of this study, however for automatic counting the slides should be
cleaner and more sparse than are often used for viewing under a
conventional microscope. Flenley et al. have suggested methods for
improved removal of debris [17, 56].

3.3 The XY stage: specification and operation
Specification:
• 2.6 microns linear movement per step afforded by stepper motors
• 3 microns repeatability for each of two Parker 404XR linear

positioners used for X and Y sections of the stage movements
• Measured: 20 microns repeatability when 1/10th micro-stepped

stepper motors are used to drive the linear positioners
• 6.3 pixels per step on the high magnification microscope

 22

• 0.7 pixels per step on the low magnification microscope
• variable steps per second: programmable with ramp-up and

ramp-down

A prepared slide is placed manually on the slide holder and is fixed in
place by a spring holding the slide against two lateral surfaces. This
ensures a fixed placement for the slide. If the slide is removed and
replaced, its relocation is such that a pollen in view under the high
magnification microscope remains in the same view to within a few
microns.

The slide is held between the light source and microscopes by the slide
holder. The slide is held around its edges so light can pass through it.
The slide holder is fixed to an XY stage designed for precision
movement. Stepper motors drive the stage X and Y movements. The
stepper motors have a step angle of 1.8º. The motors step by turning off
the electromagnetic stator coil that holds them in place and turning on
the neighbouring coil to attract the rotor to it. This may be done by
gradually decreasing power to one coil while ramping up power to the
next. By holding both coils at half power the rotor is held
approximately half way in between. The drivers used for AutoStage are
able to hold the rotor between coils, in this manner, at intervals of
1/10th of the 1.8º afforded by a single step. A 1/10th step translates into
a linear motion of the X or Y stage movement of 2.6 microns. Although
the XY stage is described as ‘precision’, there will be some ‘slop’ and
‘stickiness’ in the movement and the micro-stepping motors will not
have the power to drive against the friction at small intervals. It was
empirically found that using the 1/10th “micro-step”, the stage can be
relocated to a specific point with an offset maximum of 20 microns. The
stepper motors are controlled from a PC via an RS232 serial connection
to a commercial motor driver.

 23

Figure 3-3: Diagram of low magnification images on a slide.

Figure 3-3 shows a slide and cover slip in plan view. The user drives
the low resolution camera to the start position and marks the position
by keyboard entry. The microscope is then driven to the far diagonal of
some area of interest and a second position marked. The software
calculates a series of evenly spaced overlapping images that will cover
the area of interest completely. The centre of the final image is marked
as the zero reference point for all subsequent locations. To store a
location of a pollen grain in any image that relates to the reference
point, considering Figure 3-4, the pollen location within the image is
known by the number of pixels in rows, r, and columns, c, from the top
right corner of the image. The row and column pixels to the centre of
the image are subtracted so a pixel distance from the centre of the
image is obtained. This is converted to ‘steps’ by a predetermined
conversion factor (see pixels per step in the specification listing at the
beginning of this section). The pollen grain distance from the image
centre is added to the x,y distance from the reference point to the
image centre, which is known in steps. The x,y distance in steps
between the two microscope centres is known, so the high
magnification microscope can now be driven to the reference point and
hence to any pollen located in the low magnification imaging and
segmentation operations.

 24

Figure 3-4: Location of an object in an image from the slide reference point.
r and c are in pixels. Pixel distance from the centre is calculated and
converted to steps to be added to x and y, known in steps.

3.4 Auto-Focus
Specification:
1. 12 microns of linear movement per step.
2. Approximately 10 seconds per focus

For consistency and ease of integration, the movement control
mechanism for the ‘z’ movement, or focus, is the same as for the ‘x’ and
‘y’ movements: a stepper motor controlled by a commercial
controller/driver unit that is under computer control via the serial port.
The stepper motor rotational movement is converted to a linear
movement by a standard microscope focus worm drive mechanism.

Auto-focus is performed once for the low magnification imaging of the
slide. For each object imaged with the high magnification microscope
an auto-focus is performed. The focus was developed to be completely
automatic but a once-per-slide user pre-focus was added to increase
reliability.

There are three levels at which a focus might be found: the bottom of
the slide; the top of the slide under the cover slip where the pollen is;
and the top of the cover slip. There is often dust, oil, finger marks or

 25

glass imperfections that show up at these levels. If the slide is very
clean the focus algorithm could find the correct one by the magnitude
of the parameter measured for finding focus. Built into the algorithm is
a wide sweep for finding the three levels and deciding through a series
of tests which local peak is the correct one.

Figure 3-5: A gradient squared measure of focus showing the three focus
levels of a slide. The peaks from left to right indicate: the slide bottom, the
slide/cover-slip with the pollen suspension, and the top of the cover slip. The
slide is quite dirty which is indicated by the outer surfaces having more
detail and therefore higher focus measurement values.

It was decided that the risk of finding the wrong focal plane was
reduced if the user set the focus manually while setting up the system
and the algorithm then refocused around that point, assuming that the
result would be more consistent using an auto-focus. The same
user-initiated focus position, adjusted for the difference in height
between the two microscopes, is used as a starting point in focussing
for high magnification image capture.

An auto-focus capture sequence for each object found is performed in
an upward direction. As with the focus sequence capture, driving the
microscope to the focus position found is always in the upward
direction. The upward direction of critical focus movements reduces
mechanical backlash and stickiness effects thus reducing variation in
the resulting position.

Stopping focus at or near the first focus peak found would speed up the
focus process but risk focussing on dust or glass surface artefacts as
was noted by Geusebroek et al. [22].

For the focus algorithm, a quantitative measure of focus is extracted
from each image and stored as an array of numbers in the order of

 26

their capture. A local maximum algorithm finds any peaks in the
array. A noise floor in the array is estimated to eliminate the smaller
peaks. The peak values and the absolute maximum value are stored
along with their position in the array. If the absolute maximum is at
the beginning or end of the array then it is discarded. Remaining peaks
are compared for height, and position within the array, and an
algorithm determines which is most likely to be the peak representing
the pollen focal plane.

A number of focus measures were gleaned from the literature [28, 39,
54, 61] and starting with the simplest and least computationally
intensive, were trialled in images from the AutoStage to gauge their
effectiveness. Eleven in all were trialled including: standard deviation
of all grey levels; variance; a normalised variance measure; maximum
of x,y direction gradient of neighbouring pixels; vollath4; vollath5; the
derivative in x and y directions which is essentially a measure of the
slope of values between pixels; a measure of power in all pixel values; a
histogram measure; a measure of entropy in the image grey level
values; and the Fourier transform where the mean of the largest 1000
values of the real portion of a fast Fourier transform of grey level
values is calculated. Functions that required a threshold required extra
considerations to determine the correct threshold and were found to be
less effective with large variations in image type. Some of the better
performing functions are shown in the graphs of function-value versus
focus-step in Figure 3-10.

Figure 3-6: Focus Function. This figure from Groen et al. [28], defines the
properties required of a good focus function. v should be small and
reproducible while η is large, ideally ε = 0. This figure can be used to
evaluate the graphs in Figure 3-10.

 27

Groen [28], evaluated eleven functions and concluded functions based
on squared derivatives and normalised standard deviation would have
the required properties. Santos [61], concludes Vollath4 and Vollath5
to be top of their performance list, however, Kehtarnavaz [39], shows
results showing squared gradient to be better when compared to
Vollath5: Figure 3-7.

Figure 3-7: Focus measures; squared gradient compared to Vollath5 [39]

For images from AutoStage, the squared gradient produced very good
results. Over a range of image types, all from AutoStage, the squared
gradient was empirically more consistent in performance than others of
similar effectiveness such as the derivative. In trialling the gradient
measured in both x and y directions, the x direction was found to
produce a better result more often. By choosing the maximum gradient
value between x and y directions at each pixel, it was found to be even
more consistent in performance so this was the chosen function and
named “maxGrad” in the software code.
A Matlab function for gradient is used to obtain x and y gradients and
the maximum for each value is determined, squared and then all
values are summed. The gradient is described in the Matlab help file
as:
{FX,FY} = GRADIENT(F) returns the numerical gradient of the matrix
F. FX corresponds to dF/dx, the differences in the x (column) direction.
FY corresponds to dF/dy, the differences in the y (row) direction. The
spacing between points in each direction is assumed to be one.

For low magnification images, the maxGrad was found to be too
sensitive to noise and introduced many peaks which would hinder the
local peak finding algorithm. The large “width at a low percentage of
the maximum”, (η in Figure 3-6), property of the normalised standard
deviation, considered to be valuable by Groen [28], was found to reduce
the noise peaks and proved to be more reliable for low magnification
images. The width at high percentage of maximum, (v in Figure 3-6), is
also large but did not affect the result in the trials performed. The

 28

variance proved to be a better function given Groen’s criteria (Figure
3-6) but as standard deviation showed equal performance for the
images tested and was computationally less demanding the standard
deviation of the image grey values was chosen for the low
magnification auto-focus function.

Figure 3-8: Cropped image series; #18, #19, #20. #19 was selected as
‘in-focus’ by the focus algorithm.

Figure 3-9: The entire In-focus image, #19 of series used to produce
associated graphs, the first of which is shown above, to the right . More
graphs of function values versus focus step are shown in Figure 3-10, and a
second image series example is shown in Figure 3-11.

 29

Figure 3-10: Focus graphs; focus algorithm values versus image series
number. The focussed image is shown above. A cross marks any local peaks
and a dotted line across marks a noise floor calculated level, below which
peaks are ignored. All algorithms detect image #19 but the shapes vary as
shown.

Figure 3-11: Focus graphs for a second image (shown below)

 30

Figure 3-12: A second image series used for focus data: in-focus image #21.

 31

4 Microscopes

Introduction

A suitable microscope was proposed for the project by
Holdaway [34]. That design was reasonably faithfully
followed for developing and building into the system and
is described below. For this project a second, wide angle,
or low magnification, microscope was also developed. In
order to quantify any changes in the prototype it is
important to have a base measure of parameters so
measures such as resolution and depth of field are
defined. These parameters may be used for parameter
and tolerance design as described in §2.4.

4.1 Low Magnification Digital Microscope
specification:

• 640 x 480 pixels
• Magnification: 1x, a 10 micron pollen grain is about 7 (2.62)pixels.
• 1 pixel = 3.8 microns
• Field of view is 2.43mm x 1.82mm
• 100 low magnification images will cover the area under a standard

rectangular microscope slide cover slip

The low magnification microscope was included to capture images of a
slide with enough resolution to detect the presence of pollen grains of
all sizes of interest (10-100 microns) and a field of view to allow a series
of as few images as possible to cover an entire slide. The aim for the
inclusion of the second microscope was to speed up the pollen location
process. Slides are to be prepared with a relatively low concentration of
pollen to avoid clumping (see §3.2.1) and the high magnification
microscope would have therefore captured many images with no pollen
in them. Any requirement of auto-focus for the low magnification
images would have slowed the process, reducing or negating its
usefulness.

An option had been to adapt one microscope for both tasks by making
the high magnification microscope camera adjustable in distance from
the objective lens to alter the magnification. That option required
added mechanical complexity and perhaps another drive motor for the
adjustment to be made automatically. Suitable cameras are now

 32

inexpensive and the mechanism to drive the slide under each would
exist, so the decision was made to add a second microscope for the
prototype.

The limiting factor for field of view was the need to detect the smallest
pollen of interest (10 micron diameter). An optical magnification of 1x
results in the area of an object of 10 microns diameter, being
represented by about 7 pixels. Unity magnification, about 1/10th of
magnification of the high magnification camera, was chosen. The
resulting field of view is 2.43mm x 1.82mm.

Figure 4-1: Low magnification microscope images showing, from left to
right, 100micron spaced lines and pollen on a slide. The white mass near the
edge is a wax seal.

The depth of field is large enough, and sensitivity to focus low enough
for the system to focus once and capture the entire slide with a single
focus setting. The images from this camera form a series that overlap
slightly and segmentation removes any objects found touching the
borders. Pollen found twice as a result of the overlap are removed by an
algorithm described in §6.3. An existing problem with this approach is
that any pollen found twice adds to the time taken by the system as a
whole.

4.1.1 The Camera Sensor

The microscope was made by removing the camera printed circuit
board and lens from an inexpensive “web-cam” and adding a plastic
tube between its sensor and lens to effectively increase lens to sensor
distance and increase the magnification. The tube length required was
5mm. The lens screws into its holder, which, in the camera, is a focus
mechanism. It was useful for fine tuning the magnification.

The magnification of the low magnification microscope is 1x. A small,
inexpensive sensor and lens module on a printed circuit board was
modified by increasing the lens-to-sensor distance sufficient to achieve
the required magnification. The sensor and lens combination was

 33

removed from an inexpensive “web-cam”. The magnification was
measured using a slide micrometer: a microscope slide with 11 etched
lines 100 microns apart (1mm) and lines 10 microns apart between two
of them. By taking an image and counting the pixels from line to line,
the microscope could be calibrated (see Figure 4-1).

The camera was built into a housing, constructed at Massey
University, and secured to the high magnification microscope. It has an
8mm sensor with 640x480 pixels that are about 9 microns square.

4.2 High Magnification Digital Microscope
Specification:

• 1024 x 768 pixels
• pixel size is 4.65 microns square
• sensor size has a 6mm diagonal
• Magnification 11.2x, a 10 micron diameter pollen is represented by

about 580 pixels
• 1 pixel represents 0.415 microns of the object
• Field of view is 0.425mm x 0.318mm

Table 4-1: Microscope optical data with symbols used in formulae below.

unit symbol value

magnification m 11.2

Image distance v 207.4mm

Object distance u 18.6mm

Object distance from front element 7mm

Lens Focal length f 17mm

Numerical aperture N 0.25

Objective lens aperture a 2.5mm

Circle of confusion c 0.0018mm

Wavelength of light λ 550x10-6mm

Refractive index of air n 1.0

The high magnification microscope captures detail almost down to the
resolution allowed by the wavelength of light being used (see §4.2.2,
equation (4.3)). This microscope consists of a CCD sensor and image
forming lens. The lens used is a standard microscope objective. The
advantages of the microscope as designed are that it is easily
fabricated, inexpensive and has a low optical magnification. The low

 34

optical magnification results in a larger depth of field than a
conventional microscope with a similar ‘viewing’ magnification. The
digital microscope viewing magnification is similar to the 400x
conventional microscope used for capturing the images used in testing
of the classification system (see §8.1). The additional magnification for
viewing eventuates from the increase in pixel size from the 4.65
microns in the imaging sensor to the medium used to view the image.
For example, 1024x768 pixels in the 6mm diagonal sensor is translated
to 1024x768 pixels on say a 432mm (17”) diagonal computer screen,
resulting in about 72x magnification and 790x magnification overall,
taking the 11.2x optical magnification into account. This accounts for
images viewed on a computer screen. For feature extraction, the
resolution (§4.2.2), and correct sampling of it by the sensor (§4.2.4) is
important.
The effects of aperture were discussed by Holdaway [34], and
diffraction effects were found to be limiting the resolution. Aperture
control is not implemented in AutoStage and the widest available
aperture, limited by the objective lens, is used. In general, lighting
intensity can be altered by:

• adjusting the size of an aperture, “stopping”
• reducing the intensity of the light source
• and in the case of the digital microscope, altering the sensor

capture time or ‘shutter speed’.

Stopping down increases depth of field but also degrades resolution
(§4.2.2). A pollen grain might be as small as 10 microns across. Some
features, as shown in images from a scanning electron microscope
(SEM, see Figure 4-2), are of sizes below the limits of resolution of this
system, so resolution is the limiting factor here. No stopping function
was added because resolution should not be reduced and image
intensity is adjustable by the other means mentioned above.

 35

Figure 4-2: Scanning Electron Microscope (SEM) images of Scots Pine grain
(left) Birch Pollen grain (centre) grass pollen grain (right). Scale is
unknown. [58]

Figure 4-3: An interesting comparison of pollen captured on AutoStage,
compared to the SEM images in Figure 4-2. From left to right they are Pine
(Radiata), Silver Birch, and grass (Brown Top) A Silver Birch pollen may
vary from 15 to 28 microns diameter. The pine pollen are about 50-70
microns across. Relative scale of images is approximate only.

4.2.1 Imaging Aberrations

A number of possible aberrations are introduced in §2.2. Most are dealt
with conveniently by the use of a manufactured objective lens. Two
that may not, “Curvature of Field” and “Distortions”, are discussed
below.

Curvature of field is caused by the light radiating outward from the
lens making equidistant points a curved field. This might be corrected
by a curved image sensor, however the sensor is small enough on the
curved surface that the effect is not significant as the following shows.
The diagonal of the image sensor from centre to one corner measures
3mm. Considering Figure 4-4, the maximum offset of the sensor from
the true image, x, is calculated as follows:
 tan 3/ 207.4 0.829a a= ⇒ = ° (4.1)

()

6

3 3

3 3

sin 3 10 / 207.4 10

sin 207.4 10 3 10 50 10
sin

a x

ax m
a

−

− −

− −

= × × +

× × − ×
⇒ = ≈ ×

−

 (4.2)

 36

Figure 4-4: Field Curvature Distortion

To determine if this is significant, by similar triangles:
6 92.25 / 207.4 / 2.25 50 10 / 207.4 524 10c x c m− −= ⇒ = × × ≈ × ; where x, shown

in Figure 4-4 and calculated in equation (4.2), is an error in focal
position; and where c is the circle of confusion radius as in Figure 4-5.

Figure 4-5: Circle of confusion for Depth of Focus

The circle of confusion of 0.5 microns, resulting from the shift of 50
microns along the focus field is not significant compared to the sensor
element size of 4.65 microns.

Distortions are often caused by misplaced apertures, or “stops”.
AutoStage requires as large an aperture as possible to maximise
resolution (§4.2.2). This is achieved by having no “stops” other than the
restriction afforded by the size of the objective lens. As the objective
lens group is manufactured, aperture size is fixed, however if stops
were ever to be considered, this effect would need to be revisited.

4.2.2 Resolution

The smallest resolution we can theoretically obtain is defined first by λ,
the wavelength of the light, however diffraction effects must be
considered. Diffraction adds to the resolution limit imposed by
wavelength. When a point source passes through a limiting aperture, it

 37

produces a central bright “Airy disk” (Sir George Airy, 1801-1892)
around the image point. There are also bright diffraction rings
extending outward, but of decreasing intensity, the first of which has
only 1.7% the radiant power of the centre of the Airy disk [62]. The
Airy disk angular size is calculated by, sin 0.61 / aβ λ= × . Rayleigh
proposed that two points are resolved if the centre of one is no nearer
than the first dark ring just outside the Airy disk [62].

Figure 4-6: Light through an aperture showing Airy disk, diffraction
patterns.

For a lens system such as in microscopes, the resolution depends on the
diameter of the smallest light restriction in the objective and the
lens-to-object distance. This characterises the light collecting ability of
the lens and forms twice the angle β shown in Figure 4-9. which is
called “angular diameter” of the lens.

The numerical aperture of a lens is measured as the sine of ‘β’,
multiplied by the refractive index, ‘n ’ of the medium that light passes
into, from the lens. The refractive index is often taken as 1.0 for air.
When oil immersion lenses are used, for increasing resolution, the
refractive index of the oil must be used. Numerical aperture is often
quoted on lenses as an indication of their resolving capability.

Resolution depends on many things including conditions of
illumination. Some formulae for resolution include the numerical
aperture of the condenser lens in the lighting system. The Rayleigh
criterion is often used, however that is a subjective value based on

 38

empirical observations and involving the optics of the eye, so it is not
suitable here. The Sparrow criterion estimates a 26% increase in
resolution over the Rayleigh criterion and is less arbitrary in its
definition by stating that two objects are resolved if the combined
intensity half way between their Airy disk centres is equal or less than
the centre of the Airy disk of lower intensity [23]. It can be visualised,
by considering Figure 4-7, that as the two points move closer together
and the combined intensity forms a single peak then the two peaks are
no longer distinguishable. This criterion does not depend on the human
eye so is more appropriate for digital imaging as is used in AutoStage.

The Sparrow criterion is stated more formally:

when both, []d () () 0
dx Lf x f x σ+ + = and []

2

2

d () () 0
dx Lf x f x σ+ + = [38],

f(x) is the instrumental response, and σL is the Sparrow limit.

The Sparrow limit: 0.47
sin

R
n

λ
θ

×=
×

, and Rayleigh limit: 1.22
sin

R
n

λ
θ

×=
×

.

Figure 4-7: Airy disk intensity profiles (intensity versus distance across
disk) showing Sparrow criterion

Resolution is defined by equation (4.3) in [71] as a reasonable
approximation of resolution for common usage, so for AutoStage:

9

60.5 0.5 550 10 0.9 10
2.25sin 1 sin arctan

7

R m
n a

λ −
−× × ×= = ≈ ×

× ⎛ ⎞× ⎜ ⎟
⎝ ⎠

 (4.3)

 39

What is essentially required for AutoStage is a practical maximisation
of resolution. It does, however, need to be tempered with consideration
for depth of field and particularly contrast. Adjusting parameters to
minimise one will, in some cases, affect the others.

The slide, cover slip and pollen suspension gel, also have an effect on
resolution. Light from the object to the objective lens is refracted
outward by the transition from the cover slip into air so resolution is
decreased as it effectively reduces the angular diameter of the objective
lens; see Figure 4-8.

Figure 4-8: glass slide showing refraction effects.

4.2.3 Depth of Field

Depth of field and depth of focus are similar measures, with depth of
field being the range of “in-focus” distance of the object from the lens
and depth of focus being the range of distance the image is “in-focus”
from the other side of the lens. Only one point in each case is perfectly
in-focus, but the blurring increases as distance away from that point
increases and depth of field/focus is therefore some decision as to what
level of blur is tolerable. The size of a “circle of confusion”, shown in
Figure 4-9, is a measure of blur. In the case of the digital microscope
with auto-focus, the sensor (image) is fixed in place, and the distance to
the object is moved, or focussed, until determined “in-focus” by some
algorithm. The image sensor is fixed and therefore defines the focal
plane exactly. This leaves depth of field to be determined. As defined in
Figure 4-9, depth of field is the range of object positions along the
optical axis deemed to be in focus.

To quantify depth of field, first a circle of confusion is defined. It could
be defined as the size of the image sensor elements as any movement of
the light ray across the width of the sensor element makes no
difference to the illumination detected, but this assumes the sensor

 40

detects the same level of light falling on any part of it and also assumes
there is no Airy disk (see §4.2.2). An Airy disk size could be calculated
and factored into the amount it could move before affecting a
neighbouring sensor element.

With the image sensor position fixed and defined as the image plane,
the object depth of field can be calculated. The image sensor has
elements that are 4.6 microns square. Any blurring within this size is
assumed not to be detected by the sensor, so the circle of confusion size
we define as no detectable blurring to be tolerated. The Airy disk

angular diameter is calculated as 0.61sin
a

λβ ×= [62]. Therefore,

considering Figure 4-9, its diameter is:

 6

1

0.61 1.1 10
/ 21 sin tan

m
a
u

λ −

−

× = ∗
⎛ ⎞⎛ ⎞× ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4.4)

So, a point forming an Airy disk on a 4.65 microns square image sensor
element, with the centres concurrent, has almost 1.8 microns to move
before affecting a neighbouring image element. That defines a circle of
confusion radius, usable for AutoStage.

Young et al. [73] say, “The depth-of-focus (Δz) of a microscope system
has been described by a number of authors. Unfortunately, these
descriptions do not agree”. That has been the result of searches for a
suitable formula for AutoStage. A derivation of DoF for this project was
performed with a result within the same range as the three equations,
(4.5), (4.6) & (4.7) and is placed as an appendix in §A. The depth of field
is estimated by these equations to be around 10 microns.

By geometric manipulations of diagrams such as Figure 4-9, and
manipulation or differentiation of the lens equation, 1/ 1/ 1/u v f+ = ,
some change in u, away from f along the optical axis, will cause a
corresponding change in v which will result in the circle of confusion
increasing in size. The equations (4.5) and (4.6) were derived much in
this way, however equation (4.7) was derived as explained in [73].

Table 4-1, explains the common parameters used in these equations.

Depth of Field may be calculated by [55]:

() 2

2
4 2 2

2 f du u f f
aDoF

ff d u
a

−
=

⎛ ⎞− ⎜ ⎟
⎝ ⎠

 (4.5)

as cited by Holdaway, however there is no clear derivation offered.

 41

Conrad [11], derives equations in detail and:

 ()
()

()
()2 2,n f

Ncu u f Ncu u f
DoF DoF

f Nc u f f Nc u f
− −

= =
+ − − −

 (4.6)

The subscripts in this equation for DoF indicate the portions of DoF
from the object toward the lens (n), and from the object away from the
lens (f). These are δu2 and δu1 respectively, in Figure 4-9.

Young et al. [73], use diffraction more directly than using the circle of
confusion to derive an equation that is empirically tested:

()2

4 1 1 /
z

n N n

λΔ =
× × − −

 (4.7)

where Δz is depth of field.

Figure 4-9 shows the rays that would form an image and the boundary
rays that would define a circle of confusion around the image sensor.

Figure 4-9: Ray Diagram for Depth of Field. An image forming lens and its
half angular diameter, β. Image distance, v, divided by object distance, u, is
magnification, m. For a given circle of confusion about the image point,
there is an associated depth of field around the object point. A thick lens
simply creates two principal planes that affect the values of parameters but
do not affect the relative measures used in the associated equations.

Numerical aperture (NA) is a commonly quoted figure of merit,
indicating resolution of an objective lens and is described in §4.2.1. One
important area for further testing is to determine whether increasing
NA to increase resolution, with the side effect of decreasing depth of
field, would improve images for feature extraction. Depth of field may
then be improved by the integration of the most-in-focus parts of each

 42

of a series of images taken in steps with the focal plane moving
through the object. An example is shown in §9.3.2.

4.2.4 Magnification

The objective lens is a set of lenses designed to act as a single
magnifying lens, but has corrections in the design to compensate for
aberrations that occur (see §2.2 and §4.2.1). The objective lens has a
nominal magnification of 10x and a numerical aperture of 0.25. A
physical tube separates the objective lens from the eye piece in a
conventional microscope but the standard measurement for “optical
tube” is the distance from the image side focal point, f, to the
real-image plane. Magnification is the optical tube length divided by
the focal distance, f [23]. The objective lens has a 10x magnification
when a JIS, Japanese standard 170mm optical tube is used. (160mm is
the DIN or European standard). Therefore f = 170/10 = 17mm. The
objective lens is being used with a magnification of 11.2 by moving the
image sensor to 207.4mm from the lens. The new optical tube length is
207.4 - 17 = 190.4mm and 190·4/17 = 11.2. This was verified by using
the micrometer slide as used to determine magnification for the low
magnification microscope.

Given that the sensor is sampling the image, then it is expected the
sampling theorem will hold. Sampling should therefore be at twice the
maximum spatial frequency; that is half the minimum spatial
resolution. Resolution is found to be about 0.9 micron in §4.2.2, so
sample spacing required is at 0.45 microns or less. With a sensor pixel
dimensions of 4.652 microns and a magnification of 11·2, the object
area represented in a pixel is (4.65/11.2)2 ≈ 0.422 microns which
satisfies the sampling criterion attributed to Nyquist [52], and stated
more directly by Shannon [63]. Thus it is concluded that magnification
is sufficient to capture all information that resolution affords the
system.

4.2.5 The Image Sensor and Camera

The camera is a MicroPix™, model M1024. Connection to the
computer is by IEEE 1394 serial data standard or “FireWire”. Using
progressive scan it can transmit up to 30 frames per second. The
MicroPix incorporates a Sony™ ICX204AL image sensor (see appendix
in §11.1.2). The active sensor area is a rectangle of 5.952mm diagonal
incorporating 1024x768 pixels that are 4.65 microns square.

 43

Figure 4-10: High magnification microscope construction

The lens mounting provided on the MicroPix is a standard ‘C’ mount. A
physical tube to optically seal and fix the distance from the sensor to
the objective lens, was manufactured at Massey University. A tube
length of 207.4mm fixes the magnification at 11.2x as in Figure 4-10.

The Matlab image acquisition toolbox allows a data connection from
the PC to the MicroPix camera via an IEEE 1394 (FireWire) serial
connection.

Some resulting images are shown in Figure 4-11.

Figure 4-11: High magnification images cropped to the central portion
(500x500) of the image. The pollen on the left is about 40 microns across and
the pair in the right hand image are about 20 microns diameter.

 44

5 Lighting

Introduction

Lighting sources were considered by Holdaway [34], and
an incandescent lamp suggested as suitable on the
grounds of “design simplicity”. Lighting is considered
here further.

A mains powered incandescent lamp outputs light of varying intensity
due to the alternating supply voltage. With small image sensor
integration times, the images would be of varying brightness unless
appropriate capture timings were implemented. A simple and suitable
alternative of a stable, regulated, direct current supply was chosen. A
quartz-halogen lamp was found to be suitable for intensity output, size,
price and availability. Heat was a problem so a cooling fan was added
to mitigate the effects.

Light emitting diodes (LEDs) were considered as a more efficient
visible light emitter. The output of a high-intensity LED is about 12
candella (Cd) compared to 8000Cd of the quartz-halogen lamp.
Multiple LEDs using a timed and pulsed supply was considered but the
incandescent lamp was selected, again for its simplicity.

Holdaway [34], noted that band-pass filtering the light will result in
less chromatic distortion. This is theoretically true however the
objective lens is corrected for chromatic aberrations. Most objective
lenses are spherically corrected at the sodium yellow wavelength of
589.2nm [55]. The MicroPix camera is filtered internally so that its
highest sensitivity is to the green part of the spectrum at about 550nm.
Green to yellow/green light wavelength is in the 500-600nm range and
human vision is most sensitive around 546nm. While no improvements
could be discerned viewing images on a screen with such filtering, it
was considered prudent to use a yellow/green filter to limit the
band-width of the AutoStage lighting source.

The light forming the image, is reflected (specular, diffuse, or both),
refracted and diffracted by the object [23]. The plane of polarisation of
light can be affected by reflection and scattering [24]. Image formation
is therefore complex, and beyond the intended scope here to fully
define. Pollen are transparent in nature with fresh pollen containing
gamete material inside the shell, while fossil pollen have decomposed,

 45

all except for the sporopollenin shell. Fossil and fresh pollen grains
appear quite differently under the microscope. This prototype,
AutoStage, allows for empirical measures of lighting quality by
comparing classification results using different lighting schemes for
various object types. The scheme adopted by initial design affords good
resolution and excellent contrast. It was chosen as it performed best
when examined on a computer screen. The results show an
improvement in classification accuracy when compared to conventional
light microscope images, indicating that the lighting choice was a good
one. Further improvements may be possible, now that the system is
operational.

Speckle is a phenomenon of coherent light, where reflection from
surfaces with features in the order of the wavelength of the light, cause
the reflected light to add constructively or destructively depending on
the surface distances from the light source. This causes bright and
dark spots in the image. Coherence of light is a continuum from
coherent, as with laser light, to incoherent, as with diffusely reflected
light. Directed light from a point source through a collimator lens, as
used in many optical microscopes, forms light that is somewhat
coherent, but not as coherent as laser. The lighting for AutoStage,
being sourced from a wide scattering filter, is very much at the non-
coherent end of the continuum.

5.1 Dark Field Illumination
Further research and experiments on lighting found that simply
blocking the path from the light source directly into the objective lens,
and adding a diffuser to allow light to “divert” to the object, created a
simple form of dark-field lighting that increased contrast. Contrast is
next to resolution in importance to imaging. If resolution is adequate
but contrast is not, the distinction between two points may not be made
as their grey colour level will be close in value.

An unexpected effect observed was the merging into the background of
some detritus, as shown in Figure 5-1. An explanation offered is that
opaque objects appear black and merge into the background while
transparent objects (pollen) appear much lighter with features that are
darkened but without blocking light entirely. Edges of opaque objects
will show as the light reflects off them, toward the objective lens.

 46

Figure 5-1: light-field and dark-field illumination (respectively) showing
pollen grains standing out more amongst detritus in the dark-field image.

Dark field imaging is perhaps better obtained, and still reasonably
simple, with more directed side lighting as shown in Figure 5-2. This
would improve efficiency of the lighting and reduced heating. It was
decided not to spend effort on modifying the lighting further until the
system could be tested properly, and a benchmark obtained with which
to show a cost effective advantage to the purpose of the system.

Figure 5-2: Dark-field lighting. Left: implemented. Right: simple alternative -
in three dimensions this lighting forms a hollow cone of light with apex at
the object and the objective lens inside the hollow.

Dark-field lighting is generally known to, and shown to have better
contrast as in [49] where an increase of contrast from 10% to 80% was
achieved in changing from light-field to dark-field microscopy and in
[48] where, “The microscope uses a halogen bulb light source and a
silicon vidicon camera detector. High-contrast images of defects are

 47

shown as bright detail on a dark background. For the same view, DFM
gives image detail contrast as high as 100%, compared with 25% in
bright-field illumination.”

There are many statements of objects smaller than the resolution of
the system being “visualised” rather than resolved, as in [4]. In this
case an object smaller than the wavelength of light used, appears in
the image, although not to scale. Whether this exists in some degree for
AutoStage, and whether it is an advantage or disadvantage has not
been determined. It would be difficult to attempt to image particles
smaller than 1 micron and be sure the resultant image showed those
particles and not others – that is to say, ensure an absolutely clean
slide and then have those particles only, placed on it. The article cited,
[4], was attempting to show that the particles observed in the image
were not simply clumps of the smaller particles.

 48

6 The Segmentation of Pollen

Introduction

A segmentation scheme was proposed by Holdaway [34],
but the algorithm required user input, was developed
for a limited number of pollen types, tests differed from
the proposed design due to a lack of background images,
and lighting was different from that used here. A new
segmentation scheme was therefore developed for
AutoStage. Two segmentation algorithms were required
to find pollen in images from each of the microscopes,
but the basis of the algorithm is the same for each.
Holdaway was successful for his image set but had
problems with two pollen grains too close together. This
is still the case here and “clumping” is an as yet
partially unsolved problem. It is suggested, in
discussion within the Pollen Group, that the counting of
clumped pollen grains is a difficult image processing
problem which will require a separate study.
Palynologists within the group say that clumping is also
difficult to do “by eye” and clumps of pollen are often
ignored as too difficult to discriminate.

6.1 Segmentation and Segmentation of Touching Objects
It is stated by Pal and Pal [53] that, “it is known that no method [of
segmentation] is equally good for all images…”. They review some
segmentation techniques including grey level thresholding, iterative
pixel classification, Markov random field based approaches, neural
network based approaches, surface based segmentation, edge detection
and fuzzy set theory based methods. Edge detection was chosen as the
basic technique here, as pollen against the dark background form
sharp edges that are relatively easily detected. The problem of
clumping was avoided by specifying sparsely populated slides, however
from results it appears that clumping, and pollen touching other
objects, cause a slight reduction in counting compared to manual
counting. The Hough transform is likely to be a useful tool in later
developments in sorting pollen in clumps as its ability to locate circles
of certain radii could be used to pick out the pollen grains within one
large blob. Some clumping examples are shown in Figure 6-1. As

 49

texture is already being successfully used for differentiating pollen
then it would be a good candidate for use in clump splitting, although
the implemented differentiation is between pollen types and for this
problem, differentiation between pollen and non-pollen is required. It
seems logical to combine edge and region detection as was done by
Narandra [51], however a simpler and more specific method should be
sufficient given the somewhat predictable nature of clumps of pollen. If
a clump is larger in diameter than the largest pollen grain and/or
irregular in shape (that is it would be rejected by the present
segmentation algorithm) then it requires the detection of features or
regional patterning and once defined as a clump, the edges of
individual grains within that clump need to be detected.

Figure 6-1: Examples of clumping. The image on the left shows clumping
with overlapping and on the right, pollen grains overlap with detritus. The
translucent nature of the pollen is apparent in these images.

6.2 The Segmentation of Low Magnification Images
The low magnification microscope images are varied in nature between
images and across individual images. They may contain a black
background with white pollen, added detritus, large white areas of the
wax used to seal cover slips, or cover slip edges etc. Some examples are
shown in Figure 6-2.

 50

Figure 6-2: Two low magnification images and their segmented image below,
from a series of images of a slide of fossil pollen from a core sample taken
from Easter Island by Prof. John Flenley.

The wax seal required an added test for black object on white
background as the speckled nature of it found many edges with many
of those being of similar shape and size to pollen.

Details of the algorithms are found in the software description in
§11.1.12.2.4. Essentially, the algorithm subtracts a background image,
finds edges, joins any breaks in what may have been a connected edge
and fills any resulting shapes enclosed by edges to create solid “blobs”
formed in a binary image. A series of tests for size, shape and relative
background intensity eliminate many of the blobs. Examples of blobs
are seen in the segmented, low magnification images of Figure 6-2.

A background image for the system was taken without a slide in place
so it could be subtracted from subsequent images to remove any
constant effects from lighting, lens and sensor.

The image processing tasks to achieve forming blobs are a canny edge
detector, dilate, fill then erode. The edge detector requires a threshold
of the image. The threshold value varies from image to image but
changes drastically when a large portion of white such as the wax seal
appears in an image. To counter this unwanted effect the threshold

 51

was taken from the background image so it is constant across all
images and is effective in finding edges for objects above the
background intensity. The effect of this change is shown in Figure 6-3,
between image numbers 2 & 3. Image 2 is missing edges for a large
number of the less intense pollen grains in the image.

Figure 6-3: Images of segmentation sequence. Top left to bottom right are:
1. original image, with the wax seal covering the left half
2. edges using the original image to calculate threshold – note missing pollen
3. edges using background image to calculate threshold
4. edges dilated, filled and the borders cleared
5. erosion brings blobs to original object size and smoothes edges
6. final objects are found with some objects removed by various tests

described in the text

1 2

3 4

5 6

 52

The ‘fill’ checks each black pixel in the binary image and if it can not
find a black pixel path to the edge of the image, it changes all black
pixels in the necessarily edge-enclosed area to white, creating the blob.
The edge was dilated to join the gaps but it increased pixels in all
directions making the final blob larger than the original object, so an
erosion is performed to reduce the blob size to about the size of the
object in the original image. This also has the effect of smoothing the
edges of the blobs.

After blobs are created they are tested for the likelihood of being a
pollen grain. The number of pixels in a blob represents area and is
used to discard blobs that are too large or small to be pollen grains. A
bounding rectangle around each blob is tested for width to height ratio
and if found too large or small, the blob is discarded as being too
elongated in an X or Y direction. The area of the bounding rectangle
compared to the area of the blob is used to deselect more objects that
are elongated in a 45° direction. A convex hull is created for each blob
and the ratio of its area to the area of the blob is used to eliminate any
object that is essentially round but with its boundary making
excursions in toward its centre.

Some more sophisticated methods of segmentation were trialled on the
images, for example, watershed and Hough transform methods. A
reference text used, [25], allowed an internet download of a Matlab
toolbox, “DIPUM” which was useful for implementing these algorithms.
It was found that the more complex or sophisticated the algorithm, the
more selective or specific it was and would not as easily adapt to the
variety of tasks required across a variety of slides.

A slide preparation prescription has been proposed as although
segmentation is successful for pre-existing slides (examples of which
are those shown in Figure 6-2), it is more robust for slides prepared in
the prescribed manner (§3.2.1). The prescription is deliberately as
similar to present practice as possible so the integration of AutoStage
into a laboratory would be seamless.

6.3 The Segmentation of High Magnification Images
The high magnification microscope is driven to the location of each
pollen grain found in the previous segmentation, so that its location is
ideally central in the image. Rounding of the conversions from
pixel-size to motor-step-size, and tolerances in the movement of the
XY-stage, cause the pollen to appear with an offset from the centre of
the image. If other objects are in the central field of view, then it can be
unclear which one is the pollen target, so a second segmentation is

 53

performed. The increase of information in the higher magnification
image enables the elimination of more non-pollen objects. The image
size is reduced to a size within which the intended object is expected to
appear given all tolerances. The size reduction reduces computation
time. The size was determined empirically as 500x500 pixels, centrally
located within the 1024x768 pixels of the full image. The central
location of the reduced image size suggests that there is little offset
from centre of the mean of the positions of all objects. This is because it
is a simple matter to adjust the software to correct for any such offset.

Figure 6-4: Illustration of the same pollen being selected twice. The left
image is evaluated first, then the right image. The larger pollen is the target
in the first image and the smaller pollen is the target in the second. The
target pollen grains are tending to appear below and left of centre of the
image. If the centre, or position at which a pollen is expected, is altered to
be between the last found pollen and true centre (shown at the narrow
cross) then the correct pollen is more likely found each time.

A pollen grain may be imaged twice if it is close to another. When the
second pollen is to be imaged, its offset in position may cause the pollen
already captured, to be imaged again, as indicated in Figure 6-4. To
overcome this problem, two processes are implemented. The first
process moves the expected position of each pollen from the centre of
the image, to a pseudo-centre determined as some distance between the
centre of the image and the centre of the last pollen grain found. This is
effective because the offsets from image centre of successive pollen
grains tend to drift slowly around the centre rather than jump
randomly. In the second process, each valid pollen grain found has its
global position on the slide stored and compared to the locations of all
previous grains found. The pollen is discarded if its location matches

 54

any other within an adjustable tolerance. If this location match
discards a pollen grain, then the segmentation algorithm continues to
look for the next closest pollen to the pseudo-centre of the image. If all
objects in that particular image are discarded, the slide is driven to the
next location.

The “blob-finding” algorithm for high magnification images is in
principal the same as for low magnification images (see §6.1) with the
parameters changed to suit the differences between images.

Once shape and size have eliminated some of the blobs, the nearest to
the pseudo-centre, that has a slide location not found previously is
located, as described above. The final selection is cropped to slightly
larger than its bounding rectangle and saved in a folder for
classification.

 55

7 Features Extraction and Classification of Pollen

Introduction

The contents of each image are represented by 43
numbers representing 43 features of that image.
Classification is performed by an artificial neural
network. The neural network is trained using features
from images of pollen grains that have been identified
by trained palynologists. Once pollen images are
captured from a slide of mixed pollen types, the
extracted features are classified into groups of pollen
taxa by the trained neural network. The number in each
group is the resulting count of the slide for each pollen
taxa. The associated images are displayed on the
computer screen thus each grouping can be viewed by
the user and the count adjusted if required. In testing
the classification process, errors ranging between three
and twelve percent were found.

7.1 Pollen Features
Feature extraction is performed to reduce the data, in this case in an
image, to the necessary and sufficient amount to perform the
classification. Having too much data input to a classification system
may reduce effectiveness [6]. Too much data invites the curse of
dimensionality [5].

A suitable set of features was identified and reported by Zhang [74],
and published in 2004 [75]. Zhang himself used empirical methods to
reduce the feature set to about 12 features.

The features, and numbers of each (in parenthesis) are:
• Geometric features: area, circumference, compactness (3)
• Histogram features (2)
• Second Moment features (7)
• Grey Level Co-occurrence Matrix, GLCM features (5)
• Co-occurrence Matrix GGCM features (12)
• Gabor features (8)
• Wavelet features (6)

 56

There are a total of 43 features. Essentially there are some shape and
statistical features but the Gabor and Wavelet features are the
textural representations which is considered the main method of
distinguishing the pollen grains.

Textural features used are based on orthogonal wavelet decomposition
and Gabor transforms [74]. The wavelet transform is a joint
spatial/spatial-frequency method [45] and achieves high resolution in
these domains. These transforms are consistent with recent theories of
human vision [12]. Two-dimensional Gabor functions are local, spatial
band-pass filters. Textural analysers implemented using Gabor
transforms produce a strong correlation with human segmentation
[57].

The Zhang feature set was known to have elements of redundancy, so a
study was performed at Massey University by Etheridge [13], to
determine the effect of a reduced set of features by comparing
classification results with a Linear Discriminant Analysis (LDA) of the
data and then seeing if LDA could show any possible reduction in
features. Sets of highly correlated features were determined. All but
one feature from the correlated sets were removed. Consequently, the
full set of 39 features was reduced to 24 with discrimination errors of
10 using the full set rising to 14 errors using the reduced set. It was
decided that, as the computational effort required for the full set was
not excessive, the gain in computational time did not warrant even a
slightly increased error rate. Another result was that the classification
rate of an LDA was not better than the Multi-layer Perceptron neural
network.

Principal Components Analysis (PCA) was performed to again evaluate
feature set reduction and found only one or two features removable.
Classification using features sets reduced using PCA results, found a
reduction in accuracy not considered worth the saving in computational
time, so it was decided to maintain all 43 features in the system.

Now that a complete functioning system is available and evaluated, it
may be used as a benchmark for any future modifications. The
performance of any modified or new feature set may be compared to the
Zhang set. It is likely there will be some benefit to matching the
feature set to a particular discriminatory task: for example, when
classifying grass pollen that are very similar in appearance.

7.2 Classification Using an Artificial Neural Network
Zhang tested his feature set [74] using a Multi-Layer Perceptron
neural network (MLP) to perform classification of images with good

 57

results. The MLP is used in this project. Support Vector machines
(SVM) are considered useful for similar tasks with the advantage of not
being subject to over-training [59]. Over-training is explained in the
next paragraph. An SVM, with its binary decision mechanism, was
trialled on two grass pollen image sets and compared to the MLP for
the same two pollen image sets. The MLP scored a little over 90%
correct classification while the SVM scored 80%. The MLP is used for
the system as results are better than SVM. It is considered that any
major work on comparisons is better done once the prototype is
complete and whole-of-system trials are possible to compare new
concepts.

A neural network can be configured to work optimally on a particular
data type and the discussion below describes how the Netlab algorithm
used is optimised for pollen image features used in AutoStage. Netlab
is an MLP algorithm written by Ian Nabney [50] and available under
the GNU licence and freely available on the internet. The help file is
reproduced in (Appendix D).

Over-fitting and under-fitting can be a problem when trying to describe
data that is a sample of some population.

Figure 7-1: Under/over-fitting: the example data population is sinusoidal.
The data can be fitted with a straight line, a sinusoid, or a polynomial of
sufficient order to cut every point exactly. The polynomial models any noise
present and is thus “over-fitted”, as it does not represent the population
data as well as the sinusoid.

In Figure 7-1, the sampled data can be represented by increasingly
complex functions: a straight line, a sine wave, or a 10th order
polynomial. If the data population was in fact sinusoidal, with noise
causing random variation in the data, then a straight line would not
contain enough information to describe the population well, a sinusoid
would almost fit and a 10th order polynomial might fit the sample data

 58

exactly. The straight line would lack information and the polynomial
would contain added information about the noise in the particular
sample. With neural networks, repeated training causes
“strengthening of the synapses”, or the weights are more finely tuned
to the particular training data. If training is stopped too early, the
weights are not adjusted well enough. If training is continued too long,
the weights can become too finely tuned and when used for recognition
of new data, may reject it for being too different from the training data.
So for neural networks over-fitting is a result of over-training.
Under-fitting is the result of “early stopping”, or under training, of the
neural network. The number of hidden nodes affects the number of
weights and therefore the training effort per training epoch. The
number of training epochs and the number of hidden nodes need to be
determined for good classification results. They are determined by
verification of the neural network using exemplar data, in the case of
AutoStage, this data is features extracted from images of pollen that
have been identified by experts. A problem presents itself here in that
the exemplar data has been chosen by humans and so our training can
only be as good as the data presented as “known”.

Once a reasonably sized data base of images from the AutoStage was
compiled, 25% of the images were set aside for final classification tests,
results of which are reported in §8.1. The remaining 75% were used for
training the neural network for those tests. The 75% training image set
was again split into training and verification sets for running checks to
determine which parameters were optimal for the task of classifying
AutoStage images. How the number of epochs, number of hidden nodes
and number of training data were determined, is discussed in the next
three paragraphs.

The number of network training epochs is limited in the Netlab [50]
MLP algorithm when the activation error gradient reaches zero, or
when a maximum training count, or ‘epoch’ number, is reached;
whichever is first. A manual method of determining when overtraining
occurs was trialled by running training loops and evaluating the
classification result after each loop. More training reduces
classification error until over-training occurs at which time the
classification error begins to rise as shown in Figure 7-2.

 59

Figure 7-2: Optimisation between early-stopping and Over-fitting

After a series of trials using the type of data expected, an average
overtraining point could be determined. The number of epochs required
was found to vary from 80 to 150 within the range of pollen type
quantities expected: 3 to 50. The variation in classification error over
that range of epochs was not great, so a fixed number of epochs could
be used. For the results presented in this report, the training number
of epochs was fixed at 80.

The number of hidden nodes required was found by verification trials
using the verification sets of data. Classification runs on 100 images
using the remaining 25 for verification tests were performed varying
the number of hidden nodes until the success rate was maximised.

The number of training images required was found by trials varying
the numbers of images for training and checking the classification
result. The data bases collected included 200 images. Of these, 50 were
set aside for final testing. This left 150 for training and verification.
Varying portions of the 150 were used as training and verification sets
and the classification results recorded. It was found the more images
used, the better the result, so 150 images were used for training the
neural network for the final testing. This quantity is also required for
practical use of the machine as too many training images would be a
waste of resources and time. There was not a large change in accuracy
when using between 120 and 140 training images so it is thought that
the practical limit is close to the 150 training images used for the final
tests.

The MLP neural network implemented functions optimally with the
input data sets all with inputs compressed to between minus-one and
one. This fits the data into the same range as the sigmoid activation
function used (see Figure 2-6 in §2.4). To achieve the data compression,
the features matrix has its column data normalised; that is to say
transformed to have a mean of zero and standard deviation of one. This

 60

produces data marginally outside of the (-1, 1) limits. Tests showed
that it produced results slightly better than fitting the data exactly into
the (-1, 1) limits. The parameters required to normalise the data were
saved and will be used to transform any new data. That is, if another
pollen type data base is added to the present system, then the features
extracted will be transformed using the saved parameters. In that way
the data is very close to the values they would have been if they had all
been transformed together.

7.3 AutoStage Reports
The data reported by AutoStage is simply a count of each pollen type
found on a slide. The training of the neural network predetermines the
pollen types expected. The neural network used does not have the
ability to detect novel data, so all images are classified into one of the
predetermined groups. An additional pseudo-pollen type is added by
imaging common detritus found and forming another group. The pollen
images are displayed in their groups as classified, and a trained
operator selects any pollen grains that have obviously been
misclassified and alters the count accordingly. Some incorrectly
classified pollen grains stand out well amongst the others in an image
matrix so the count can be improved by a quick manual adjustment.
The display of image groups is useful for giving confidence to the
palynologist that the classification and count is a reasonable one. As
location data of images is stored, it is possible to adapt the program to
move the slide back to an image of a particular pollen grain for further
identification by the user.

 61

8 Testing and Comparison with Experts

Introduction

Testing was performed by:
1) testing the classification system on various image
sets. The classification system consists of the features
set and neural network. It is tested by compiling three
data bases of images to train and test neural networks
using the features extracted from the images.
2) comparison of the complete system results with
results of classification and counts by palynologists. The
complete AutoStage system is verified by classifying and
counting four slides four times each, and comparing the
results to the classification and count of the same slides
by five trained experts.

To test the system, a ‘known’ slide might have been manufactured and
counted by the AutoStage to measure accuracy. Two problems with
such a slide are ensuring that it is representative of many ‘real’ slides,
and knowing absolutely what is on it. It is very difficult to know for
certain what is on a slide at the microscopic level given the variation in
counting by “experts”, as shown in the results of the experiments
performed here. There is, at present, no other known method of
analysing slides that would be accepted as “better”. A manufactured
slide would not necessarily be representative of a prepared pollen slide
and therefore not a suitable test.

It was decided that the best way forward was to compare the
classification and counting of the AutoStage with that of humans. If
the means of a number of counts are the same and the variances the
same or smaller, then we could assume the machine would do as well
as humans and the advantage would be in the time saved. Until a
method of knowing the quantity of a variety of pollen on a slide is
found, the aim will be to match human accuracy and do better than
human variance.

 62

8.1 Classification tests
A series of classification tests were performed on the three image sets
from the three data bases of images:

1. AutoStage images
2. conventional microscope images
3. “Bangor” images from a data base used by France et al. [19].

The aim, description and results of the tests are given in each case. The
AutoStage and conventional microscope images are captured from the
same reference slides of known pollen. Only the capture mechanism
was different. The AutoStage images were captured automatically,
thus including the image background size, lighting, resolution and
focus, as factors in the testing.

Results are presented as the total correctly identified pollen grains in
the test, as a percentage of all pollen grains in the test. Five tests were
performed in each case and the five results are shown in tabular form.

8.1.1 Comparing Stained with Unstained Pollen

8.1.1.1 Aim

Staining is common in conventional microscopy as a means to highlight
features and making the pollen grain stand out against detritus that
usually does not take the stain. It is not certain that it is useful for
AutoStage and is an additional preparation step that might be left out.
Classification is compared for conventional microscope images that are
both stained and unstained. The aim is to see if the staining process
may be removed from slide preparation.

8.1.1.2 Description

29 training images and 10 test images of stained pollen and of
unstained pollen of the same 6 pollen types are used in the
classification process. Five tests each of stained and unstained are
performed.

Next a mixture of stained and unstained pollen images, of the same six
types, was classified to determine if the distinction made by staining
was sufficient to discriminate between the same pollen types.

 63

8.1.1.3 Results

Stained Slide Results:

Test # 1 2 3 4 5

% correct 95 95 95 96.7 96.7

Unstained Slide Results:

Test # 1 2 3 4 5

% correct 93.3 93.3 93.3 91.7 93.3

Mixed Stained/Unstained Results:

Test # 1 2 3 4 5

% correct 74.2 69.2 72.5 70 72.5

8.1.1.4 Discussion

Comparing the stained and unstained results in the first two tables
shows a consistently better result using stained pollen indicating
staining has a positive effect for classification.

Regarding the third table of results above, as fifty percent of the data
are stained/unstained, then we could expect a fifty percent error rate if
the each set of stained/unstained image sets were otherwise randomly
assigned to the two groups of the same pollen type. As there is also
generally between two and ten percent error between groups of
different pollen types then the expected success rate should be less
than fifty percent. The seventy percent result indicates there may be
some discrimination of the stained/unstained grouping. The low
success rate of about 72% indicates that staining does not differentiate
the pollen enough to be discriminated well by the classification system.

All other testing and evaluation exercises in this project were
performed using non-stained pollen. A confirming test should be
performed using AutoStage images and if the result supports the
conclusion here, then the decision to use stained pollen for the system
should be made.

 64

8.1.2 Comparing Conventional Microscope and AutoStage images for
classification

8.1.2.1 Aim

The aim here is to compare the discriminatory accuracy of the
classification system used by AutoStage, on conventional microscope
images as compared to images captured on the AutoStage. The images
of all seven pollen types used in this test were captured from the same
reference slides.

8.1.2.2 Description

40 training images and 10 test images of 7 pollen types were captured
from a conventional microscope and the same reference slides were
used to capture images using AutoStage. The images were classified
and counted.

8.1.2.3 Results

Conventional Microscope Image results

Test # 1 2 3 4 5

% correct 94.3 92.9 94.3 94.3 94.3

AutoStage Image Results:

Test # 1 2 3 4 5

% correct 98.6 97.1 100 97.1 98.6

t-Test: Paired Two Sample for Means where the second
sample is the result in the previous test §8.1.2.3

Excel t-test 94.286 98.571
Mean 93.92875 98.21425
Variance 0.51051025 1.87044225
Observations 4 4
Pearson Correlation 0.522188645
Hypothesized Mean Difference 0
Df 3
t Stat -7.348468778
P(T<=t) one-tail 0.00260393
t Critical one-tail 4.540702858
P(T<=t) two-tail 0.00520786
t Critical two-tail 5.840909309

 65

8.1.2.4 Discussion

The mean accuracy over five tests for conventional microscope images
is about 94% and for AutoStage images, 98%.

For the t-test that the means are equal at the 0.01 significance level,
we reject the null hypothesis that the means are equal.

The conclusion is that the AutoStage images are significantly better for
classification with the system of features and neural network used
here.

8.1.3 Large Pollen Type Count Using Conventional Microscope Images

8.1.3.1 Aim

The aim here is to test classification of a large pollen type group. The
conventional microscope data base has more pollen types than for
AutoStage images, however the AutoStage data base has more images
per pollen type so both are tested separately.

8.1.3.2 Description

All pollen types available with more than fifty images available, but
including only one of the seven grass pollen grains, were used to test
the classification accuracy. This resulted in a test using twenty-nine
pollen types. Forty training images and ten test images were used.

Usually grasses are counted by palynologists as a single type because
they are very difficult to discern by eye. Grasses are tested separately
in a later test.

8.1.3.3 Results

Conventional Microscope Images of Forty Pollen Types

Test # 1 2 3 4 5

% correct 78.6 77.6 78.3 80 78.3

8.1.3.4 Discussion

A 78.5% mean is not adequate for the system. In this test, the
restricted number of images per pollen allows for less training images
so the result will improve if 150 training images are used. Using the
conclusion from AutoStage/conventional microscope comparison in
§8.1.2, it can be concluded that AutoStage images will improve the
result further. Previous tests indicate that this would be improved by

 66

using larger numbers of training images and AutoStage data-base
images. The next test, 8.1.4, further defines AutoStage limitations.

8.1.4 Large Pollen Type Count Using AutoStage Images

8.1.4.1 Aim

The aim here is to test classification of a large pollen type group.

8.1.4.2 Description

Nineteen pollen types were tested using 150 of each type for training
and 50 for testing. All available pollen types from the AutoStage
data-base were used except only one of the three grasses available was
included.

8.1.4.3 Results

AutoStage Images of Nineteen Pollen Types

Test # 1 2 3 4 5

% correct 89.1 89.4 88.5 89.5 88.3

8.1.4.4 Discussion

89% is possibly only just acceptable but not a great result. It can be
seen that the classification system performs worse with larger numbers
of pollen types. This is a subject for future work and a suggestion for
overcoming this is made in §9.3.6.

8.1.5 Comparing Results from a Separate Project Data-Base

8.1.5.1 Aim

The aim is to compare the classification system using images from a
data base of images used in a separate project: France et al. [19], and
to compare results reported in that project using three pollen types
from their data-base.

8.1.5.2 Description

Images available on the internet from a project by France et al. were
classified by the AutoStage classification system. Seven pollen types
using 140 training and 50 test images from the data base were used to
check overall classification results of images captured outside of this
project.

 67

Then a more direct comparison of three pollen types against the results
reported by France et al. [19] for the same three types. France et al.,
recorded results using 3 pollen types from their data base with
60/60/84 images made available on the internet. Here, 45 of each set of
these images were used for training and 15 images for testing.
Validation was not required as the same neural network configuration
determined for AutoStage images was used.

8.1.5.3 Results

Results for Seven Pollen Types From a Separate Data-Base
Test # 1 2 3 4 5
% correct 93.4 94.3 92.9 92.9 92.3

Results for Three Pollen Types From a Separate Data-Base

Test # 1 2 3 4 5

% correct 93.3 95.6 95.6 95.6 95.6

This is compared to France et al. achieving 82%: 3% misclassified and
15% rejected by the classification scheme.

8.1.5.4 Discussion

Independent images used in an entirely separate project give
reasonable results at 93% accuracy. A comparison with AutoStage
images can not be made directly as the pollen types are different and
may be an inherently easier or more difficult data set for the
classification system. Training and test numbers however are similar
as are the number of pollen types used for tests on AutoStage and
conventional microscope images used in §8.1.2.

France achieved overall 82% correctly identified in the final
classification stage with 3% being misclassified and 15% being rejected.
The AutoStage was, on average, 95% successful in distinguishing 15 of
the same images with 5% misclassification.

8.1.6 Classification of Grass Pollen

8.1.6.1 Aim

Many grasses are very difficult to distinguish by eye and often they are
simply counted as one type by palynologists. The aim here is to test the
classification system for accuracy in classifying different grass taxa
using AutoStage and conventional microscope images. As more grass

 68

types were available in conventional microscope images than from the
AutoStage data-base, both were tested.

8.1.6.2 Description

Seven pollen types of grass were classified using 30 training images
and 10 test images from the conventional microscope data-base.

Using AutoStage data-base images, three grass types were classified.
From this data-base 150 training and 50 test images were available.
Examples are shown below:

 a selection of brown-top grass images

 a selection of cocksfoot grass images

 philaris grass images

8.1.6.3 Results

Conventional Microscope Grass Images – Seven Types

Test # 1 2 3 4 5

% correct 87.1 84.3 82.9 81.5 80

AutoStage Grass Images – Three Types

Test # 1 2 3 4 5

% correct 90 90.7 90 90 90

8.1.6.4 Discussion

The result for conventional microscope images is understandably low
as the grasses are very similar in appearance and a low training
number is available, however given the difficulty of the task the result
is very promising.

Again, the results are very promising considering the difficult task.
There remains the opportunity to develop features that are specific to
classifying grass pollen. Grasses may be filtered out as one type and

 69

then reclassified separately. This would reduce numbers of types which
has been shown to improve classification results.

8.2 A Complete System Test

8.2.1 Four Slides Classified by AutoStage Compared to Classification by
five Experts

8.2.2 Aim

To test the complete AutoStage system, a practical test was performed
operating the AutoStage as it is intended to be used in service. The
aim was to operate the AutoStage as intended and verify a count of
slides against counts by a method acceptable to palynologists as
sufficiently accurate.

8.2.3 Description

Although there are discussions regarding the efficacy of pollen counting
by humans, at present there is no other known method to accurately
count pollen on slides. To be statistically measurable, at least four
slides, at least four counts by the machine and at least four counts by
humans were proposed. Five experts were available as counters, so five
human counts were performed. Two professors, a post doctoral
researcher, a technician in the palynology laboratory at Massey
University and an honours year student heading for a PhD involving
palynology were the five selected.

The four slides were prepared by suspending six types of pollen in
glycerine. Slides were placed on a warmer and a drop of the suspension
placed using a pipette onto each slide. Once any air bubbles had
escaped the suspension the cover slip was placed on and molten wax
dropped onto the slide at a cover slip edge. The slides were removed
from the warmer and left to cool, setting the wax to form a seal. The
suspension was supplied by one of those who counted the slides.

The counters were given a test slide to trial and a series of light
microscope images showing what the pollen on the slide looked like,
along with identifying names. Two images of each of the six pollen
types used appear in Table 8-1, below.

A lighting fault occurred during counting of the slides on AutoStage so
further counts were performed until four were available. The results
from the first four counts which included the lighting fault, made no
difference to the statistical inferences and vary small differences to the

 70

general appearances of the graphs. The major effect of the lighting
fault was a large count of detritus.

Table 8-1: Images of pollen types used in verification testing

Betula pendula (silver

birch tree) P36.
Dactylus glomerata

(cocksfoot grass) P119.
Cupressus macrocarpa
(macrocarpa tree) P64

Ligustrum lucidum
(privet) P148

Wattle acacia P147

Pinus radiata P136

8.2.4 Results

The results are counts of each type found on each slide. The graphs
below show the mean and range of each pollen type counted. Results
for man and machine are side by side and in the same colour for each
pollen type.

The time taken for AutoStage to count one slide was about three times
longer than the time taken for a person to count the slides. The focus
time of 15 seconds combined with the number of false positives
identifying pollen in the low magnification segmentation due to the
wax not being solid enough in some areas of some slides were causes.

 71

Figure 8-1: Slide-A results

Figure 8-2: Slide-B results

 72

Figure 8-3: Slide-C results

Figure 8-4: Slide-D results

 73

Figure 8-5: Data points for all tests. Slides a, b, c, d are in columns; pollen
types Pnn are in rows; X-axis is pollen count; Y-axis is person/machine.

 74

Figure 8-5 was produced by “R” [21], a statistical program available
under the GNU general public licence on the internet. Each pair of
data points are the counts of P = person and M = machine for slides: a,
b, c, d and pollen type Pnnn, where Pnnn is the pollen identification
shown in Table 8-1.

8.2.5 Discussion

An analysis of variance, performed also in R, determined that the
overall mean of the machine counts was “significantly different” from
the overall mean of the counts by experts at the 95% confidence level.
The machine tends to count lower than people which is explained by
clumping together of pollen grains. The relatively small variance in
counting by AutoStage puts the counts mostly within the range of
counts by palynologists.

Overall, the conclusion is that the task of automated counting of pollen
is possible and AutoStage is capable of counting slides on a commercial
scale with results similar to that of trained palynologists. For
acceptance of the system it may be necessary to do side-by-side tests
using counts from the system and counts by palynologists on an entire
palynological project. For palynology the result here appears to be
significant with implications of increasing the amount of data able to
be gathered, processed and reported and an increase in consistency of
reports enabling higher resolution and therefore greater information
for a study than was previously possible for a given effort.

Some further work to better finding pollen grains in contact with other
objects would improve the results. The system at present relies on the
preparation reducing clumping to the level seen in these tests. No
image segmentation solution to finding pollen grains in contact with
other objects has been implemented so improvements are foreseeable.

The variation in counting is far smaller for AutoStage than for human
experts. AutoStage has a major advantage in not tiring of repetitive
work and is less likely to make errors of the types that humans will
make. It is expected then that comparisons of studies made in quite
different locations will be better compared if using an automated
system such as AutoStage and standardised slide preparation is
implemented.

From the classification tests we can conclude that the classification
tool-set used, is an excellent starting point for the system prototype
development with classification results comparable or better than those
in current literature.

 75

The cost of the system was under $NZ15,000 for prototype parts. It is
likely that a unit developed for production could be sold for between
$15,000 and $30,000 which would be affordable by a modest laboratory
and could save that much in labour costs within its first year of
operation. Compared to commercially available microscopes such as
that used by Hilsenstein [32] (Figure 8-6) which is valued at about
$AUS150,000, the AutoStage would be a very inexpensive option.

Figure 8-6: Olympus BX61. A commercial automatic microscope with digital
camera, auto-focus, XY stage movement and slide stacker valued at about
$AUS150,000

Development time for reducing the time taken for processing a slide
was given second-place status to the main aim of showing the task to
be possible. It could be argued that time taken is not an issue as the
unit still performs the required tasks, removing the drudgery while
trained personnel are engaged in more interesting work. However it is
recognised that time taken will be an issue and deserves some serious
attention. At present it takes 15 to 20 minutes to capture and process
the low magnification images and then 15 seconds per object found to
focus, process and capture. At that rate a slide of 500 pollen grains
should take about 145 minutes to complete. However, false positives,
due largely to the wax being too sparse in places, can double that time.
This is mostly a matter of correct preparation; however segmentation
improvements may be able to reduce these false positives.

Adding staining to the slide preparation process suggested here may
improve results.

 76

Tests for this project have all been performed using fresh pollen with
the cellulose shell still intact and containing gamete material so their
appearance therefore is different to fossil pollen. Other projects have
successfully used MLP neural networks with fossil pollen [41, 43, 44].
Tests should be performed using fossil pollen on the AutoStage
classification system explicitly. The segmentation algorithm has been
developed by including existing slides of fossil pollen (see Figure 6-2).

The grass tests show a reasonable discrimination of pollen types that
are often not done using light microscopy as it is very difficult to
distinguish many grasses by eye. The results of this test shows the
possibilities of discrimination of features that are not readily
distinguishable by eye even under a microscope. This opens up the
possibilities of developing features to distinguish other discrimination
tasks found difficult by eye and to attempt the further classification of
pollen by family, down to genus and perhaps down to species.

 77

9 Thesis Conclusions and Future Work

9.1 Thesis Conclusions
All eight of the objectives of the project, as listed in §1.1, were achieved.
The criterion for selection of the objectives was the development of a
system sufficient to fulfil the aim.

The aim of this project is considered achieved with the completion of a
system that classifies and counts slides automatically with results
mostly within the range of counts by expert palynologists. The system
shows such promise that the prototype could have immediate, if
limited, uses within a palynological laboratory and any shortcomings
are clear with evident paths to improvement, as suggested in §9.3.

Specifications have been determined so for any future modifications
made, changes in specification can be compared to changes in
classification results, making the prototype useful for design of a next
generation AutoStage.

9.2 Final State of the Project
The project is at a significant milestone, with a working prototype that
is demonstrated to be working and able to be used as a benchmark for
further refinements. In summary, from the people for whom the
development is aimed, two testimonials are presented.

From Professor John Flenley; palynologist:

“It seems to me that the machine is performing as well as the person, if
not better. At a glance, I should not be surprised if the overall data set
showed no statistical difference between the two. There may be some
systematic variation, e.g. in sample P64, it appears that the person
captures more images than the machine. But in P119 b and d, the
reverse is the case so this may be random variation. I am particularly
interested in the low number counts in P147 and P136. Think of the
time saving in scanning these sparse slides by machine and then
examining a matrix of images. I conclude that I would be delighted to
have such a machine in my laboratory. It could transform the laborious
laboratory work of palynology, and greatly increase efficiency.”

 78

From Alistair Clement, Massey scholar and palynological student:

“ [AutoStage] has great potential for easing much of the burden of the
pollen counting process from palynologists practicing in any area, and
is nothing less than an exciting technical achievement. Given the
impressive results produced by the project in a very short period of time,
I eagerly await the opportunity to go 'hands-on' with the system in the
lab.”

9.3 Future Work
Introduction

As this project was to show the viability of the system as
an aid to palynologists, there is a vast amount of future
work, especially when considering microscopic
automation for areas other than palynological
endeavours. For improving the system for
auto-palynology, some of the possibilities are discussed
briefly below. Given software control, and classification
sub-system design and training options, variations in
system application are numerous.

9.3.1 Output Reports

The output at present is a simple count of pollen types found. The
opportunity exists to add a pollen diagram as is often produced by
palaeopalynologists showing counts of pollen types for each layer
depth. Any further additions to reporting is a relatively simple matter
of augmenting the software to accept addition information as inputs
from the user and produce a report in almost any way desired.

9.3.2 Focal Integration Images – Improving Depth of Focus

Improving focus can be achieved by integration of focussed parts of a
series of images with varying focal planes. As the depth of field is
smaller than most pollen grain diameters, then parts of a grain will be
more in focus than other parts. Those parts may be extracted from a
series of progressively focussed images to form one image using the
most focussed areas of each in the series.

Forster et al. [15], describe three different techniques: point based;
neighbourhood based; and multi-resolutional based image fusion. They
propose wavelets as the method to extract localised frequency
information to determine the most focussed pixels from a series of
images that vary in focal point through the object.

 79

An example is shown below where the program, “combinez” , available
under the GNU licence from the internet [29], using a series of nine
pollen images from this project, processes them to produce the right
hand image shown in Figure 9-1.

Figure 9-1: The two most in-focussed images out of nine used for focus
integration (left and centre) and the result (right)

9.3.3 Focus Mechanism Improvement

The focus mechanical gear used has just sufficient resolution to capture
in-focus images but with a step size that varies slightly. A finer
resolution of five times the present gearing would improve the
situation by allowing a half step driver. A ten times reduction would
make single stepping possible and a twenty times reduction would also
allow twice the present focus step resolution.

Focussing may also be improved, or automated further, by adding a
distinctive mark to the surface of the slide to focus on as a starting
point for the auto-focus. The mark could be found automatically and if
placed in a fixed location on a standardised slide, pave the way to the
addition of a slide feeder for automatic, multiple slide processing.

9.3.4 Pre-processing of final Images

The images used for classification are segmented only with no
pre-processing to improve any characteristics that may improve the
classifier performance. Suggestions are complete image background
removal, edge enhancement and histogram stretching.

9.3.5 Texture Isolation

Images for feature extraction may be segmented further to contain only
the area showing surface features and excluding all background and
larger features such as culpi and pores. As the larger features can be
hidden and in different locations and angles of view, then they are

 80

perhaps showing as differences between the same pollen types rather
than similarities. A segmentation algorithm would need to be
developed and the idea tested against current classification accuracy.
In [43], 13 pollen types were classified with 100% accuracy using
images containing pollen texture only.

9.3.6 Improving Results with Large Numbers of Pollen Types

By grouping the pollen that are more likely to be confused by the
classification system into one group for initial classification, and then
running classification on the sub groups within each group, the number
of pollen types per classification task would be reduced, and with this
divide and conquer technique, the overall classification rate would be
improved, but at a cost of time.

9.3.7 Clumping and Clump Splitting

Clumping is only partially solved in the present system by reducing the
likelihood of it occurring. Although the amount of clumping is minimal,
it is still present and other pollens not used here may have stronger
tendencies to stick together. The pollen grains are also found lodged
next to detritus and bubbles. It would improve the system to find
pollen grains in these circumstances and so improve the accuracy of the
counting. There are many algorithms in the literature that would be
worthwhile investigating, especially in the area of cell and tissue
segmentation. Some interesting examples are [35-37]. The Hough
transform, particularly the variant for detecting circular patterns, may
be useful in selecting individual pollen grains in large clumps.

9.3.8 Novelty Detection

At present the pollen types to be classified must be pre-determined and
the neural network trained on exemplar images of those types. Novel
pollen types will be found and included in the classification results but
grouped with the pollen type that most resembles it. The reliance on
the palynologist to discern and separate out a new pollen type might be
reduced if the classification could perform the detection. Novel
detection is often handled using unsupervised networks, as used by
Marsland [46], where a “grow when required” network was developed
which may be useful in this area of development. Novel detection may
be implemented initially by taking the groups as separated by the
present neural network and further separating them using a novel
detection scheme to test if there are any sub-groups, and presenting
these to the palynologist for final analysis. The ability to drive the slide

 81

back for a ‘live’ display of the possible novel pollen, would allow the
palynologist to use manual focus variation and to roll the pollen grain
to view other facets, as is done presently in conventional microscopy to
aid the determination of pollen type.

9.3.9 Speeding up the Process

The main delays in the operation are in the capture of images and
focussing. Altering the processing of slides to ensure all pollen are as
close as possible to a single plane, and increasing depth of field, may
remove the requirement of automatic focussing for each high
magnification image. This would speed up the process considerably. If
this proves impractical, then the working on the individual elements
involved, to speed each one, will produce adequate results. Matlab is
designed for rapid development and not speed of execution. Well
written C code, for example, is likely to improve speed of execution
considerably. There is at present the requirement to add delays in the
software while images are captured from the cameras. It is thought to
be a property of Matlab, but it is possibly caused by the cameras
themselves.

9.3.10 Spatial Sampling of Slides

Tests in this project were performed by counting an entire slide. For
palaeopalynological studies, this is not how it is usually done.
Sampling is performed by counting microscope field of view widths
across a slide until a predetermined number of pollen have been
counted or the minimum of a predetermined number of pollen and all
strips across the slide are completed from edge to edge. It has been
suggested that present practice is not a random selection of pollen; an
assumption made for the statistics utilised to be valid [7]. To improve
randomness of sampling it is proposed that it be done by AutoStage in
the following manner.

The area of interest on the slide is divided into rectangular areas and
random selections of these areas are imaged by the high magnification
microscope. Each area is then segmented, classified and counted for
each rectangular sample. A statistical analysis could then be performed
to determine the slide populations of each pollen type found.

 i
Acount x
na

= ×∑ (9.1)

 ()sd x ASE
nan

= × (9.2)

 82

 ˆip
n

= ∏∑ (estimate of population) (9.3)

 ()ˆisd p SE
n

× = ∏ (9.4)

A = area of the slide
a = area of small areas captured
n = number of small areas captured
Π = population of the slide
pi = probability of ith species in the sample
sd = standard deviation
SE = standard error

By first running trials on slides with known populations, the standard
deviation and mean could be determined and a suitable sample size, n,
calculated. This should prove a better method than the present manual
methods.

If this proved to be a more satisfactory method of counting a slide, then
the low magnification camera might be dispensed with. The errors
introduced by the low magnification imaging and segmentation would
need to be weighed against the errors of sampling to determine the
better technique. It may be that the system retains the low
magnification microscope and the sampling is an option for certain
circumstances.

9.3.11 A More Compact Microscope

To compact the structure of the AutoStage, an infinity-corrected
objective lens would allow the optical tube length to be shorter but
requires the addition of a suitable image forming lens.

9.3.12 Dark Field Illumination

Another simple method of dark field illumination, proposed in 1982 by
Molesini et al. [47], utilises detuned interference filters. An
interference filter shows a selective peak transmittance as a function of
both wavelength and angle of incidence. With reference to Figure 9-2,
filter-1 is defined by peak wavelength γ1 and half bandwidth, Δγ1.
Filter-2 is then defined by γ2 and Δγ2. Usually, γ2 > γ1 and Δγ2 > Δγ1. Light
from filter-1 can not pass through filter-2 unless the angle θ is greater
than some angle depending on the difference, γ2-γ1. This angle is
calculated to be larger than the aperture angle of the objective lens so
only light scattered by the object can reach the objective lens at an
acceptable angle.

 83

The advantage of such a system over the present design is that
positioning of the lighting source would not be as critical. At present
the opaque light-blocks require careful shape and placement and cause
some variation in lighting intensity across the image.

Figure 9-2: Dark field Illumination using detuned interference filters.

 84

10 Bibliography

[1] "Digital Microscope Resource Centre,"

http://www.digitalmicroscope.com/, 2005.
[2] "Pollen Counting Web Sites,"

http://www.jrn.columbia.edu/studentwork/cns/2002-07-07/643.asp
https://www.aaaai.org/nab/index.cfm?p=displaystationinfo
http://www.ccairquality.org/faq/faq_pollen.html#pollen6.

[3] "Pollen dot Com," http://www.pollen.com/Pollen.com.asp, 2006.
[4] A. I. Abdel-Fattah, M. S. El-Genk, and P. W. Reimus, "On Visualization

of Sub-Micron Particles with Dark-Field Light Microscopy," Journal of
Colloid and Interface Science, vol. 246, pp. 410-412, 2002.

[5] R. Bellman, Adaptive Control Processes: A guided Tour. New Jersey:
Princeton University Press, 1961.

[6] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford: Oxford
University Press, 1995.

[7] D. Brookes and K. W. Thomas, "The Distribution of Pollen Grains on
Microscope Slides. Part 1. The Non-Randomness of the Distribution,"
pollen et spores, vol. IX, pp. 621-629, 1967.

[8] V. M. J. Bryant, Pollen: Nature's Fingerprints of Plants. Chicago:
Encyclopedia Britannica Inc., 1990.

[9] V. M. J. Bryant and D. C. Mildenhall, "Forensic Palynology: A New Way
to Catch Crooks," New Developments in Palynomorph Sampling,
Extraction and Analysis., vol. 33, pp. 145-155, 1998.

[10] H. Burkhardt, Q. Wang, and O. Ronneberger, "MICROBUS project,"
http://lmb.informatik.uni-
freiburg.de/research/omnibuss/index.en.html#pub.

[11] J. Conrad, "Depth of Field in Depth,"
http://www.largeformatphotography.info/articles, pp. 45, 2006.

[12] J. G. Daugman, "Two-Dimensional Spectral-Analysis of Cortical

Receptive-Field Profiles," Vision Research, vol. 20, pp. 847-856, 1980.
[13] P. Etheridge, "Discrimination of Pollen Taxa from Digital Image

Feature Data," Massey University, Palmerston North, Report July 28
2005.

[14] J. R. Flenley, "The Problem of Pollen Recognition," presented at
C.S.I.R.O. workshop, Canberra, Australia, 1968.

[15] B. Forster, D. Van De Ville, J. Berent, D. Sage, and M. Unser, "Complex
Wavelets for Extended Depth-of-Field: A New Method for the Fusion of
Multichannel Microscopy Images," Microscopy Research and Technique,
vol. 42, pp. 65-33, 2004.

 85

[16] M. Forster and J. R. Flenley, "Pollen Purification and Fractionation by
Equilibrium Density Gradient Centrifugation," Palynology, vol. 17, pp.
137-155, 1993.

[17] R. M. Forster and J. R. Flenley, "The Application of Density Gradient
Centrifugation to Palynology," in Miscillaneous Series No. 35, R. C.
Ward, Ed. Hull: School of Geography & Earth Resources, University of
Hull, England, 1989, pp. 19.

[18] D. W. Fountain, "Pollen and Inhalant Allergy," Biologist, vol. 49, pp. 5-9,
2002.

[19] I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, "A new
approach to automated pollen analysis," Quaternary Science Reviews,
vol. 19, pp. 537-546, 2000.

[20] G.P.Allen, R.M.Hodgson, S.R.Marsland, G.Arnold, R.C.Flemmer,
J.Flenley, and D.W.Fountain, "Automatic Recognition of Light
Microscope Pollen Images.," Image and Vision Computing New Zealand
2006, 2006.

[21] R. Gentleman, R. Ihaka, D. Bates, J. Chambers, P. Dalgaard, K. Hornik,
S. Iacus, F. Leisch, T. Lumley, M. Maechler, D. Murdoch, P. Murrell, M.
Plummer, B. Ripley, D. T. Lang, L. Tierney, and S. Urbanek, "R
Project," http://www.r-project.org/.

[22] J.-M. Geusebroek, F. Cornelissen, W. M. Arnold, and H. G. Smeulders,
"Robust autofocusing in microscopy," Cytometry, vol. 39, pp. 1-9, 2000.

[23] D. J. Goldstein, Understanding the Light Microscope - a Computer Aided
Introduction. London: Academic Press, 1999.

[24] D. J. Goldstein and M. A. Williams, "Quantitative Assesment of
Radiographs by Photometric reflectance Microscopy. An Improved
Method Using Polarised Light.," Histochemical Journal, vol. 6, pp. 223-
230, 1974.

[25] R. C. Gonzalez, R. E. Woods, and S. L. Eddons, Digital Image Processing
Using Matlab: Pearson Prentice Hall, 2004.

[26] D. G. Green, "The Ecological Interpretation of Fine Resolution Pollen
Records," New Phytologist, vol. 94, pp. 459-477, 1983.

[27] D. G. Green, "The Environmental Challenge for Numerical Palynology,"
INQUA Working Group on Data-Handling Methods, vol. 15, pp. 3-6,
1997.

[28] F. C. A. Groen, I. T. Young, and G. Ligthart, "A comparison of different
focus functions for use in autofocus algorithms," Cytometry, vol. 6, pp.
81-91, 1985.

[29] A. Hadley, "combinez,"
http://www.hadleyweb.pwp.blueyonder.co.uk/CZ5/combinez5.htm, 2006.

[30] S. Haykin, Neural Networks A Comprehensive Foundation, 2 ed. New
Jersey: Prentice Hall Inc., 1999.

[31] D. O. Hebb, The Organisation of Behaviour: A neuropsychological
Theory. New York: Wiley, 1949.

[32] V. Hilsenstein, "Robust Autofocusing for Automated Microscopy
Imaging of Fluorescently Labelled Bacteria," 2005.

[33] R. M. Hodgson, C. A. Holdaway, Z. Yongping, D. W. Fountain, and J. R.
Flenley, "Progress towards a system for the automatic recognition of

 86

pollen using light microscope images," Image and Signal Processing and
Analysis, 2005. ISPA 2005. Proceedings of the 4th International
Symposium on, pp. 76 - 81 2005

[34] C. Holdaway, "Automation of Pollen Analysis using a Computer
Microscope," Massey University, Palmerston North, Masters 2005.

[35] H. H. S. Ip and R. P. K. Yu, "Recursive splitting of active contours in
multiple clump segmentation," Electronics Letters, vol. 32, pp. 1564-
1566, 1996.

[36] X. C. Jin, S. H. Ong, and Jayasooriah, "A domain operator for binary
morphological processing," Image Processing, IEEE Transactions on, vol.
4, pp. 1042-1046, 1995.

[37] X. C. Jin, T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, "An
automated clump decomposition system for cervical tissue sections,"
1994.

[38] A. W. Jones and J. B. Hawthorn, "Towards a General Definition for
Spectroscopic Resolution," presented at ASP Conference Series, 1995.

[39] N. Kehtarnavaz and H. J. Oh, "Development and real-time
implementation of a rule-based auto-focus algorithm," Real-Time
Imaging, vol. 9, pp. 197-203, 2003.

[40] M. Langford, G. E. Taylor, and J. R. Flenley, "Computerized
Identification of Pollen Grains by Texture Analysis," Review of
Palaeobotany and Palynology, vol. 64, pp. 197-203, 1990.

[41] P. Li and J. R. Flenley, "Classification and Visualisation of Pollen data
Using MLP Neural Networks," Proceedings of Image and Vision
Computing New Zealand 1997, pp. 497 - 502, 1997.

[42] P. Li and J. R. Flenley, "Pollen texture identification using neural
networks," Grana, vol. 38, pp. 59-64, 1999.

[43] P. Li, J. R. Flenley, and L. K. Empson, "Classification of 13 types of New
Zealand Pollen patterns using Neural Networks," Proceedings of Image
and Vision Computing New Zealand 1998, pp. 120 - 123, 1998.

[44] P. Li, W. J. Treloar, J. R. Flenley, and L. Empson, "Towards automation
of palynology 2: the use of texture measures and neural network
analysis for automated identification of optical images of pollen grains,"
Journal of Quaternary Science, vol. 19, pp. 755-762, 2004.

[45] S. Mallat, A wavelet tour of signal processing. San Diego: Academic
Press, 1998.

[46] S. Marsland, "On-Line Novelty Detection Through Self-Organisation,
With Application To Inspection Robotics," University of Manchester
Manchester, PhD 2001.

[47] G. Molesini, D. Bertani, and M. Cetica, "Dark Ground Microscopy with
Detuned Interference Filters," Opt. Eng., vol. 21, pp. 1061-1063, 1982.

[48] P. C. Montgomery and J. P. Fillard, "Near infrared dark-field
microscopy with video for studying defects in III-V compound
materials," Measurement Science and Technology, vol. 1, pp. 120, 1990.

[49] P. C. Montgomery and J. P. Fillard, "Study of microdefects in near-
surface and interior of III-V compound wafers by dark-field
transmission microscopy," Electronics Letters, vol. 24, pp. 789-790, 1988.

 87

[50] I. T. Nabney, "NETLAB," Software,
http://www.ncrg.aston.ac.uk/netlab/index.php, 2003.

[51] A. Narendra, "A Transform for Multiscale Image Segmentation by
Integrated Edge and Region Detection," IEEE Transactions On Pattern
Analysis And Machine Intelligence, vol. 18, pp. 1211 - 1235, 1996.

[52] H. Nyquist, "Certain Topics in Telegraph Transmission Theory,"
Transactions of the A. I. E. E, pp. 617–644, 1928.

[53] N. R. Pal and S. K. Pal, "A Review On Image Segmentation Techniques,"
Pattern Recognition, vol. 26, pp. 1277 - 1294, 1993.

[54] J. L. Pech-Pacheco, G. Cristobal, J. Chamorro-Martinez, and J.
Fernandez-Valdivia, "Diatom autofocusing in brightfield microscopy: a
comparative study," 2000.

[55] F. Pedrotti and L. Pedrotti, Introduction to Optics. Englewood Cliffs
N.J.: Prentice Hall International, 1993.

[56] C. A. Prior, J. R. Flenley, and A. Zondervan, "A New Approach to the
Preparation of Pollen for AMS Dating," presented at 16th International
Radiocarbon Conference, Groningen, The Netherlands, 1997.

[57] T. R. Reed and H. Wechsler, "Segmentation of textured images and
Gestalt organization using spatial/spatial-frequency representations,"
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.
12, pp. 1-12, 1990.

[58] L. Robertson, "National Pollen and Aerobiology Research Unit,"
http://pollenuk.worc.ac.uk, 2004.

[59] M. Rodriguez-Damian, E. Cernadas, A. Formella, M. Fernandez-
Delgado, and P. De Sa-Otero, "Automatic detection and classification of
grains of pollen based on shape and texture," IEEE Transactions on
Systems Man and Cybernetics Part C-Applications and Reviews, vol. 36,
pp. 531-542, 2006.

[60] P. Rosenthal and R. Tester, "VideSCope," in Silicon Chip, 2001.
[61] A. Santos, C. O. De Solorzano, J. J. Vaquero, J. M. Pena, N. Malpica,

and F. Del Pozo, "Evaluation of autofocus functions in molecular
cytogenetic analysis," Journal of Microscopy-Oxford, vol. 188, pp. 264-
272, 1997.

[62] F. W. Sears, M. W. Zemansky, and H. D. Young, University Physics, 7
ed: Addison-Wesley Publishing Company Inc., 1987.

[63] C. E. Shannon, "Communication in the Presence of Noise," Proceedings
of the IRE, vol. 37, pp. 10-21, 1949.

[64] E. C. Stillman and J. R. Flenley, "The needs and prospects for
automation in palynology," Quaternary Science Reviews, vol. 15, pp. 1-5,
1996.

[65] G. Taguchi, E. Elsayed, and T. Hsiang, Quality Engineering in
Production Systems. New York, N.Y.: McGraw Hill,, 1989.

[66] P. Tomlinson, "Ultrasonic Filtration as an aid in Pollen Analysis of
Archaeological Deposits," Circaea, vol. 2, pp. 139-140, 1984.

[67] W. J. Treloar and J. R. Flenley, "An Investigation into the Potential of
Light Microscopy for the Automatic Identification of Pollen Grains by
the Analysis of their Surface Texture," presented at 9th International
Palyological Congress, Houston Texas, 1996.

 88

[68] W. J. Treloar, G. E. Taylor, and J. R. Flenley, "Towards automation of
palynology 1: analysis of pollen shape and ornamentation using simple
geometric measures, derived from scanning electron microscope
images," Journal of Quaternary Science, vol. 19, pp. 745-754, 2004.

[69] S. Viller, J. Bowers, and T. Rodden, "Human factors in requirements
engineering:: A survey of human sciences literature relevant to the
improvement of dependable systems development processes,"
Interacting with Computers, vol. 11, pp. 665-698, 1999.

[70] R. W. Weber, "Pollen Identification," Annals of Allergy, Asthma, and
Immunology, vol. 80, pp. 141-147, 1998.

[71] W. T. Welford, Optics, 2 ed. New York: Oxford University Press, 1988.
[72] H. J. L. White, "Preliminary Research into the Possibilities of

Automated Pollen Counting," Pollen Et Spores, vol. XXX, pp. 111-124,
1988.

[73] I. T. Young, R. Zagers, L. J. Van Vliet, and J. Mullikin, "Depth-of-Focus
in Microscopy," Proceedings Of The Scandinavian Conference On Image
Analysis, vol. 1, pp. 493, 1993.

[74] Y. Zhang, "Pollen Discrimination Using Image Analysis," Massey
University, Palmerston North report, 2001-2003 2003.

[75] Y. Zhang, D. W. Fountain, R. M. Hodgson, J. R. Flenley, and S.
Gunetileke, "Towards automation of palynology 3: pollen pattern
recognition using Gabor transforms and digital moments," Journal of
Quaternary Science, vol. 19, pp. 763-768, 2004.

 11-1

11 APPENDICES

 11-2

A. Defining Depth of Field for AutoStage
The circle of confusion is to be defined (Figure 11-1) and for visual
systems, this can be subjective.

Figure 11-1: Circle of confusion and depth of field

For this digital system with sensor elements of a fixed size we can
define the circle of confusion such that movement of an object point,
toward or away from the lens within the depth of field limits, will not
cause the light from that object point to affect a neighbouring image
sensor element. The object point forms an “Airy disk” at the sensor
which is calculated to be 0.61λ/a (§4.2.2). Considering the diameter of
that circle and the distance across a sensor element (see Figure 11-2)
the amount the image point may move before encountering the
neighbouring pixel is simply the distance from centre to edge of the
sensor element minus the radius of the Airy disk:

1

0.5
2 / 22 sin tan

pc
a
u

λ
−

×= −
⎛ ⎞⎛ ⎞× ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (11.1)

where p is the pixel, or sensor element dimension, and the Airy disk is
calculated using the geometry of Figure 4-9 to find the angle β. The
sensors are unable to be manufactured with sensitive elements butting
exactly so elements are actually somewhat smaller, and have gaps
between them making the circle of confusion defined here a
conservative estimate.

Having defined the circle of confusion the depth of field is calculated.

 11-3

Figure 11-2: The Airy disk and its limits of movement on the image sensor
that will define a circle of confusion used for depth of field calculation.

The lens equation, rearranged to find u, is:

 1 1 1 f vu
v u f f v

×+ = ⇒ =
−

 (11.2)

To find a change in u with a change in v we differentiate:

()2

du f f v
dv f v f v

×= +
− −

 (11.3)

And:

()2

f f vdu dv
f v f v

⎛ ⎞×= × +⎜ ⎟
⎜ ⎟− −⎝ ⎠

 (11.4)

That defines an infinitesimal change and as an approximation, we
assume the same holds true for a larger change, δu and δv. Now δv =
δv1 + δv2 (see Figure 4-9 and Figure 11-3) is required, and derived
from geometry in Figure 11-3.

 11-4

Figure 11-3: Image Side Ray Diagram showing depth of focus and circle of
confusion

/ 2tan a c

v
α +′ = , where a is the aperture of the lens and a/2 is axis to

aperture edge. The ray forming α' forms the same angle below the axis
and intersects with the circle of confusion (CoC) at the image plane so
CoC radius (c) divided by dv1 is tan(α'). So,

/ 2tan
1

a c c
v v

α
δ

+′ = = 1
/ 2
c vv

a c
δ ×=

+
 (11.5)

Similar arguments find 2
/ 2
c vv

a c
δ ×=

−
 (11.6)

So, depth of field is:

()2/ 2 / 2

c v c v f f vu
a c a c f v f v

δ
⎛ ⎞× × ×⎛ ⎞= + × +⎜ ⎟⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ −⎝ ⎠

 (11.7)

Ignoring c in the denominators, because it has 3 orders of magnitude
difference to a, the equation reduces to:

2

4cv f
a f v

⎛ ⎞
×⎜ ⎟−⎝ ⎠

 (11.8)

 11-5

Figure 11-4:
AutoStage

B. Published Paper
Automatic Recognition of Light-Microscope Pollen
Images.

G.P.Allen1, R.M.Hodgson1, S.R.Marsland1, G.Arnold1, R.C.Flemmer2,
J.Flenley3, D.W.Fountain4
1 Massey University, Institute of Information Sciences and Technology.
2 Massey University, Institute of Technology and Engineering.
3 Massey University, Geography Programme, School of People, Environment and
Planning.
4 Massey University, Institute of Molecular BioSciences.

Email: g.p.allen@massey.ac.nz

Abstract
This paper is a progress report on a project aimed at the realization of a low-cost,
automatic, trainable system “AutoStage” for recognition and counting of pollen.
Previous work on image feature selection and classification has been extended by
design and integration of an XY stage to allow slides to be scanned, an auto-focus
system, and segmentation software. The results of a series of classification tests are
reported, and verified by comparison with classification performance by expert
palynologists. A number of technical issues are addressed, including pollen slide
preparation and slide sampling protocols.

Keywords: pollen recognition, image processing, classification, microscopy

Introduction
Fossil pollen analysis is used to determine
flora genus from which climate data,
evidence of human activity and oil deposit
locations, can be deduced. Honey type, and
location of origin, can be indicated by the
pollens found in the honey. Allergy
sufferers can be advised of high pollen
counts in the air. Forensic investigations
can be aided by determining if an object
has been in a certain general location by
identifying the pollen types attached.
The need for an automated pollen counting
system has been identified and detailed for
many years [61]. A previous paper reported
on progress toward such a system [33] and
a significant milestone in that project is
reached, and reported here, with the
complete system designed, built and
evaluated as a functioning unit.
The system will:

• reduce the massive amount of laborious
counting required by highly skilled people
involved in palynological endeavours (30
months in a PhD);

• increase sample quantities allowing more
accurate pollen studies, especially in fine
resolution sampling [26];

• increase the frequency and locations of
pollen counts, which are of use to inhalant
allergy and asthma sufferers.
A good description of the problems involved
and requirements of a complete automated
system have been described recently [19,
56]. The broad requirements are to locate
pollens on a microscope slide and classify
each into taxonomic
categories at reasonable
cost, and with a success rate
at least that of a skilled
person. The saving is
labour, and time consumed
by people with skills that
could be better applied to
less mundane tasks.

The steps involved
in the AutoStage
project are:

1. develop a set of
features derived from
optical images of pollen
that are discriminable.
[72]

2. develop a supervised
classification system based on the
features-set developed in step 1.

 11-6

3. design a suitable low cost digital
microscope [34]

4. develop an image segmentation
scheme to isolate images of pollen and
exclude detritus

5. develop and build an XY stage to
allow slides to be scanned using
transmitted or reflected light

6. develop a system to find the location
of pollen on a slide and to capture
in-focus images

7. integrate the system resulting from
steps 1-6

8. evaluate and verify classification and
count performance of the system, and
compare to trained palynologists.

Steps 1-3 were completed [33]. This project
is to develop and build a working
microscope, build in an XY stage and focus
hardware, develop working segmentation
and focus algorithms: steps 4-8. We report
development of the final stages and
describe the completed system that takes a
prepared slide and captures microscopic
images from which pollen are segmented,
image features extracted and pollen taxa
classified and counted.

Automated System Description
The system described here finds pollen
grains on a slide and captures images of
them together with their location
information. Image features are extracted
and used for classification of pollen types,
enabling a count of the number of grains of
each pollen type. The classification of
pollen can be manually checked.
Selection of any portion of a slide to be
processed is accomplished by the user
moving the camera to opposite corners of a
rectangular area of interest. The current
system is capable of capturing areas
shaped with a pixel resolution of 1/2 micron.
The system comprises:
1. a machine to capture the images (§2.1)
2. segmentation, auto-focus and

classification algorithms (§2.2)
3. a computer to run the algorithms and

control the hardware (§2.3)
In addition to the sub-systems, slide
preparation (§2.4) and slide sampling (§2.5)
are discussed.

The Machine
The ‘machine’, is an XY stage with
attached slide holder. Two digital
microscopes are solidly mounted above a
filtered and cooled light source. As

transmission lighting is used, the slide sits
on an aperture in the XY stage positioned
between the cameras and light source as in
Figure 2.
There are two power supplies for lighting
and stepper motors. Two motors move the
XY stage to locate pollen under the
microscope and a third motor adjusts the
relative height of the cameras for
focussing.

Figure 2: AutoStage elements

The Stage
The slide is held in a standard microscope
holder and is moved by a commercial XY
precision stage driven by two stepper
motors. The motors are micro-stepped to
1/10th of their 1.8º step angle, allowing a
linear movement of 2.6 microns per step
(the smallest pollen of interest is about 10
microns across). The field of view of the
high magnification camera is 165 x 123
steps. The speed of movement is set below
maximum to about 5mm per second.

Two Microscopes
A low magnification microscope with a
large field of view (FOV), locates pollen
grains quickly while a high magnification
microscope captures images with sufficient
detail for feature extraction.
A digital camera sensor and a standard
microscope objective lens placed 207mm
from the camera sensor plane, forms the
“high magnification” microscope with an
optical magnification of 11·2x. Because the
camera sensor elements are 4.65 microns
square, the magnification that is required
for a human to view the formed image
occurs in translation from a 1024x768

 11-7

Figure 11-5: hi-mag
segmented image (Pinus
radiata. ~50µm)

pixels in the 6mm diagonal rectangle of the
sensor, to 1024x768 pixels on a computer
screen. That is about 72x, and 720x
including optical magnification.
The small optical magnification results in a
depth of field greater than for a
conventional microscope with the same
overall magnification.
The FOV of the main camera is less than
half a millimetre square. To image an
entire slide more quickly, the low
magnification camera with about 1/10th the
magnification, is used to more quickly
cover the slide and locate potential pollen
grains. A segmentation algorithm identifies
most detritus and the locations of
remaining objects found are stored for the
high magnification camera to investigate.
Segmentation, using the high
magnification
camera and
finding an
acceptable object,
produces an image
slightly larger
than the object
bounding
rectangle. The
image is stored for
feature extraction
and classification
(Figure 3).

The Lighting
Lighting is provided by a simple
arrangement of a quartz halogen lamp
directly below the cameras, with filtering,
and a fan for cooling. One filter is a
band-pass to reduce any chromatic
aberrations caused by the objective lens. A
green filter was chosen because the camera
is filtered to have a maximum sensitivity in
the same area of the spectrum as human
vision, λ ≈ 550nm: green.
A diffusion filter is the topmost filter and
has a light blocking rectangle below each
camera. The diffused light therefore strikes
the object oblique to the optical axis,
making it a simple form of “dark field”
illumination. Little of the light direct from
the source enters the objective lens directly
so the background is dark and objects are
light with darker ‘shadows’ formed by the
surface features. Contrast is increased over
light-field transmission microscopy with
one study measuring an increase from 10%
to 85% contrast [44]. Sub-resolution
visualisation is another property of

dark-field illumination [4]. This is where
objects smaller than the resolution of the
optical system are indicated, but not
resolved. That this has a positive or
negative effect on image features extracted
in this case would require further study.
The dark-field effects are helpful for
finding pollen in the low magnification
camera and creating a better image for
feature extraction.

The Algorithms

Auto-Focus
The low magnification camera is initially
focussed manually at the same time the
user is setting the limits for a region of
interest within the total area of the slide.
The auto-focus software then steps the
camera through that manually set focus
position, to refocus. The auto-focus
operates by calculating the standard
deviation of all grey levels of each image as
it steps through the focal plane. The
sequential values are stored as a vector
and a suitable peak is located by a “local
maximum” algorithm. The camera is
moved back to the step where the local
maximum was found. Movements of critical
placement are always in the upward
direction. This focus position is then used
for all images taken with the low
magnification camera as a high depth of
field keeps pollen sufficiently in focus.
There are several focus measurement
methods in the literature [22, 28, 36, 58].
After experimentation, the standard
���������������h�����������
��������������������������
�H�H�Ĉ�����������Z��������
desired smoothing effect and it is not
computationally demanding. The high magnification camera is fixed on
the same focus movement so once the low
magnification camera is focussed, the high
magnification camera can be moved to a
near focus position. This position is used to
perform an automatic refocus.
Auto-focusing is performed on each object
because the pollen grains are not
necessarily all within the same focal plane
and depth of field is less for this
microscope.

Figure 4: glass slide with cover slip
The auto-focussing algorithm used with the
high magnification camera incorporates a

 11-8

squared gradient measure where for each
pixel, the maximum grey-scale
gradient-squared, between y direction and
x direction is chosen and all chosen values
summed.

Figure 5: plot of focus image against
gradient with a dirty slide giving
greater focus values at the outer
surfaces. Centre peak is the focus aim.
The values plotted against focus step
number, results in a large ‘spike’ in value
for 3 or 4 steps of the focus movement. To
improve the auto-focus, the step size would
need to be made smaller and an algorithm
with greater selectivity might then be used.
To reduce computation time and help
ensure the object of interest is in focus, the
image area is reduced to around the centre
of the image where the object may be
located.
It takes 15s for one complete pollen grain
capture: move stage; auto-focus; capture;
segmentation, save image. Auto-focus takes
2/3 of that time at 10s.

Segmentation
Segmentation is difficult and often problem
specific. For a review on segmentation
techniques see [49].
A stored background image, taken with no
slide in place, is subtracted from images
captured to remove any image anomalies
caused by the system. Objects are located
by first finding edges using a Sobel edge
operator. As pollen are small objects with
well defined outlines, then the edge
detection results in a mostly closed loop.
Morphological operations follow: dilation,
to join any broken edges; filling any closed
loops to form solid ‘blobs’. Erosion then
reduces the blob size to be close to that of
the original object.
The blob pixel counts are measured, and
any blobs too small or too large to be a
pollen grain are removed. The smallest
pollen grains of interest (about 10 microns
across) have a blob area of 5 pixels in an
image from the low magnification camera.

Large pollen grains, 100 microns across,
are represented by a blob area of about 500
pixels.
For each blob of correct size, a bounding
rectangle and its area are calculated. If the
rectangle has an aspect ratio too small, or
the blob area to rectangle area ratio is too
small, then the blob is removed.
The area of a convex hull for each blob is
calculated and if the blob area to hull area
ratio is too small, the object is removed.
The centres of remaining blobs are found
and their positions on the slide calculated
and stored. The high magnification camera
is moved to each of those positions and
performs a segmentation process to find a
valid object nearest the centre of the image.
Tolerances in movements cause the object
to appear with a variable offset.

Classification
To perform taxonomic classification, image
features extraction and a multi-layer
perceptron [46] are used in line with [40].
The features used are those identified in
[71] consisting of 43 shape and texture
features.
Texture features are represented by a
series of Wavelet transforms that measure
localised spatial/spatial-frequency content
using Gabor and Orthogonal Wavelet
transforms. Orientation sensitivity is
reduced by averaging the results
corresponding to different directions [72].
Other textural features used are Grey
Level Co-occurrence Matrix, and Grey
Gradient Co-occurrence Matrix. Shape
features are geometric, histogram and
second moment.
Linear Discriminant Analysis, together
with Principal Components Analysis, were
employed to compare discrimination and
check for any redundant features [13]. No
reduction of feature-set size was found
useful. A Support Vector Machine
algorithm, with its binary classification
capability, was used to discriminate two
grass pollens and found to be less effective
than the multi-layer Perceptron.

The Computer
The computer used is a PC with a 2.6GHz
processor and 1Gbytes of RAM running
Windows XP professional. All the code is
written in Matlab including: image
acquisition via USB and IEEE1394
(FireWire); control of the stepper motors
via a serial port; and the auto-focus,

Slide
bottom

Slide
top

Slide/cove
r-slip

 11-9

segmentation, and classification
algorithms.

Slide Preparation
To improve the efficacy of the system the
slides should be prepared in a prescribed
and suitable manner. It is important this
should be similar to current practice.
Auto-focus can be adversely affected by
objects on surfaces other than the top of
the slide and the bottom of the cover-slip.
The segmentation algorithms could be
compromised and images captured would
be degraded if dust or oil were present,
even if they were out-of-focus.
The prescription proposed is for the pollen
samples to be suspended in some setting
gel. Silicon oil is suitable and may be
desirable if the slides are to be checked on
a conventional microscope, as are agar or
glycerol if an aqueous medium is required.
The suspension should have a
concentration that results in no more than
500 pollen grains per slide to reduce
clumping. The sample medium volume and
viscosity is such that when dropped onto
the slide and the cover slip is placed on top,
the medium does not travel past the outer
edges of the cover slip.
The slide is placed on a warmer to allow air
bubbles to escape the gel. Wax is dropped
onto the slide at the edge of the cover slip
to ‘wick’ under the cover slip to seal the
pollen suspension in, and hold the cover
slip firmly in place. The slide surfaces can
now be cleaned without moving the pollen
grains within the slide. Adding detergent
to a last rinse will help reduce clumping.

Spatial Sampling of Slides
If sampling the slide is applicable, the high
magnification camera only might be
utilised. It may perform sampling better
than in the current methods of manual
counting.
It is proposed that the area of interest of
the slide be divided up into rectangles, a
sample of those rectangles randomly
selected, and that the camera capture an
image of each selected rectangle. The
images would be segmented, classified and
counted for each rectangular sample. A
statistical analysis would estimate the
slide populations of each pollen type.
By running trials on slides with known
populations, a suitable sample size could be
calculated.

This should prove a better method than the
present manual methods, as the
randomness of the present slide sampling
approach is suspect [7].

Experiments and Results
Three image data bases were compiled:
1. CM: captured using a conventional

microscope
2. AS: captured using AutoStage
3. BR: images used by France et al. [19]

A selection of the data base images
was made of 50% for training, 25% for
validation and 25% for the final tests
reported here. The validation set was
used with the training set to adjust
neural net parameters for optimum
results and verify the system working.
The training and validation sets were
then combined for training and the
test set used for the final test. The
feature sets extracted from the
images, were presented in random
order to the classification software.
Results are expressed as total
correctly classified pollens as a
percentage of all pollens, and the
means and standard deviations over 5
tests recorded.

Compare AS with CM
The aim of this experiment is to compare
classification results using images taken
from the same slides by AutoStage and by
a conventional microscope.
Test description: Take 40 training, 10 test
and 7 types of images from AS and CM
data bases. Classify both sets and compare
mean results and check for difference with
a Students t test.
Results: The AS mean was 98%
correct (sd = 1.2) and the CM mean was
94% correct (sd = 0.6). Using a 95%
confidence t-test, the means are
significantly different.

 Classification of Grass Pollens
The aim of this experiment is to check
performance of the AutoStage when
classifying grass pollens which are
commonly counted as one type as they are
very difficult to distinguish manually
under a light microscope.
Test description: take 3 grass pollen image
sets from the AS data base, using 150
training and 50 test images. Classify the
sets.
Results: Mean = 90% correct (sd = 0.3).

 11-10

Large Pollen Type Count
The aim of this experiment is to check the
performance of the AutoStage using a
wider range of pollen types in a single test.
Test description: 19 types were used for the
experiment including all types available,
however 2 of the 3 grass pollens were
excluded. 150 training and 50 test images
were used.
Results: Mean = 89% correct (sd = 0.5).

AS Compared With another
Project

The aim of this experiment is to compare
AS classification results, to results
recorded by France et al [19].
Test description: France, recorded results
using 3 pollen types with 60/60/84 images
made available on the internet. Here, 45 of
each set of these images were used for
training and 15 images for testing.
Validation was not done as the neural
network configuration and weights were
not altered from other tests.
Results: France achieved overall 82%
correctly identified in the final
classification stage with 3% being
misclassified and 15% being rejected. The
AS was, on average, 95% successful in
distinguishing 15 of the same images with
5% misclassification.

AS Compared with Experts
The aim of this experiment is to compare
the total process of pollen counting from a
slide by the AutoStage, with the count of
the same slide by experts.
Test description: A slide with 6 pollen types
is prepared. Five ‘experts’ including two
professors, a post doctoral student, a
technician working in palynology and an
honours student, count the slide. The
AutoStage then counts the slide.
Result. The table below shows statistics of
the human count and one AutoStage count.
Pollen
type 5 People AutoStage

 Mean StdDev Range Raw Count
1 65.6 13.4 43 - 77 64
2 14.2 4.8 9 - 20 13
3 21.8 8.7 16 - 37 18
4 86 17.9 58 - 102 75
5 0.8 0.4 0 - 1 1
6 8.6 1.5 7 - 11 7

Table 1: The performance of
AutoStage was compared to five
human experts.

Conclusions
1. Most importantly, for a complete

working system and functional test
described in §3.5, AutoStage has
matched the result of experts. The
variability of AutoStage has yet to be
determined with multiple counts by
AutoStage on more slides and a
comprehensive statistical analysis.

2. The AutoStage system is giving
classification results improved upon
known published results.

3. The system is completed, functions well
with promises of the ability to meet the
requirements to be useful to a
palynologist.

4. Images from the AutoStage used for
classification performed better than
images from a conventional microscope.

5. The lighting system described gives
images of excellent contrast.

6. The auto-focus system performs well.
The digital microscope, having a
greater depth of field than a
conventional microscope, makes
focussing less critical.

7. The XY stage, with movement limits
larger than a slide, a repeatability of
position of 20 microns, speed in excess
of 10mm per second, and a spatial
resolution of 2.6 microns, would be
satisfactory for a manufactured
product.

8. The component costs of the prototype
system were under $NZ15,000
including the computer.

Acknowledgements
Many thanks to Steve Denby and crew at
the mechanical workshop of the Institute of
Fundamental Sciences, Massey University,
who built the AutoStage. Thanks also to,
Xiuying Zou for conventional image
capture of reference pollens.

References
[1] E. C. Stillman and J. R. Flenley,

"The needs and prospects for
automation in palynology,"
Quaternary Science Reviews, vol.
15, pp. 1-5, 1996.

[2] R. M. Hodgson, C. A. Holdaway, Z.
Yongping, D. W. Fountain, and J.
R. Flenley, "Progress towards a

 11-11

system for the automatic
recognition of pollen using light
microscope images," Image and
Signal Processing and Analysis,
2005. ISPA 2005. Proceedings of the
4th International Symposium on,
pp. 76 - 81 2005

[3] D. G. Green, "The Ecological
Interpretation of Fine Resolution
Pollen Records," New Phytologist,
vol. 94, pp. 459-477, 1983.

[4] I. France, A. W. G. Duller, G. A. T.
Duller, and H. F. Lamb, "A new
approach to automated pollen
analysis," Quaternary Science
Reviews, vol. 19, pp. 537-546, 2000.

[5] M. Rodriguez-Damian, E.
Cernadas, A. Formella, M.
Fernandez-Delgado, and P. De Sa-
Otero, "Automatic detection and
classification of grains of pollen
based on shape and texture," IEEE
Transactions on Systems Man and
Cybernetics Part C-Applications
and Reviews, vol. 36, pp. 531-542,
2006.

[6] Y. Zhang, D. W. Fountain, R. M.
Hodgson, J. R. Flenley, and S.
Gunetileke, "Towards automation
of palynology 3: pollen pattern
recognition using Gabor transforms
and digital moments," Journal of
Quaternary Science, vol. 19, pp.
763-768, 2004.

[7] C. Holdaway, "Automation of
Pollen Analysis using a Computer
Microscope," vol. Masters.
Palmerston North: Massey
University, 2005, pp. 125.

[8] P. C. Montgomery and J. P. Fillard,
"Study of microdefects in near-
surface and interior of III-V
compound wafers by dark-field
transmission microscopy,"
Electronics Letters, vol. 24, pp. 789-
790, 1988.

[9] A. I. Abdel-Fattah, M. S. El-Genk,
and P. W. Reimus, "On
Visualization of Sub-Micron
Particles with Dark-Field Light
Microscopy," Journal of Colloid and
Interface Science, vol. 246, pp. 410-
412, 2002.

[10] F. C. A. Groen, I. T. Young, and G.
Ligthart, "A comparison of different
focus functions for use in autofocus
algorithms," Cytometry, vol. 6, pp.
81-91, 1985.

[11] N. Kehtarnavaz and H. J. Oh,
"Development and real-time
implementation of a rule-based
auto-focus algorithm," Real-Time
Imaging, vol. 9, pp. 197-203, 2003.

[12] A. Santos, C. O. De Solorzano, J. J.
Vaquero, J. M. Pena, N. Malpica,
and F. Del Pozo, "Evaluation of
autofocus functions in molecular
cytogenetic analysis," Journal of
Microscopy-Oxford, vol. 188, pp.
264-272, 1997.

[13] J.-M. Geusebroek, F. Cornelissen,
W. M. Arnold, and H. G.
Smeulders, "Robust autofocusing in
microscopy," Cytometry, vol. 39, pp.
1-9, 2000.

[14] N. R. Pal and S. K. Pal, "A review
on image segmentation
techniques," Pattern Recognition,
vol. 26, pp. 1277 1294, 1993.

[15] I. T. Nabney, "NETLAB," Software,
http://www.ncrg.aston.ac.uk/netlab/
index.php, 2003.

[16] P. Li and J. R. Flenley, "Pollen
texture identification using neural
networks," Grana, vol. 38, pp. 59-
64, 1999.

[17] Y. Zhang, "Pollen Discrimination
Using Image Analysis," Massey
University, Palmerston North
report, 2001-2003 2003.

[18] P. Etheridge, "Discrimination of
Pollen Taxa from Digital Image
Feature Data," Massey University,
Palmerston North, Report July 28
2005.

[19] D. Brookes and K. W. Thomas, "the
distribution of pollen grains on
microscope slides. Part 1. The non-
randomness of the distribution,"
pollen et spores, vol. IX, pp. 621-
629, 1967.

 11-12

C. Data Sheets
These data sheets are embedded in PDF format and will only be
viewable from within the soft copy of this thesis; an accompanying CD.

11.1.1 High Magnification Camera

Adobe Acrobat 7.0
Document Micro-Pix technical reference manual

Adobe Acrobat 7.0
Document MicroPix specification

11.1.2 High Magnification camera sensor

Adobe Acrobat 7.0
Document MicroPix sensor manual – Sony ICX204AL

11.1.3 Stepper Motor Drivers and RS422 Controller

Adobe Acrobat 7.0
Document mStep-407 hardware manual with SIN-11 serial line

converter

Adobe Acrobat 7.0
Document Stepper driver, SMC-40 (v1.07) Software Guide

11.1.4 Power Supplies

Adobe Acrobat 7.0
Document Power supplies data sheets

 11-13

11.1.5 Linear Stage Movement

Adobe Acrobat 7.0
Document Linear Product Manual

 11-14

D. Raw Data From Verification Testing

T
able 11-1: R

aw
 data from

 verification testing.

The raw
 data as collected appears in Table 11-1. There w

as a change noticed in the lighting w
hich

affected the data slightly so m
ore collections w

ere m
ade once the problem

 w
as fixed. The results are not

m
arkedly different as the noticeable change w

as in the count of detritus and som
e additional errors in

classification w
ere fixed by the user adjustm

ent.

 11-15

E. mlpfwd – NETLAB help file

11.1.6 Purpose
Forward propagation through 2-layer network.

11.1.7 Synopsis
y = mlpfwd(net, x)
[y, z] = mlpfwd(net, x)
[y, z, a] = mlpfwd(net, x)

11.1.8 Description
y = mlpfwd(net, x) takes a network data structure net together with a matrix
x of input vectors, and forward propagates the inputs through the network to
generate a matrix y of output vectors. Each row of x corresponds to one input
vector and each row of y corresponds to one output vector.

[y, z] = mlpfwd(net, x) also generates a matrix z of the hidden unit activations where
each row corresponds to one pattern.

[y, z, a] = mlpfwd(net, x) also returns a matrix a giving the summed inputs to each
output unit, where each row corresponds to one pattern.

 11-16

F. MLP - NETLAB help file

11.1.9 Purpose
Create a 2-layer feedforward network.

11.1.10 Synopsis
net = mlp(nin, nhidden, nout, func)
net = mlp(nin, nhidden, nout, func, prior)
net = mlp(nin, nhidden, nout, func, prior, beta)

11.1.11 Description
net = mlp(nin, nhidden, nout, func) takes the number of inputs, hidden
units and output units for a 2-layer feed-forward network, together with a
string func which specifies the output unit activation function, and returns a
data structure net. The weights are drawn from a zero mean, unit variance
isotropic Gaussian, with varianced scaled by the fan-in of the hidden or output
units as appropriate. This makes use of the Matlab function randn and so the
seed for the random weight initialization can be set using randn('state', s)
where s is the seed value. The hidden units use the tanh activation function.

The fields in net are

 type = 'mlp'
 nin = number of inputs
 nhidden = number of hidden units
 nout = number of outputs
 nwts = total number of weights and biases
 actfn = string describing the output unit activation function:
 'linear'
 'logistic
 'softmax'
 w1 = first-layer weight matrix
 b1 = first-layer bias vector
 w2 = second-layer weight matrix
 b2 = second-layer bias vector

Here w1 has dimensions nin times nhidden, b1 has dimensions 1 times nhidden,
w2 has dimensions nhidden times nout, and b2 has dimensions 1 times nout.

net = mlp(nin, nhidden, nout, func, prior), in which prior is a scalar, allows the
field net.alpha in the data structure net to be set, corresponding to a zero-mean isotropic
Gaussian prior with inverse variance with value prior. Alternatively, prior can consist of
a data structure with fields alpha and index, allowing individual Gaussian priors to be set
over groups of weights in the network. Here alpha is a column vector in which each
element corresponds to a separate group of weights, which need not be mutually exclusive.
The membership of the groups is defined by the matrix indx in which the columns
correspond to the elements of alpha. Each column has one element for each weight in the

 11-17

matrix, in the order defined by the function mlppak, and each element is 1 or 0 according
to whether the weight is a member of the corresponding group or not. A utility function
mlpprior is provided to help in setting up the prior data structure.

net = mlp(nin, nhidden, nout, func, prior, beta) also sets the additional field
net.beta in the data structure net, where beta corresponds to the inverse noise variance.

 11-18

G. Software Description
Introduction

The AutoStage control software is written in Matlab in one ‘m’ file but
is separated into functions within the same file. Matlab facilitates
development by having many pre-written functions and uses an
interpreted scripting that is quick to implement. The control of both
cameras was performed by an image acquisition toolbox which could
control them directly from within the Matlab program.

The software described here controls the AutoStage to capture images
and save them to a directory. It asks the user for features from a
library of known pollen features, trains a neural network and classifies
the saved images into the groups as selected by the user. This is the
complete set of operations as performed for final all-of-system testing
performed.

11.1.12 The System Control Software

Named mainStage.m, the Matlab ‘m’ file contains seven functions of
which one is the main function. The other, sub-functions, are:
movestage; stepstage; focus; segim1; segim2; loclmax, featXtract and
trainNN. These functions: move the stage (XY stepper motors); focus (Z
stepper motor) segment captured images from cameras one and two;
find the peaks or local maximums in a vector, extract features from
image files and train neural networks with supplied feature data (see
Sub-Functions).

11.1.12.1 Main Function

The main function finds the stepper motors on the RS232 serial link
(converted to RS422 by a device supplied with the motor drivers to run
all, 3 in this case, on the same bus), finds cameras; one on the USB
serial link and one on the IEEE1394 or “FireWire” serial link.

The cameras’ parameters (contrast, exposure, etc) are setup.

A dialog box allows the user to select a major folder for file storage and
each session is stored in a folder below that, in a uniquely (based on
time and date) named folder.

MoveStage is used to allow the user to move to the two extreme corners
of the area of interest. At a place between where there is some pollen,
an auto-focus is performed and the ‘z’ position set to zero. Once
accepted as focussed by the user, the second corner is marked and the

 11-19

area is divided into camera view-sized rectangles and an image taken
at each position. The images are saved, named to indicate their
row/column position in the area of interest.

Once all images are taken they are all segmented and those files are
saved with “segment” added to the original images name.

Image names and location vectors are added to a data file stored in the
folder.

The high-magnification camera now moves to the first object found and
focuses. A course focus followed by a narrow and fine focus is used for
the first position and just the fine focus after that. If the software
detects a bad focus, it goes back to doing a course focus first. Each focus
starts at the zero focus position as found by the focus done with lo-res
camera, but adjusted up for the hi-res camera.

After focussing, the hi-res camera takes its image which is immediately
segmented. If it fails to find a ‘good’ object, the image is not saved and
its name is added to a ‘bad image’ file list in the data file (“data.mat”).
The segmentation function returns an image that is closely cropped
around the valid object found, which is saved into a folder below the
lo-res camera folder labelled “hiRes”. The whole image and the closely
cropped image are again both saved together.

11.1.12.2 Sub-Functions

11.1.12.2.1 Setting the Stage in Motion - Movestage

This function allows movement of the stage by the user controlling it
from the keyboard. Using the numbers with arrows on them, the stage
can be moved a constant speed in any of the four directions. Two may
be used to move diagonally. Any other key stops all movement.

11.1.12.2.2 Stepping the Stage by a Fixed Amount - Stepstage

Stepstage moves the stage by a given xy co-ordinate amount from its
present location.

11.1.12.2.3 Segmentation in High Magnification Images - SegIm1

Segmentation of images from camera 1 (hi-res camera) is performed.

A ‘canny’ edge detector finds edges, producing a two level, Black and
White image. The edges are dilated to join any small breaks in outlines
of objects. A fill is performed make a solid “blob” of any enclosed
shapes. Any white pixels near the edge, and all white neighbours of
those pixels, are removed. Erosion then reduces the size of any (white)

 11-20

“blobs” back to about the same size as the object in the original image.
Bounding rectangle, area of blob, and convex hull are defined.

The area of the blob is used to determine if the object is the right size
to be a pollen grain.

Bounding rectangle aspect ratio is used to determine if it is elongated
in X or Y directions and the ratio of pollen area to bounding rectangle
eliminates any elongated angled blobs.

The ratio of blob area to Convex Hull area indicates non-regular
shapes. Pine pollen do have concavities in their shape so once a method
of determining the presence of a pine pollen by other means during
segmentation is found, then the Hull can be set to be more effective in
eliminating other irregular shapes.

The centre of the object is found, measures to the outer edges of the
object determined and that portion of the original image is saved as the
final image to go toward feature extraction and classification. A
variable sets the area calculation to add a small amount of image area
so that the object sits within the borders of the image, rather than
touching.

The image is only accepted if the objects centre is within a certain
radius of the centre of the image. This allows for inaccuracies and
resultant offsets in placement of the pollen under high magnification
microscope. To eliminate multiple images of the same pollen, each
pollen found has its location in steps from a fixed location on the slide
recorded and each subsequent pollen found is checked against the list.
If a pollen is found that has already had its location recorded then the
next nearest pollen is considered.

11.1.12.2.4 Segmentation in Low Magnification Images - SegIm2

This algorithm is essentially the same as segIm1 but with values
changed to suit the lower magnification image and smaller sizes of
objects expected. It returns only the centre locations of the ‘blobs’ found
so they can be found again by the high magnification camera. The
original captured image and its segmented version is saved as a
by-product for later evaluation.

Finding Local Maximum - LclMax

This is associated with focussing. A series of focus images produces a
series, or vector, of numbers, each with a value that indicates how
“focussed” the associated image is. LclMax takes that vector and
returns the values of local peaks, or maximums, within the vector and
the index to those values in the original vector. The peaks are in order

 11-21

of local height so outside of the function, the maximum peaks, the
maximum value and the order of peaks in the series can be extracted.
The latter is done by reordering the indices (ascending or descending).

This function runs along the input vector and if it finds a
low1-high-low2 value it sets it as a peak and calculates the height of
the peak as: high-(low1+low2)/2.

LclMax also returns the maximum value overall and indicates if that
value is at either end of the vector.

11.1.12.2.5 Focussing - focus

Focus is used for both cameras. The focus data output is used in each
case in an algorithm in the main function to suit the camera and
situation.

This function moves the cameras up from input arguments that
determine number-of-images and number-of-steps between images.

There are 11 focus algorithms to choose from when calling the function.
They are: standard deviation; variance; normalised variance; gradient
(maximum of X and Y directions at each point used); vollath4 (so
named by the developer) vollath5; derivative; histogram; power;
entropy; Fourier Transform.

A region of interest can be defined that reduces the image to some
portion of the original. This reduces computation time of the focus
algorithm. It is set to the area in which the object is expected to be
(given errors in the system in finding the objects between cameras).
This makes it more likely to find focus on the object and not be
influenced by surrounding objects that may be in a different focal
plane.

A background image is subtracted from, and its mean pixel value
added back to, the focus image.

11.1.12.2.6 Neural Network Training – trainNN

trainNN asks the user for files of image features of known pollen types
to use to train the neural network. Each time the system runs, the
expected types of pollen can be selected from a library of pollen
features, including detritus and bubbles.

11.1.12.2.7 Feature Extraction - featXtract

Feature extraction is a series of “get-feature” m-files written by
Zhang[74] as implementations of the features selected for use with
pollen discrimination.

 11-22

featXtract takes all images in the current folder and calls each get-
feature algorithm until a complete set of features (43) has been
compiled. It is stored in a matrix with features in columns and images
in rows. The data is then normalised using the same parameters that
were used to normalise the data used for the trained network and then
presented to the trained neural network for classification

 11-23

H. Software Source Code – Matlab M files
NetLab is required as is a slightly modified version of the confusion
matrix viewing algorithms. These are found on the accompanying CD.

11.1.13 Main Code Module – mainStage.m
function stage()
%Program to control STAGE for Pollen Project at Massey University
%Allows user to define a region of interest and moves camera across the
%region taking overlapping images, segments pollen in images and determines
%their position within the region of interest. Then moves the main camera
%to each identified pollen, takes its image, cuts the rectangle
%containing only that pollen and stores it for classification. Classifies
%and counts pollens and flags those that are not certainly identifiable for
%optional classification by an operator.
close all;
clear all;
closepreview;
% Written by Gary Allen 2006

data=[];
%%%
%% parameters
%%%
maxTarget = 100000;% select maximum number of pollen to collect
folderName = 'TSTd7-';%adds date-time stamp to this name to ensure uniqueness

%motors give 2.6um per step @ 1/10th microstepping
%Camera2 is 8mmx6mm FOV.
C2FOV=[8E-3, 6E-3]; %field of view - not used
C1FOV=[4.3E-4, 3.23E-4]; %field of view
C1rc = [768;1024];
C1xy = ['172'; '127']; %Was 165 123 step length of image - must be same length string

C2xy = ['672'; '900']; %672,904;WAS 670;877(673;904)(;) step length of image - must be same length strings
overLap = ['0040'; '0040'];%Border not considered in Image 20 steps is 1/2 of 100 micron pollen

mPerStep = 2.6E-6; %meters per step
C2toC1=['13020'; '00122';'00345']; %was 13010;00122;00345- must be same length strings
stepsPerPixelr=1.454;% used for cam2 - pixels dont seem to be square
stepsPerPixelc=1.41; % so the Y direction has a different value

C1exposure=1023;
C1contrast=350;%325
C1brightness=250;
C2exposure=38;%was 35 was 30

%%%
%% get path to save files
topPath=uigetdir('D:\','Select Folder. Files saved in created subfolders');
cd(topPath);
nuDir=datestr(clock);
nuDir = strrep(nuDir, ' ', '');
nuDir = strrep(nuDir, ':', '');
nuDir = strrep(nuDir, '-', '');
nuDir=strcat(folderName,nuDir);

 11-24

mkdir(nuDir);
cd (nuDir);
%%add folder for Hi-res, LoRes images and data.Folder above is for final
%%pollen images so classification SW can find them
mkdir('data');
cd ('data');
% cd (topPath);

%+++open port
serPort=instrfind('Port','COM1');
if ~isempty(serPort)
fclose(serPort);
end
serPort = serial('COM1','BaudRate',9600,'DataBits',8);
fopen(serPort);

%+++set stepper drivers to party mode and retrieve x & y handles

 fprintf(serPort,'%s','&','async');
 pause(8);
 ret=fscanf(serPort,'%s');
if isequal(ret,'xyz')==1
else
 fprintf(serPort,char(13),'async');
 pause(1);
 ret=fscanf(serPort,'%s');
 pause(1);
 if isequal(ret,'#')==1
 else
 error('stagerr1:stageCamFocMSy', 'connection suspect\n');
 end
end

%%
%%%%%%%%%%%%
%% IMAGING SET UPS
%%
%%%%%%%%%%%%
cams=imaqhwinfo('winvideo');
camNum = size(cams.DeviceIDs,2);
if camNum==2
 if (isequal(strtrim(char(cams.DeviceInfo(1).DeviceName)), '1394 Streaming Digital Camera')) &&
(isequal(strtrim(char(cams.DeviceInfo(2).DeviceName)), 'VGA USB Camera'))
 T.cam2in=videoinput('winvideo',2, 'RGB24_640x480');
 T.setcam2=set(T.cam2in);
 T.cam2s=getselectedsource(T.cam2in);
 T.setcam2s=set(T.cam2s);
 pause(.1);
 T.cam1in=videoinput('winvideo',1,'Y800_1024x768');
 T.setcam1=set(T.cam1in);%set common camera proerties
 T.cam1s=getselectedsource(T.cam1in);
 T.setcam1s=set(T.cam1s);%set camera source properties, unique to camera
 elseif (isequal(strtrim(char(cams.DeviceInfo(2).DeviceName)), '1394 Streaming Digital Camera')) &&
(isequal(strtrim(char(cams.DeviceInfo(1).DeviceName)), 'VGA USB Camera'))
 T.cam2in=videoinput('winvideo',1, 'RGB24_640x480');
 T.setcam2=set(T.cam2in);
 T.cam2s=getselectedsource(T.cam2in);

 T.setcam2s=set(T.cam2s);
 pause(.1);
 T.cam1in=videoinput('winvideo',2,'Y800_1024x768');
 T.setcam1=set(T.cam1in);%set common camera proerties

 11-25

 T.cam1s=getselectedsource(T.cam1in);
 T.setcam1s=set(T.cam1s);%set camera source properties, unique to camera
 end
else error('errCamerAcq2','Must be Two cameras attached\n');
end

set(T.cam1s,'BacklightCompensationMode','auto');
set(T.cam1s,'BacklightCompensation','on');
set(T.cam1s,'Brightness',C1brightness);
set(T.cam1s,'ContrastMode','manual');
set(T.cam1s,'Contrast',C1contrast);
set(T.cam1s,'ExposureMode','manual');
set(T.cam1s,'Exposure',C1exposure);

set(T.cam2s,'Brightness',0);
set(T.cam2s,'ColorEnable','off');
set(T.cam2s,'ExposureMode','manual');
set(T.cam2s,'Exposure',C2exposure);
set(T.cam2s,'FrameRate','30.0000');
set(T.cam2s,'HorizontalFlip','off');
set(T.cam2s,'Hue',0);
set(T.cam2s,'Saturation',13);
set(T.cam2s,'Sharpness',6);
set(T.cam2s,'VerticalFlip','off');

% get(T.cam1in,'source') %source should be one only and set to on
% get(T.cam2in,'source') %modify here if problems later
% T.cam1in.SelectedSourceName = 'input1'; %to change from source 0 to 1
% preview, stoppreview, closepreview (T.cam1in)
% start, stop(T.cam1in)
%delete(T.cam1in)

%set trigger
triggerconfig(T.cam1in, 'manual');
triggerconfig(T.cam2in, 'manual');
triggerconfig(T.cam1in, 'Immediate');
triggerconfig(T.cam2in, 'Immediate');
set(T.cam1in,'TriggerFrameDelay',0);
set(T.cam2in,'TriggerFrameDelay',0);
set(T.cam1in,'FramesPerTrigger',1);
set(T.cam2in,'FramesPerTrigger',1);

%Focus Motor set up (should perhaps be set up in driver memory)

fprintf(serPort,'zE254','async');%hold motor on fully for
 pause(0.2); %YEnnn ms before hold current
 fscanf(serPort,'%s');

cam1Bgnd = imread('D:\Acode\cam1Bgnd','tif');%read in background images
cam2Bgnd = imread('D:\Acode\cam2Bgnd','tif');% these may be read in as part of
 % each user set up - ?

%% END IMG set ups
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf(serPort,'zI56','async'); %56->
 pause(1);
 fscanf(serPort,'%s');

 fprintf(serPort,'zV56','async');%56->

 11-26

 pause(1);

 fscanf(serPort,'%s');

 fprintf(serPort,'zK0 0','async');
 pause(1);
 fscanf(serPort,'%s');

 fprintf(serPort,'zE250','async');%hold motor on for nnn<255=n.nns until hold current reduces
 pause(1);
 fscanf(serPort,'%s');

%% Set up stage coordinates
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%+++move stage to lower left corner of area of interest and set
%co-ordinates to zero
preview(T.cam2in);

fprintf('move camera2 to the bottom right corner of the section to be scanned \n');
movestage(serPort);
fprintf(serPort,'xO','async');%mark position as X's origin
xhome = '';
while isempty(xhome);
 pause(.4);
 xhome=fscanf(serPort,'%s');
 xhome=strtrim(xhome);
 if ~isempty(xhome)
 if xhome(1)=='?'
 error('error in xhome sending xO0 to serPort \n');
 end
 end
 % fprintf('xhome in while=%s \n',xhome); %need error message here?
end

fprintf(serPort,'yO');%mark posistion as Y's origin
yhome = '';
while isempty(yhome);
 pause(.4);
 yhome=fscanf(serPort);
 yhome=strtrim(yhome);
 if ~isempty(yhome)
 if yhome(1)=='?'
 error('error in yhome sending yO0 to serPort /n');
 end
 end
 %fprintf('yhome in while= %s\n',yhome);%need error message here?
end
xhome=xhome(2:size(xhome,2));
yhome=yhome(2:size(yhome,2));
fprintf('serPort set at zero position %s, %s \n',xhome,yhome);

%%%
%%

% set z axis to zero
fprintf(serPort,'zO');%mark posistion as z's origin
pause(1);
zPos = fscanf(serPort);
fprintf('User Set Focus set to zero: %s\n',zPos);

 11-27

%
initFocus = 'f';
%Initial Cam2 Focus repeat until user satisfied
while ~(isequal(initFocus,'c') || isequal(initFocus,'C'))
 fprintf('move camera2 to some central area where there is lots of detail \n');
 movestage(serPort);
 goBack = 30;
 xtra = 30;
 fprintf(serPort,strcat('z-',num2str(goBack+xtra)),'async');
 pause(0.2);
 fscanf(serPort);
 fprintf(serPort,strcat('z+',num2str(xtra)),'async');
 pause(0.2);
 fscanf(serPort);

 %
 stepSize = 2;
 stepNum = ceil(goBack*2/stepSize);
 algorithm = 'sDev'; %%ADJUST vars for focus on cam2

 % FIND ROI BY SELECTING AREA WITH MOST EDGES...???
 ROIcam2 = [100 100 440 280];
 [steps,useMax,focThold] = focus(serPort, T.cam2in, stepNum, stepSize, ROIcam2,
algorithm,3,cam2Bgnd);
 %While not case 1 else, add to go back checking not greater than max dist to slide...

 switch size(steps,2)
 case 4
 if useMax == 1
 step2 = steps(1,1);%max value
 else
 step2 = steps(1,2);%steepest peak
 end
 case 3
 if useMax == 1
 step2 = steps(1,1);%max value(Consider first peak here)
 else
 step2 = steps(1,2);%steepest peak
 end
 case 2
 if useMax == 1
 step2 = steps(1,1);%max value
 else
 step2 = steps(1,2);%steepest peak
 end
 case 1
 if useMax == 1
 step2 = steps(1,1);%max value
 else
 fprintf('no peaks and max is at one end or other \n');
 step2 = steps(1,1);%steepest peak
 end
 otherwise
 error('woops1');
 end%switch

 focusSteps = (step2)*stepSize;
 fprintf(serPort,strcat('z+',num2str(focusSteps)),'async');%move back to focus point
 pause(0.2);
 fscanf(serPort);

 11-28

 initFocus = input('Press ''r'' to refocus, else press ''c'' to continue','s');
end %if initFocus

fprintf(serPort,'zZ','async');
pause(1); %check FOCUS position
autoFoc = fscanf(serPort);% => zZ z-nnn so later take from 5th position only...

fprintf('First Focus: %s',autoFoc);%print position
%% END 1st FOCUS

%+++move stage to one corner of area of interest and get co-ordinates
fprintf('Move camera2 to the top left corner of the section to be scanned \n');
movestage(serPort);

fprintf(serPort,'xZ','async');
xfar = '';
while isempty(xfar);
 pause(1);
 xfar=fscanf(serPort);
 xfar=strtrim(xfar);
 if ~isempty(xfar)
 if xfar(1)=='?'
 error('error in xfar sending xZ to serPort \n');
 end
 end
 % fprintf('xfar in while= %s \n',xfar);%need error message here?
end

fprintf(serPort,'yZ','async');
yfar = '';
while isempty(yfar);
 pause(1);
 yfar=fscanf(serPort);
 yfar=strtrim(yfar);
 if ~isempty(yfar)
 if yfar(1)=='?'
 error('error in yfar sending yZ to serPort');
 end
 end
 %fprintf('yfar in while= %s \n',yfar);%need error message here?
end
xfar=xfar(5:size(xfar,2));
yfar=yfar(5:size(yfar,2));
data.regionSize={xfar; yfar};
%fprintf('serPort set at far corner of Area Of Interest. %s, %s \n',xfar,yfar);

%%%
%% have coordinates of Area Of Interest, focussed - now start capturing on Camera2.

OlapAdjX = (str2double(C2xy(1,:))-(str2double(overLap(1,:))));
OlapAdjY = (str2double(C2xy(2,:))-(str2double(overLap(2,:))));

imRows = ceil(abs(str2double(yfar)/(OlapAdjY)))+1; %calc number of rows to capture
imCols = ceil(abs(str2double(xfar)/(OlapAdjX)))+1; %calc number of columns to capture
imNames = {};

for x = 1:imRows

 11-29

 y=1;
 pause(0.1);
 closepreview;
 preview(T.cam2in);
 pic2 = getsnapshot(T.cam2in);
 pic2 = pic2 - cam2Bgnd + mean2(cam2Bgnd);
 pause(0.5);
 imwrite(pic2,strcat(num2str(x),'-',num2str(y),'.tif'),'TIFF');
 imNames(x,y)={strcat(num2str(x),'-',num2str(y),'.tif')};
 for y = 2:imCols
 stepStage(serPort,num2str(OlapAdjX),'0');
 pause(4);%stage move time
 closepreview;
 preview(T.cam2in);
 pic2 = getsnapshot(T.cam2in);
 pic2 = pic2 - cam2Bgnd + mean2(cam2Bgnd);
 pause(0.2);%stage stabilisation time
 imwrite(pic2,strcat(num2str(x),'-',num2str(y),'.tif'),'TIFF');
 imNames(x,y)={strcat(num2str(x),'-',num2str(y),'.tif')};
 end
 if x ~= imRows
 fprintf(serPort,strcat('xR',xfar),'async');%move to position 'xfar' relative to origin
 fscanf(serPort,'%s');
 stepStage(serPort,'0',num2str(OlapAdjY));
 pause(5);%stage move time
 else
 data.imNames = imNames;
 end
end
closepreview;%cam2

%%%
%% Have images on disk, segment images

zz=0;
ROILocs=[];
% p and q are rows and columns respectively of Cam2 images because imNames is saved
% as rows/cols in a matrix the same pattern as the images were taken.

for p=1:size(imNames,1) %row
 for q=1:size(imNames,2) %col
 zz=zz+1;
 imName=imNames(p,q); %get name back
 tempim = imread(char(imName)); %read image
 [imOut,pollLocs] = segIm2(tempim,cam2Bgnd);%segim2 function
 %rename file to indicate it is segmented
 imName = strrep(imName,'.tif','');
 segImName = char(strcat(imName,'seg.tif')); %add 'seg' to image name
 imwrite(imOut,segImName,'TIF'); %write image
 data.(strcat('Loc',num2str(zz)))=pollLocs;
 imCentreX = str2double(xfar) + ((q-1)*(str2double(C2xy(1,:))-str2double(overLap(1,:))));
 imCentreY = str2double(yfar) + ((p-1)*(str2double(C2xy(2,:))-str2double(overLap(2,:)))); %FIX stage is -
ve in Y direction
 %imCornerX = imCentreX + (round(str2double(C2xy(1,:))/2) - str2double(overLap(1,:)));
 %imCornerY = imCentreY - (round(str2double(C2xy(2,:))/2) + str2double(overLap(2,:))); %FIX stage is
-ve in Y direction
 imCornerX = imCentreX + round(str2double(C2xy(1,:))/2);
 imCornerY = imCentreY - round(str2double(C2xy(2,:))/2); %FIX stage is -ve in Y direction

 for r = 1:size(pollLocs,1) %for each pollen found in an image, calculate the location within ROI
 pX = imCornerX - round(pollLocs(r,1)*stepsPerPixelr);
 pY = imCornerY + round(pollLocs(r,2)*stepsPerPixelc);

 11-30

 ROILocs = [ROILocs; [pX, pY]]; %Pollen locations x,y steps in region of interest on slide
 end
 end
end

%Add indicators of locations found that are close
%this code not used yet - maybe used to check if two images are taken of
%the same pollen
closeEnough = 90;%90
for d = 1:size(ROILocs,1)-1
 for e = (d+1):size(pollLocs,1)
 tooClose = (abs(ROILocs(e,1)-ROILocs(d,1))<closeEnough) && (abs(ROILocs(e,2)-ROILocs(d,2))<
closeEnough);
 if tooClose
 ROILocs(d,3)= double(tooClose);
 ROILocs(e,3)= tooClose;
 indx = find(ROILocs(e,:));
 indx = indx(size(indx,2))+1;
 ROILocs(e,indx)= d;
 end%if
 end%for e
end%for d

data.ROILocs = ROILocs;

%%
%% Have ROI locations list as xy step numbers for total ROI - now move cam1
% to each and take image:
preview(T.cam1in);
%move CAM1 to focus position relative to CAM2,
 fprintf(serPort,strcat('z+',(C2toC1(3,:))),'async');
 pause(0.3); %move to cam1 focus (from cam2)
 fscanf(serPort);

%move cam1 to origin using stage measures and reset origin
fprintf(serPort,strcat('xR',C2toC1(1,:)),'async');
pause(1);
fscanf(serPort);
fprintf(serPort,strcat('yR',C2toC1(2,:)),'async'); %move cam2 to origin...
pause(15); %%??? find better way to determine drive has ended
fscanf(serPort);
fprintf(serPort,'yO','async');
pause(0.2);
fscanf(serPort);
fprintf(serPort,'xO','async'); %And mark it as new origin for stage
pause(0.2);
fscanf(serPort);

badimg=[];%save bad image numbers - where segIm1 finds nothing
%input('Moved to focus from cam2 to Cam1 focussed?\n');

%focHome = str2double(C2toC1(3,:));
autoFoc = autoFoc(5:size(autoFoc,2));
wideFoc = 0;
found = [0,0];
finalLoc=[];
%MAIN LOOP
for s = 1:min(maxTarget,size(ROILocs,1))%maxTarget, alter in code at top

 11-31

 %drive focus to user focussed cam2 adjusted for cam1
 fprintf(serPort,strcat('zR+',num2str(str2double(autoFoc)+str2double(C2toC1(3,:)))),'async');
 pause(1);
 focPos = fscanf(serPort);

 picLocX = ROILocs(s,1);
 picLocY = ROILocs(s,2);
 fprintf(serPort,strcat('xR',num2str(picLocX)),'async');%move to position relative to origin
 pause(.4);
 fscanf(serPort);
 fprintf(serPort,strcat('yR',num2str(picLocY)),'async');%move to position relative to origin
 pause(.4);
 fscanf(serPort);
 pause(.4);
 focusing = 1;
 ROIcam1 = [337 209 350 350]; %made square
 ROIcam1Plus = [262 134 500 500];%[302 174 420 420];%[322 224 380 380]bigger to make a useful circle for
near centre limit in segIm1
 % make Bground image same size as reduced image ready for subtraction
 % inside loop
 roiA = ROIcam1Plus(1,2)+1;
 %b=ROI(1,2) + ROI(1,4);
 roiC = ROIcam1Plus(1,1)+1;
 %d = ROI(1,1) + ROI(1,3);
 cam1BgndIn = cam1Bgnd(roiA:size(cam1Bgnd,1),roiC:size(cam1Bgnd,2));

 %FOCUS PRELIM
 if s == 1 %always do a coarse focus on first 'pollen' found
 wideFoc = 0;%Turn off wide focus with 0 turn on with 1
 end

 while focusing == 1;
 if wideFoc == 1
 wideFoc = 0;
 %add reset to focus here??

 fprintf(serPort,strcat('zR+',num2str(str2double(autoFoc)+str2double(C2toC1(3,:)))),'async')
 pause(0.2); %move to cam1 focus (from cam2) and below for refocus upward
 fscanf(serPort);

 xtra = 30;
 goBack = 100; %go back half amount to refocus; fine resolution
 %fprintf('goback should be 100: %s and: %d \n',num2str(goBack),goBack);%ok
 fprintf(serPort,strcat('z-',num2str(goBack+xtra)),'async');
 pause(0.2); %move to cam1 focus (from cam2) and below for refocus upward
 fscanf(serPort);
 fprintf(serPort,strcat('z+',num2str(xtra)),'async');
 pause(0.2);
 fscanf(serPort);
 % END FOCUS PRELIM

 stepSize = 10;
 stepNum = goBack*2/stepSize;
 algorithm = 'deriv'; %%ADJUST vars for focus on cam1
 %ROIcam1 = [320 230 380 300];%now back above while statement
 [steps, useMax, focThold] = focus(serPort, T.cam1in, stepNum, stepSize, ROIcam1,
algorithm,3,cam1Bgnd);

 11-32

 switch size(steps,2)
 case 4
 if useMax == 1
 step3 = steps(1,1);%max value
 else
 stepSteep = steps(1,2);%steepest peak
 [valSort, sortIndx] = sort(steps(2,2:4),'descend');%get highest peaks in desc order
 sortIndx = sortIndx+1;%account for 1st being max value - sorting LocalMax values
 stepHigh = steps(1,sortIndx);%get back to index numbers of largest values in order
 %stepHigh = steps(1,ndxSort(1));%Highest peak
 if stepHigh >= stepSteep
 step3 = stepSteep;
 else
 step3 = stepHigh;
 end
 end
 case 3
 if useMax == 1
 step3 = steps(1,1);%max value
 else
 step3 = steps(1,2);%steepest peak
 end
 case 2
 if useMax == 1
 step3 = steps(1,1);%max value
 else
 step3 = steps(1,2);%only peak
 end
 case 1
 if useMax == 1
 step3 = steps(1,1);%max value
 else
 wideFoc = 1;
 fprintf(serPort,'zZ','async');
 pause(1);
 zPos = fscanf(serPort);
 fprintf('Focus-Bad FOCUS @ cam1-1st: %s',zPos);
 fprintf('no peaks and max is at one end or other \n');
 step3 = steps(1,1);% NOT GOOD NEED ANOTHER FOCUS
 fprintf('NEED ANOTHER FOCUS @ Cam1-1st!! /n');
 end
 otherwise
 error('woops3');
 end%switch

 focusSteps = step3*stepSize;%
 fprintf(serPort,strcat('z+',num2str(focusSteps)),'async');%
 pause(0.3);
 fscanf(serPort);

%
 %input('Finished first focus on CAM1 \n');

 else %if wideFoc == 1
 goBack = 18;
 xtra = 20;
 fprintf(serPort,strcat('z-',num2str(goBack+xtra)),'async');
 pause(0.5); %
 fscanf(serPort);
 fprintf(serPort,strcat('z+',num2str(xtra)),'async');
 pause(0.1); %
 fscanf(serPort);

 11-33

 stepNum = 25; %goBack*2;
 stepSize = 1;
 algorithm = 'gradMax'; %%ADJUST vars for focus on cam1
 %ROIcam1 = [320 230 380 300]; %change image size if required

 [steps, useMax, focThold] = focus(serPort, T.cam1in, stepNum, stepSize, ROIcam1, algorithm,
2,cam1Bgnd);
 focusing = 0;

 switch size(steps,2)

 case 3
% step4 = steps(1,2);%highest peak
 [minVal minNdx] = min(steps(1,2:3));
 [maxVal maxNdx] = max(steps(1,2:3));
 if steps(2,minNdx+1) > focThold;
 step4 = minVal;% first peak
 elseif steps(2,maxNdx+1) > focThold;
 step4 = maxVal;%1st peak is lower than Thold 2nd peak is highest
 else
 step4 = steps(1,1);%max value
 end
 case 2
 if useMax == 1
 step4 = steps(1,1);%max value
 else
 step4 = steps(1,2);%only peak
 end
 case 1
 if useMax == 1
 step4 = steps(1,1);%max value
 else
 focusing = 1;
 fprintf(serPort,'zZ','async');
 pause(1);
 zPos = fscanf(serPort);
 fprintf('Focus-Bad FOCUS @ Cam1-2nd: %s',zPos);
 fprintf('no peaks and max is at one end or other \n');
 %step4 = steps(1,1);% NOT GOOD NEED ANOTHER FOCUS
 %fprintf(serPort,strcat('zR',num2str(C2toC1(1,3))),'async');
 end
 otherwise
 error('woops3');
 end%switch
 if focusing ~= 1
 focusSteps = (step4)*stepSize;
 fprintf(serPort,strcat('z+',num2str(focusSteps)),'async');%
 %fprintf('STEP4 = %d \n focusSteps = %d \n stepSize = %d \n',step4,focusSteps,stepSize);
 %input('Finished SECOND focus on CAM1 \n');
 pause(0.5);
 fscanf(serPort);

 end%if focusing
 end % if wideFoc == 1
 end %while focusing ==1

 %END FOCUS**
 closepreview;

 11-34

 set(T.cam1in,'ROIposition',ROIcam1Plus);
 preview(T.cam1in);
 pic1 = getsnapshot(T.cam1in);
 %make back ground image same size as captured image
 cam1BgndIn = cam1BgndIn(1:size(pic1,1),1:size(pic1,2));
 pic1 = pic1 - cam1BgndIn + mean2(cam1BgndIn);
 pause(0.5);
 imwrite(pic1,strcat(num2str(s),'.tif'),'TIFF');%can remove this later
 pause(0.5);
 [pic11, found, foundLoc] = segIm1(pic1,ROIcam1,ROIcam1Plus,cam1Bgnd,found,finalLoc,ROILocs(s,1:2));
% pic11 is a small closely bordered image of a segmented pollen grain.

 if ~isempty(foundLoc)
 finalLoc = [finalLoc;foundLoc];%list of pollen found to eliminate finding same one again
 end%if
 if size(pic11)~=[0,0]
 cd ..;
 imwrite(pic11,strcat('pollen',num2str(s),'.tif'),'TIFF');
 pause(0.5);
 cd('data')
 else
 badimg = [badimg; {strcat('pollen',num2str(s),'.tif')}];
 end %if size(pic11)
end % s

data.badimg = badimg;
data.finalLoc = finalLoc;

%%TEMP move cameras back
fprintf(serPort,strcat('xR-',C2toC1(1,:)),'async');
pause(.5);
fscanf(serPort);
fprintf(serPort,'yR40','async');
%pause(15);
fscanf(serPort);

closepreview;
%%END TEMP

%
%%
%% CLEAN UP FROM IMAGING
%%
save data data;
%closepreview(T.cam1in);
clear tempim;
%%!!! Clean up Cameras
%delete(T.cam1in);
%delete(T.cam2in);
%clear T;
% Close serial ports
fclose(serPort);
%clear all;
%% END CLEAN UP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%
%% IMAGES ON FILE, NOW CLASSIFY
%%
%cd ..;%move to nuDir folder with images
%[name,imagePath]=uigetfile;

 11-35

%parameters from main data base to convert mean and stdDev to same as main
%data base.
normParams =
[5030.134980307913,231.3034371643394,11.549145573441029,0.293437972241872,0.227959697576128,0.074001360
388508,0.000198687762285,0.000016941121767,0.000006335590846,0.000000000008587,0.00000001362427,-
0.000000000044924,0.440962893954756,0.220468737572616,0.955566969815511,6825.828280073598,117.263694951
66487,0.77756426949119,2485182.0254206937,1497.7238042250021,38.56475676785264,1101240.540736761,140219
3.7644309185,1954679.6813661144,4063279.210944027,3872055.6853244323,1537042871.0196767,1460751068.2200
918,15240603486338705000,0.008659205087587,0.005295770481277,0.004894526646877,0.004182615161962,0.0032
47431079919,0.003328716734365,0.002790500456022,0.003369855374229,99.09191585246701,0.908084147533,96.7
5340994541313,0.618414164599578,91.66260346632902,0.392911669629661;3460.333605618244,80.9061667604875
5,2.236268994033373,0.061566809328527,0.045626694361407,0.014966302126472,0.000453335049101,0.000028902
27307,0.000008106466735,0.000000000173313,0.000000092755801,0.000000000221719,0.187331184360503,0.05791
0192164941,0.059807099483805,5224.615706898697,86.89454714842559,0.221293882750971,5284786.335172836,34
17.2158562600184,23.568266770203916,2407543.8788592117,2893574.3608193165,3784126.675981967,7594492.505
268886,7092315.602556042,3913485349.063464,3633766697.0870805,77015982694969260000,0.003071396507139,0.
00164390615226,0.001663863105227,0.001319338601508,0.000996686773119,0.001058083429597,0.0008079262294
12,0.001098144523812,0.383358513513111,0.383358513513083,1.227158269430299,0.188171754579054,2.50855563
7726779,0.096577306785522;];
cd ..;
[normData, imList] = featXtract(normParams);
%imList is list in order of images used to present to MLP

%***
 %%%Commented parts below untested
 %%%uncomment if the data base of features requires a trained net on
 %%%certain selection of pollen types.
[trainedNet,randOrderImages] = trainNN();

%OR
% [netName,netPath] = uigetfile('*.*','select a trained net');
% trainedNet = load(strcat(netPath,netName));

%OR
%trainedNet = load('D:\Acode\trainedNet');
%classList is a cell of names of nornFeature files used to train net: the
%class or pollen type trained to.
classList = trainedNet.classList;
trainedNet = trainedNet.trainedNet;
%***

%classify normData from unknown images wiht trained net
classifNet = mlpfwd(trainedNet,normData);
%result is classifNet, matrix of imList x classList

%[images, classes]=size(classifNet);
%determine winning class from MLP result
[mxm, imClass] = max(classifNet, [], 2);

%RESULT TO PRINT: matrix of imageNames, classified type
classRes = imList;
classRes = {classRes, classList(imClass)};
close all;
%get a series of matrices of images of each classified type
for p = 1:size(classList,1)
 postn = find(imClass==p);
 tmp = imList(postn,:);
 %classSorted.(char(strcat(int2str(q),classList(q))))= imList(:,q);
 %classSorted.(char(strcat(classList(p),'class')))= imList(:,p);

 11-36

 %figure(p), title (classList(p)), hold on;
 plotSize= 72;
 rLimt = ceil(size(tmp,1)/plotSize);
 %qLimt = size(tmp,1);
 if rLimt > 0
 for r = 1:rLimt
 if r == rLimt
 qLimt = mod(size(tmp,1),plotSize);
 if qLimt == 0
 qLimt = plotSize;
 end
 else
 qLimt = plotSize;
 end%if r
 figure(str2num(strcat(num2str(r),num2str(p)))), hold on;

 qLimt
 for q = 1:qLimt%plot each series as matrix plot
 imTemp = imread(char(tmp((r-1)*plotSize+q,1)));
 %subplot(floor(sqrt(size(tmp,1))) , ceil(size(tmp,1)/(floor(sqrt(size(tmp,1))))),q),imshow(imTemp);
 subplot(floor(sqrt(qLimt)) ,ceil(qLimt/(floor(sqrt(qLimt)))), q),imshow(imTemp),
title(strcat(classList(p),'-',num2str(r)))
 end%for q
 end %for r
 else
 figure(str2num(strcat('NILL',num2str(p)))),title(classList(p));
 end%if rLimt
 truesize;
 hold off;
 hgsave(strcat('fig-',num2str(p)));
 %save(class);
end%for p

%%##
%% FUNCTIONS
%% ___
%%

%%
%% movestage %%%
%%
 function movestage(serialport)
%function to allow manual positioning of stage by user

uin='9';
fprintf('USE ARROWS ON KEYPAD WITH NUMLOCK ON \n');
while ~isequal(uin,'x')
 uin = input('''8''= +X, ''6''= +Y, ''4''= -X, ''2''= -Y, \n Any other key stops movement \n Type ''x'' when
camera positioned \n','s');
 switch uin
 case '6'
 %fprintf('you typed %s \n',uin);
 fprintf(serialport,'xM0','async');
 fscanf(serialport);
 fprintf(serialport,'xM+1000','async'); %move until stopped
 case '2'
 %fprintf('you typed %s \n',uin);
 fprintf(serialport,'yM0','async');
 fscanf(serialport);
 fprintf(serialport,'yM+1000','async'); %FIX should change hwen reverse Y motor direction

 11-37

 case '4'
 % fprintf('you typed %s \n',uin);
 fprintf(serialport,'xM0','async');
 fscanf(serialport);
 fprintf(serialport,'xM-1000','async');
 case '8'
 %fprintf('you typed %s \n',uin);
 fprintf(serialport,'yM0','async');
 fscanf(serialport);
 fprintf(serialport,'yM-1000','async'); %FIX should change hwen reverse Y motor direction
 case '0'
 %fprintf('x?? You typed %s !! \n',uin);
 fprintf(serialport,'*M0','async');
 otherwise
 % fprintf('other?? You typed %s !! \n',uin);
 fprintf(serialport,'*M0','async');
 end
 ret = fscanf(serialport);
% pause(0.2);
% ret = fscanf(serialport);
 ret=strtrim(ret);
 if ~isempty(ret)
 if ret(1) == '?'
 error('movestage1:stageCamFoc', 'key entry failure \n');
 end
 else
 fprintf('Check your input key usage \n');
 ret='9';
 end
 %fprintf('uin is: %s \n',uin);
end
%% END movestage %%%

%% stepStage %%%
function stepStage(serialport,x,y)
% moves stage x and y steps using serialport object and string inputs
% representing x and/or y direction step numbers

if ~isequal(x,'0');
 retx='';
 while isempty(retx)
 if str2double(x)>=0
 fprintf(serialport,strcat('x+',x),'async');
 else
 fprintf(serialport,strcat('x',x),'async');
 end
 pause(0.2);
 retx = fscanf(serialport,'%s');
 if ~isempty(retx);
 if isequal(retx(1),'?');
 error('stepStage error in x');
 end
 end
 end
end

if ~isequal(y,'0');
 rety='';
 while isempty(rety)
 if str2double(x)>=0
 fprintf(serialport,strcat('y+',y),'async');

 11-38

 else
 fprintf(serialport,strcat('y',y),'async');
 end
 pause(0.2);
 rety = fscanf(serialport,'%s');
 if ~isempty(rety);
 if isequal(rety(1),'?');
 error('stepStage error in y');
 end
 end
 end
end

%% END stepStage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%%
%% SEGMIM2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
 function [imOut, pollLocs] = segIm2(img,bgnd)
% function [imOut, pollLocs] = segIm2(img,bgnd)
%
% Takes in an image and segments the pollen grains.
% Returns a matrix:
% Rows are of objects found
% Columns (2) are of row/col co-ordinates for object centres in the
% input image.
% Also returns a B&W image where white blobs are objects found

K=img(1:size(img,1),1:size(img,2));%remove third dimension if exists

%figure, imshow(K), title('original');
%L = edge(K, 'sobel', (graythresh(K) * .25)); %edge Thold ALTER
bgnd=bgnd(1:size(bgnd,1),1:size(bgnd,2));
Thrshold = graythresh(bgnd);%normalised value in range [0,1]
if Thrshold == 0
 Thrshold =0.0001;
end

L = edge(K,'canny',[Thrshold*0.1,Thrshold*1.7]);
 %figure, imshow(L), title('Edges');

se90 = strel('line', 2, 90); % try alter middle param: original=3 ALTER
se0 = strel('line', 2, 0); % try alter middle param: original=3 ALTER
M = imdilate(L, [se90 se0]);
N = imfill(M, 'holes');
P = imclearborder(N, 8);
 %figure, imshow(P), title('dilate, fill and clear border');
seD = strel('diamond',1);%original=1,
Q = imerode(P,seD);
Q = imerode(Q,seD);
%figure, imshow(Q), title('erodex2');
[L,n] = bwlabeln(Q,4);
regTholdlo = 5.5; % 5.47=>10um diameter <size of smallest pollen ALTER
regTholdhi = 5470; %5470=> 100um diameter <size of largest pollen ALTER
%imAvg = mean2(K);

for a=1:n
 [r,c] = find(L==a);
 nm = find(L==a);
 Sr = size(r,1);

 11-39

 %Tim = mean(K(nm));
 maxR = max(r);
 minR = min(r);
 maxC = max(c);
 minC = min(c);

 bgndAdd = 20;%add to object size to estimate background ADJUST
 %Test if object is too near border and limit to border
 if maxR+bgndAdd > size(K,1)
 addR = size(K,1);
 else
 addR = maxR + bgndAdd;
 end

 if maxC+bgndAdd > size(K,2)
 addC = size(K,2);
 else
 addC = maxC + bgndAdd;
 end

 if minR-bgndAdd < 1
 minusR = 1;
 else
 minusR = minR - bgndAdd;
 end

 if minC-bgndAdd < 1
 minusC = 1;
 else
 minusC = minC - bgndAdd;
 end
 AvimObjPlus = mean2(K(minusR:addR,minusC:addC));%avg of area larger than object
 AvimObject = mean2(K(nm)); %avg of object
 AvimLocBgnd = (2*AvimObjPlus) - AvimObject;%avg of area that is not object (local bckground)
 if AvimObject > AvimLocBgnd %if object is darker than local background, don't count it.
 LocR = maxR-minR+1;%get some dimesions
 LocC = maxC-minC+1;%add 1 to avoid 0 if used as divisor
 LocBoundArea = (LocR * LocC);
 LocFit = Sr/LocBoundArea;
 LocSkew = (min(LocR,LocC))/(max(LocR,LocC));
 if(Sr > regTholdhi) || (Sr < regTholdlo);%compare with Thold
 Q(nm) = 0;%remove large or small
 elseif LocFit < 0.55 | LocSkew < 0.65;%pine set it at 0.55 | 0.65
 Q(nm) = 0;%remove long and thin
 else
 %eIm = zeros(size(Q));
 %eIm(nm) = 1;
 %figure, imshow(eIm), title('edges');hold on;
 %[re,ce] = find(eIm==1);
 [CH, CHa] = convhull(r,c,[]);
 LocHull = (Sr/CHa);%ratio of object area to localHull area
 %plot(ce(CH),re(CH),'r-');
 if LocHull < 0.97 %pine sets at 0.97
 Q(nm) = 0;%remove areas with large concaves
 end %if LocHull
 end %if Sr
 else
 Q(nm) = 0;
 end %if Tim >
end

 11-40

pollLocs=[];
[L,n] = bwlabeln(Q,8);
for a=1:n
 [r1,c1] = find(L==a);
 pollLocs(a,:)=[round(((max(r1)-min(r1))/2) + min(r1)), round(((max(c1)-min(c1))/2) + min(c1))];
end
%figure, imshow(Q), title('small objects removed');
R=zeros(size(Q));
for b=1:size(pollLocs)
 R(pollLocs(b,1),pollLocs(b,2))=1;
end

 imOut = Q;
return;
%% END SEGIM2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

%%%
%% SEGIM1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
 function [imOut, found, foundLoc]=segIm1(img, ROI,ROIplus, bgnd,found,finalLoc,ROILoc)
% function [imOut]=segIm1(img, ROI, bgnd)
%
% Takes in an image and a region of interest being used for focus and
% bacground image for subtraction
% found is co-ordinates from *centre* of image of found object
% segments the pollen grains if they fall in that region.
% Returns an image that just surrounds the pollen grain nearest the centre
% of the input image (with limits to distance from centre)
imgsize = size(img);
K=img(1:imgsize(1),1:imgsize(2));%remove third dimension if exists
bgnd=bgnd(1:size(bgnd,1),1:size(bgnd,2));
%L = edge(K, 'sobel', (graythresh(K) * .083));
Thrshold = graythresh(bgnd);%normalised value in range [0,1]
if Thrshold == 0
 Thrshold =0.0001;
end

L = edge(K,'canny',[Thrshold*0.09,Thrshold*0.3]); %edge Thold ALTER
 %figure, imshow(L), title('EdgesCanny');

se90 = strel('line', 5, 90); % try alter middle param: original=3 ALTER
se0 = strel('line', 5, 0); % try alter middle param: original=3 ALTER
se45 = strel('line', 3, 45);
se135 = strel('line', 3, 135);
M = imdilate(L, [se0 se90 se45 se135]);
N = imfill(M,8, 'holes');
P = imclearborder(N, 8);
 %figure, imshow(P), title(' fill');%was diamond,1

seD = strel('diamond',2);%original=1,

Q = imerode(P,seD);
Q = imerode(Q,seD);
Q = imerode(Q,seD);
 %figure, imshow(Q), title('erodex2');
 %figure, imshow(K), title('Imdilate + Hough1');hold on

[L,n] = bwlabel(Q,4);
regTholdlo = 455; %455=>10um diameter size of smallest pollen ALTER

 11-41

regTholdhi = 45600; %45600=>100um diameter size of largest pollen ALTER
for a=1:n
 [r,c] = find(L==a);
 Sr = size(r,1);

 LocR = max(r)-min(r)+1;%get some dimesions
 LocC = max(c)-min(c)+1;%add 1 to avoid 0 if used as divisor
 LocBoundArea = (LocR * LocC);
 LocFit = Sr/LocBoundArea;
 LocSkew = (min(LocR,LocC))/(max(LocR,LocC));
 if(Sr > regTholdhi) || (Sr < regTholdlo);%compare with Thold
 for jj = 1:Sr
 Q(r(jj),c(jj)) = 0;%remove large or small
 end
 elseif LocFit < 0.55 | LocSkew < 0.65;%pine set at 0.55 | 0.65
 for jj = 1:Sr
 Q(r(jj),c(jj)) = 0;%remove long and thin
 end
 else
 eIm = zeros(size(Q));
 for jj = 1:Sr
 eIm(r(jj),c(jj)) = 1;
 end
 [re,ce] = find(eIm==1);
 [CH, CHa] = convhull(re,ce,[]);
 LocHull = (Sr/CHa);
 if LocHull < 0.92 %0.92
 for jj = 1:Sr
 Q(r(jj),c(jj)) = 0;
 end
 end %if LocHull
 end %if Sr
end%for a

%%%find centre of all regions found
pollLocs = [];
[L,n] = bwlabel(Q,8);
for a = 1:n
 [r1,c1] = find(L==a);
 pollLocs(a,:)=[round(((max(r1)-min(r1))/2) + min(r1)), round(((max(c1)-min(c1))/2) + min(c1))];
end
%figure, imshow(Q), title('small objects removed');

%%%makle image with centre of regions marked
% R = zeros(size(Q));
% for b = 1:size(pollLocs,1)
% R(pollLocs(b,1),pollLocs(b,2)) = 1;
% end
enlarge = 1.8; %2 makes a border just around object. <2 increases image size around object
partn = 0.75;%portion of img centre to last found object
%distance in *steps* of pollen centre to be considered the same pollen centre captured later
samePol = 25;
centreImg = round(imgsize./2);
foundLoc=[];
if size(pollLocs)~= [0,0];
 %limt = round(ROI(1,3)/2);%using circle inside ROI
 %distance from centre
 %distns = sqrt((abs(round(imgsize(1,1)/2)-pollLocs(:,1))).^2 + (abs(round(imgsize(1,2)/2)-pollLocs(:,2))).^2
);
 %distance from between centre and last found object.
 distns = sqrt((abs(round((imgsize(1,1)/2)+found(1,1)*partn)-pollLocs(:,1))).^2 +
(abs(round((imgsize(1,2)/2)+found(1,2)*partn)-pollLocs(:,2))).^2);

 11-42

 [a,b] = sort(distns);
 %[a,b] = min(distns); %find minimum
 for dd = 1:size(distns,2)
 %calculate foundLoc location in steps on entire slide so multiples
 %can be detected. Send foundLoc back to calling prog which adds to
 %finalLoc and sends back in here to use as check for closeness to
 %current found pollen
 augR = round((pollLocs(b(dd),1) - (ROIplus(1,4)/2))/6.215);%6.215 is Cam1 pixels per step
 augC = round((pollLocs(b(dd),2) - (ROIplus(1,3)/2))/6.215);%6.215 is Cam1 pixels per step
 foundLoc = ROILoc + [augC, -augR];%Changing Y sense? then change sense of AugR !!!!
 repPol = 0;
 for ee = 1:size(finalLoc,1)
 if ((finalLoc(ee,1) < (foundLoc(1,1)+samePol))&&(finalLoc(ee,1) > (foundLoc(1,1)-samePol))) &&
((finalLoc(ee,2) < (foundLoc(1,2)+samePol))&&(finalLoc(ee,2) > (foundLoc(1,2)-samePol)))
 repPol = 1
 dd
 foundLoc = [];
 imOut=[];
 break
 end% if
 end%for ee

 if repPol == 0
 LocOut = pollLocs(b(dd),1:2); %reference that back to polLocs to get r/c co-ordinates of region
 [r2,c2] = find(L==b(dd)); %get list of pixels of pollen image
 %Define smallest region around pollen and extract it as an image
 %lastFound is location in image of last pollen as a clue to where
 %next one is more likely, so change target from centre accordingly
 %actually by 'partn'times distance from centre to location. used in distns above
 lastFound = [round(((max(r2)-min(r2))/2) + min(r2)), round(((max(c2)-min(c2))/2) + min(c2))];
 found = [lastFound(1)-centreImg(1), lastFound(2)-centreImg(2)];%subtraction order
 imOut = img(max(1,round(LocOut(1,1)-((max(r2)-
min(r2))/enlarge))):min(size(img,1),round(LocOut(1,1)+((max(r2)-min(r2))/enlarge))) ,
max(1,round(LocOut(1,2)-((max(c2)-min(c2))/enlarge))):min(size(img,2),round(LocOut(1,2)+((max(c2)-
min(c2))/enlarge))));
 break
 end%if repPol
 end
else
 imOut = [];
end %if size(pollLocs)
%% END SEGIM1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%

%%%
%% AUTO-FOCUS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
 function [steps, useMax, focThold] = focus(serialPort, camera, stepNum, stepSize, ROI, algorithm, pkNum,
bgimg)
% function [69] = focus(serialPort, camera);
%
% STEPS: indices to their position in focus images,
% of array of max value, plus local maxima (up to pkNum)
% SERIALPORT is a serial port for comms to steppers (Z in this cse)
% CAMERA is an imaging device, for stageCam is cam1in or cam2in
% STEPSIZE: number of steps per image taken
% STEPNUM: number of images taken
% ROI: region for focus [Row Column RowOffset ColumnOffset]
% ALGORITHM: see switch case options for 'algorithm'
% pkNum: number of local maxima to return in 'steps'(after maximum value

 11-43

% index)

camROI = get(camera,'ROIposition');
set(camera,'ROIposition',ROI);

imFoc = getsnapshot(camera);
focusData = [];
 for ii = 1:stepNum
 imFoc=[];
 imFoc = getsnapshot(camera);
 imFoc = imFoc(1:size(imFoc,1),1:size(imFoc,2));
 imFoc = double(imFoc);
 if isequal(imFoc,[])
 fprintf('snap missed getting an image in function FOCUS\n');
 end
 if ii ~= stepNum
 fprintf(serialPort,strcat('z+',num2str(stepSize)),'async');
 end %if

 a = ROI(1,2)+1;
 %b=ROI(1,2) + ROI(1,4);
 c = ROI(1,1)+1;
 %d = ROI(1,1) + ROI(1,3);
 bgimgIn = bgimg(a:size(bgimg,1),c:size(bgimg,2));
 bgimgIn = double(bgimgIn);
 bgimgIn = bgimgIn(1:size(imFoc,1),1:size(imFoc,2));
 if ~isequal(bgimgIn,[])
 imFoc = imFoc - bgimgIn + mean2(bgimgIn);
 end %if %bgimgIn

 %imwrite(imFoc,strcat(num2str(ii),'.tif'),'tiff');

 switch algorithm
 case 'sDev'
 imVal = std2(imFoc);
 case 'vars'
 imVal = sqrt((mean(diag(cov(imFoc)))^2) + (mean(diag(cov(imFoc')))^2));
 case 'gradMax'
 [gradX gradY] = gradient(imFoc);
 imVal = sum(sum((max(gradX,gradY)).^2));
 clear gradX gradY;
 case 'vollath4'
 tempImageShiftX = imFoc(:,2:size(imFoc,2)); %X shifted image
 tempImageShiftX2 = imFoc(:,3:size(imFoc,2)); %X shifted 2pixels
 imageMult1 = tempImageShiftX(1:size(tempImageShiftX,1))*imFoc(:,1:size(tempImageShiftX,2));
 imageMult2 = tempImageShiftX2(1:size(tempImageShiftX2,1))*imFoc(:,1:size(tempImageShiftX2,2));
 imVal = sum(sum(imageMult1(size(imageMult2,2))))-sum(sum(imageMult2));
 clear tempImageShiftX tempImageShiftX2 imageMult1 imageMult2;
 case 'vollath5'
 tempImageShiftX = imFoc(:,2:size(imFoc,2)); %X shifted image
 imageMult1 = tempImageShiftX(1:size(tempImageShiftX,1))*imFoc(:,1:size(tempImageShiftX,2));
 imVal = sum(sum(imageMult1))-(size(imageMult1,1)*size(imageMult1,2)*((mean2(imFoc))^2));
 case 'deriv'
 der1X = diff(imFoc,1,1);
 der1Y = diff(imFoc,1,2);
 der2X = imFoc(1:size(der1X,1),:).^2.*der1X.^2;
 der2Y = imFoc(:,1:size(der1Y,2)).^2 .* der1Y.^2;
 imVal = sum(sum(der2X(:,1:size(der2Y,2)) + der2Y(1:size(der2X,1),:)));
 clear der1X der1Y der2X der2Y;
 case 'pwr'
 meen = mean2(imFoc);

 11-44

 thold = meen*1; %%ADJUST
 tHoldImage = (imFoc > thold).*imFoc;
 imVal = sqrt(sum(sum(tHoldImage.^2)))/(size(imFoc,1)*size(imFoc,2));
 %Fpower2 = sqrt(sum(sum(tHoldImage(:,1:size(imFoc,1))^2)))/(size(imFoc,1)*size(imFoc,2));
 clear tHoldImage thold meen;
 case 'normVar'
 meen = mean2(imFoc);
 imVal = sum(sum((imFoc-meen).^2))/(size(imFoc,1)*size(imFoc,2)*meen);
 clear meen;
 case 'hGram'
 L = hist(reshape(imFoc,1,[]),1:255);
 L=sort(L,'descend');
 imVal = mean(L(1:25)); %ADJUST
 clear L;
 case 'entrpy'
 L = imFoc(imFoc>150); %Thold
 L = hist(reshape(L,1,[]),1:255);
 imVal = -sum((L+1).*log2(L+1));
 clear L;
 case 'fTrans'
 Fr = sort(reshape(real(fft2(imFoc)),1,[]),'descend');
 imVal = mean(Fr(:,1:1000)); %%ADJUST
 clear Fr;
 otherwise
 error('algorithm not recognised');
 end%switch
 focusData = [focusData; imVal];
 if ii ~= stepNum
 fscanf(serialPort);%required for fprintf, just above switch
% pause(0.1);
% pause(0.1);
% pause(0.1);
% pause(0.1);
 pause(0.5);
 end %if
 end%for ii

if isequal(algorithm, 'hGram') || isequal(algorithm,'entrpy')
 focusData = max(focusData) - focusData; %inverse for these two algorithms
end %if algorithm

[maxVal, maxind] = max(focusData);
[lmVal,pkIndx] = loclmax(focusData,pkNum);
steps = [maxind-1,pkIndx-1];
steps = [steps; maxVal, lmVal];

if steps(1,1)== 0 || steps(1,1)==stepNum-1
 useMax = 0;

else
 useMax = 1;
end%if

tholdData = focusData(2:size(focusData)-1);
minThold = min(tholdData);
maxThold = max(tholdData);
%find a level above noise floor, below which the peak is too low level to be of value

 %focThold = minVal+((maxVal-minVal)/3);
focThold = minThold+((maxThold-minThold)/3);

 11-45

%figure, plot(1:size(focusData,1),focThold,'r-',pkIndx,focusData(pkIndx),'rx',1:size(focusData,1),focusData,'b-
');

 fprintf(serialPort,strcat('z-',num2str(stepSize*(stepNum-1))),'async');%move camera back
 pause(0.1);
 fscanf(serialPort);
set(camera,'ROIposition',camROI);%set camera back
imFoc = getsnapshot(camera);
%% END AUTO-FOCUS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%
%% LOCAL MAXIMUM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
 function [maxval,ndx]=loclmax(vector,points)
%LMAX [maxval, ndx]=loclmax(vector,points).
% Find local maxima in vector XX,where
% MAXVAL is the output vector with maxima values,
% NDX is the corresponding indeces,
% VECTOR is the input vector to in which to find local maxima
% POINTS is the number of points (from 'highest' down) to detect

x=vector;
len_x = length(x);
maxval=[]; ndx=[]; hght = [];
i=2; % start at second data point in time series

 while i < len_x,

 if x(i) > x(i-1)
 if x(i) > x(i+1) % definite max
maxval =[maxval, x(i)];
ndx = [ndx i];
hght = [hght, (x(i)-((x(i-1) + x(i+1))/2))];
 elseif (i ~= len_x-1) && (x(i)==x(i+1)) && (x(i)==x(i+2)) % 'long' flat spot
i = i + 2; % skip 2 points
 elseif x(i)==x(i+1) % 'short' flat spot
i = i + 1; % skip one point
 end
 end
 i = i + 1;
 end

if nargin == 1
 points = size(hght,2);
end
dd = min(points,size(hght,2));
if ~isempty(hght)
 [htval indx] = sort(hght,'descend');
 indx = indx(1:dd);%index of peak heights in descending order
 %indx = sort(indx);%reorder to image captured order (moving up thru focus)
 maxval = maxval(indx);%vector input values in peak height descending order
 ndx = ndx(indx);%index to input vector = motor steps taken to get to that point/stepSize
end%if

% uncomment for a graph of the original with found points:
% figure, plot(ndx,vector(ndx),'rx',1:size(vector,1),vector,'b-')
%% END LOCAL MAXIMUM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%
%% FEATURE EXTRACTION AND DATA NORMALISATION %%%%%%%%%
%%
function [normFeatures, imList] = featXtract(normParams)

 11-46

%NORMPARAMS is a set of normalisation parameters used to normalise library data and again here
%NORMFEATURES is sets of normalised feature data named using the folder
%name from which the images were found.
%IMLIST is a list of images
% Program extracts features, normalises, and saves a mat file for each
% image set of features in the top folder,
% non-image files are filtered out and not used.

% extract features from images in folder
%imList=dir(topPath);
%cd(imPath);
ims = dir;
ims = ims(3:size(ims,1));%first two are '.' & '..'
features=[];
normFeatures=[];
imgCnt=0;
for j = 1:size(ims,1);
 if strcmp(finfo(ims(j,1).name), 'im')== 1;
 imgCnt = imgCnt+1;
 thisPath = ims(j,1).name;
 features = [features; getAllFeatures(thisPath)];
 imList(imgCnt,1) = {ims(j,1).name};
 end
end%for j = 1:

if ~isequal(features,[]) & isequal(size(features,2), size(normParams,2))
 save('imageFeatures.mat','features');

 %% Normalise using the main database parameters for transforming data to
 %% mean=0 and stdDev = 1 (parameters in featParams)
 for j = 1:size(features,2)
 normFeatures(:,j) = (features(:,j)-normParams(1,j))./normParams(2,j);
 end

 save('normFeatures.mat','normFeatures','imList');
else
 error('feature file is empty or wrong sized normParams');
end%if ~isequal
%cd(tempPath);
return
%% END FEATURE EXTRACTION AND NORMALISATION %%%%%%%%%%%%%%%%%%%%%%

%%
%% TRAIN ANN FROM DATA BASE of normFeatures %%%%%%%%%%%%%%%%%%%%%%%%%
%%
function [trainedNet, randOrderImages] = trainNN()
%train a set of normFeature sets from data base.
% TRAINEDNET a trained neural network representing images from the data base of
% pollen types and a classList indicating pollen types and order of training
% RANDORDERIMAGES is an index to the random ordering performed so original order can be determined

NFset=[];
[netName,netPath] = uigetfile('*.*','select a set of normFeatures - nf???.mat ','nf*','MultiSelect','on');
for k=1:size(netName,2);
 tempStr = load(strcat(netPath,char(netName(k))));
 NFset.(strrep(char(netName(1,k)),'.mat',''))= tempStr;
end

classList = fieldnames(NFset);
numSets = size(classList,1);
imagNumPerSet = [];

 11-47

featureTrain = [];

for i=1:numSets
 tempNorm=NFset.(char(classList(i))).normFeatures;
 %tempNorm = tempNorm(randperm(size(tempNorm,1)),:);
 imagNumPerSet = vertcat(imagNumPerSet,size(tempNorm,1));%[imagNumPerSet; size(tempNorm,1)];
 featureTrain = [featureTrain; tempNorm];
end
clear tempNorm;
options = foptions; %defaults
options(1) = 0; %Display parameter (Default:0). 1 displays some results.
options(14) = 80;%round(3.78*(numSets)+11.1); %Maximum number of function evaluations.
nHidden = size(featureTrain,2)*2+1;
nInputs = size(featureTrain,2);
nOutputs = numSets;
randOrderImages = randperm(size(featureTrain,1))';
%featureTrain = featureTrain(randOrderImages,:);

targets=[];
adj=0;
%fill targets depending on number of pollen types and number
%of images used for each pollen type
for i = 1:nOutputs %fill targets
 if i == 1; else adj = adj+imagNumPerSet(i-1);end
 for j = 1:imagNumPerSet(i);
 targets(adj+j,i)=1;
 end
end

%targets = targets(randOrderImages,:);
netSoft = mlp(nInputs,nHidden,nOutputs,'softmax');
trainedNet = netopt(netSoft,options, featureTrain, targets,'scg');
classList = classList;
save('trainedNet','trainedNet','classList');
tempNet.trainedNet = trainedNet;
tempNet.classList = classList;
trainedNet = tempNet;
clear tempNet;

%% END TRAIN ANN FROM DATA BASE of normFeatures %%%%%%%%%%%%%%%%%%%%%%

%% END MAINSTAGE CODE

11.1.14 Feature Extraction featXtract.m
function [normFeatures, imList] = featXtract(topPath)
%TOPPATH is a path to folder containing images for
%which feature extraction is required.
%NORMFEATURES is sets of normalised feature data named using the folder
%name from which the images were found.
% Program extracts features, normalises, and saves a mat file for each
% image set of features in the top folder,
% non-image files are filtered out and not used.

normParams =
[5030.134980307913,231.3034371643394,11.549145573441029,0.293437972241872,0.227959697576128,0.074001360
388508,0.000198687762285,0.000016941121767,0.000006335590846,0.000000000008587,0.00000001362427,-
0.000000000044924,0.440962893954756,0.220468737572616,0.955566969815511,6825.828280073598,117.263694951
66487,0.77756426949119,2485182.0254206937,1497.7238042250021,38.56475676785264,1101240.540736761,140219
3.7644309185,1954679.6813661144,4063279.210944027,3872055.6853244323,1537042871.0196767,1460751068.2200
918,15240603486338705000,0.008659205087587,0.005295770481277,0.004894526646877,0.004182615161962,0.0032

 11-48

47431079919,0.003328716734365,0.002790500456022,0.003369855374229,99.09191585246701,0.908084147533,96.7
5340994541313,0.618414164599578,91.66260346632902,0.392911669629661;3460.333605618244,80.9061667604875
5,2.236268994033373,0.061566809328527,0.045626694361407,0.014966302126472,0.000453335049101,0.000028902
27307,0.000008106466735,0.000000000173313,0.000000092755801,0.000000000221719,0.187331184360503,0.05791
0192164941,0.059807099483805,5224.615706898697,86.89454714842559,0.221293882750971,5284786.335172836,34
17.2158562600184,23.568266770203916,2407543.8788592117,2893574.3608193165,3784126.675981967,7594492.505
268886,7092315.602556042,3913485349.063464,3633766697.0870805,77015982694969260000,0.003071396507139,0.
00164390615226,0.001663863105227,0.001319338601508,0.000996686773119,0.001058083429597,0.0008079262294
12,0.001098144523812,0.383358513513111,0.383358513513083,1.227158269430299,0.188171754579054,2.50855563
7726779,0.096577306785522;];

%% extract features from images in folder
imList=dir(topPath);
imList = imList(3:size(imList,1));%first two are '.' & '..'
features=[];
normFeatures=[];
for j = 1:size(imList,1);
 if strcmp(finfo(strcat(imPath,'\',imList(j,1).name)), 'im')== 1;
 thisPath = strcat(imPath,'\',imList(j,1).name);
 features = [features; getAllFeatures(thisPath)];
 end
end%for j = 3:

if ~isequal(features,[])
 save(strcat(topPath,'\','imageFeatures.mat'),'features');

 %% Normalise using the main database parameters for transforming data to
 %% mean=0 and stdDev = 1 (parameters in featParams)
 for j = 1:size(features,2)
 normFeatures(:,j) = (normFeatures(:,j)-normParams(1,j))./normParams(2,j);
 end

 save(strcat(topPath,'\','normFeatures.mat'),'normFeatures');
else
 error('feature file is empty. No normFeatures created');
end%if ~isequal

return

11.1.15 Classify a set of images – classify.m
[out] = classify(trainedNet, featureSet, targets);

%classsify takes in a trained neural net (by trainNet) and feature sets
%saved by FXtract. The output is the sorted feature sets.

meen=mean(featureSet);
featureSetNorm = (featureSetNorm-ones(size(featureSetNorm,1),1)*meen);

netResultSoft = mlpfwd(B,featureSetPrune);

%%
%%%%%%%%%%%%%%%%
% Generate Expected result (as for 'target' in training)
%%
%%%%%%%%%%%%%%%%
nOutputs=size(imagNumPerSet,1);
targetsIm=[];%create targets
fix=0;

 11-49

%fill targets depending on number of pollen types and number
%of images used for each pollen type

if nargin = 3
 for i = 1:nOutputs %fill targets
 if i == 1; else fix = fix+imagNumPerSet(i-1);end
 for j = 1:imagNumPerSet(i);
 targetsIm(fix+j,i)=1;
 end
 end

 targetsPC=zeros(size(featurePC,1),pollenTypeNum);
 for y = 1:pollenTypeNum
 targetsPC((((y*imagPrune)-imagPrune)+1):(y*imagPrune),y)=1;
 end

%%
%%%%%%%%%%%%%%%%
 % check with expected result

%%
%%%%%%%%%%%%%%%%

 %display confusion matrix in a graph
 cmSoft = conffig(netResultSoft,targetsIm);

 % confusionMatrix 'C' and performance rate 'rate'
 %from predictions 'y' and targets
 % [c,rate]=confmat(netResultSoft,targets);
end %if nargin

11.1.16 Final classification testing – testFinal.m
%Two image sets are previously saved, one for training and verification and one for final
%testing. Use this for the final classification tests. Each set is in a different
%subfolder
% A file is saved with data and a results file with results of each of the 5(testrepeatNum) tests

clear;
%clc;
close all hidden;

nHidden=87;
epochs = 100;
testrepeatNum = 5;
resultMat = [];
featPrune = (1:43);

loopCount=0;
resultFile=[];

[trainFileNames,trnPath]=uigetfile('*.*','Select all training files','*','MultiSelect','on');
[testFileNames,tstPath]=uigetfile('*.*','Select all testing files','*','MultiSelect','on');
cd(tstPath);
%trainFileNames=cellstr(trainFileNames);
%testFileNames=cellstr(testFileNames);

 11-50

pollenTypeNum=size(testFileNames,2);

for ii = 1:testrepeatNum

 imagNumPerTrSet=[];
 imagNumPerTstSet=[];
 featureTrain=[];
 featureTst=[];
 netSoft=[];
 dataMean=[];
loopCount=loopCount+1;
 sort(testFileNames);
 sort(trainFileNames);
 namesPerm = randperm(size(testFileNames,2));
 trainFileNames = trainFileNames(namesPerm);
 testFileNames = testFileNames(namesPerm);

 fprintf('image order used to train NET: \n');%print image file names
 for i = 1:size(testFileNames,2)
 testFileNames(i) = strrep(testFileNames(i),'.mat','');
 fprintf('%s \n',char(testFileNames(i)));
 fprintf('%s \n',char(trainFileNames(i)));
 end;

 for i=1:pollenTypeNum
 trnData=load(char(strcat(trnPath,trainFileNames(1,i))));
 tstData=load(char(strcat(tstPath,testFileNames(1,i))));
 trnData=trnData.trnFile;
 tstData=tstData.tstFile;
 tstData = tstData(randperm(size(tstData,1)),:);
 trnData = trnData(randperm(size(trnData,1)),:);
 imagNumPerTstSet = vertcat(imagNumPerTstSet,size(tstData,1));
 imagNumPerTrSet = vertcat(imagNumPerTrSet,size(trnData,1));
 featureTst = [featureTst; tstData];
 featureTrain = [featureTrain; trnData];
 end

%%
%%%%%%%%%%%%%%%%%
 % randomise images (targets follow by using the same random permutation)

%%
%%%%%%%%%%%%%%%%%
 randOrderImages = randperm(size(featureTrain,1))';
 featureTrain = featureTrain(randOrderImages,:);
 size(featureTrain)
 featureTrain = featureTrain(:,featPrune);
 %size(featureTrain)

%%
%%%%%%%%%%%%%%%%%
 % build an MLP neural network

%%
%%%%%%%%%%%%%%%%%
 %variables:
 %1) inputs are number of features(columns) extracted from images(rows)
 %2) One hidden layer node numbers to be determined empirically

 11-51

 %3) outputs depend on number of pollen types to be identified
 %e.g. non-airborne Vs airborne has two outputs

 % %Nothing proved well but 'appears' to do better when odd
 % if mod(size(featureFileNames,2)*5,2)==0
 % hidden = size(featureFileNames,2)+1
 % else
 % hidden = size(featureFileNames,2)
 % end %if mod

 nInputs=size(featureTrain,2); %inputs to neuralNet same as feature number

 nOutputs=pollenTypeNum;%numer of files selected indicating
 %number of image types

 netSoft = mlp(nInputs,nHidden,nOutputs,'softmax');

%%
%%%%%%%%%%%%%%%%%
 % train network

%%
%%%%%%%%%%%%%%%%%

 options = foptions; %defaults
 options(1) = 1; %Display parameter (Default:0). 1 displays some results.
 options(14) = epochs; %Maximum number of function evaluations.
 %Vary to find best (when result is very near zero)
 %compromise compute time Vs nearer zero result.

%%
%%%%%%%%%%%%%%%%%
 % create targets

%%
%%%%%%%%%%%%%%%%%
 targets=[];
 adj=0;
 %fill targets depending on number of pollen types and number
 %of images used for each pollen type
 for i = 1:nOutputs %fill targets
 if i == 1; else adj = adj+imagNumPerTrSet(i-1);end
 for j = 1:imagNumPerTrSet(i);
 targets(adj+j,i)=1;
 end
 end
 targets = targets(randOrderImages,:);
 %size(targets)
 %pack;

%%
%%%%%%%%%%%%%%%%%
 % train NET

%%
%%%%%%%%%%%%%%%%%

 netSoft = netopt(netSoft,options, featureTrain, targets,'scg');
 %netSoft = mlptrain(netSoft, featureTrain, targets, epochs);

 11-52

 %net.pruneFeat=pruneFeat;%save feature prune info

%%
%%%%%%%%%%%%%%%%
 % Generate Expected result (as for 'target' in training)

%%
%%%%%%%%%%%%%%%%

 targetTst=[];%create targets
 fix=0;
 %fill targets depending on number of pollen types and number
 %of images used for each pollen type
 for i = 1:nOutputs %fill targets
 if i == 1; else fix = fix+imagNumPerTstSet(i-1);end
 for j = 1:imagNumPerTstSet(i);
 targetTst(fix+j,i)=1;
 end
 end

 %randomise test image features and targets together
 randOrderTst = randperm(size(featureTst,1))';
 featureTst = featureTst(randOrderTst,:);
 featureTst = featureTst(:,featPrune);
 targetTst = targetTst(randOrderTst,:);

%%
%%%%%%%%%%%%%%%%
 % Forward Propogation

%%
%%%%%%%%%%%%%%%%
 net = mlpfwd(netSoft,featureTst);

%%
%%%%%%%%%%%%%%%%
 % check with expected result

%%
%%%%%%%%%%%%%%%%

 %confusionMatrix 'C' and performance rate 'rate'
 %from predictions 'y' and targets
 %display confusion matrix in a graph
 [c, rate] = confmatPer(net, targetTst,testFileNames);
 confMatrx = conffigPer(net,targetTst,testFileNames);
trNum = size(featureTrain,1)/pollenTypeNum;
tstNum = size(featureTst,1)/pollenTypeNum;
 hgsave(strcat(num2str(ii),'figure'));
 save(strcat(trnPath,num2str(ii),'netTrained','-
','netSoft'),'netSoft','trNum','tstNum','trainFileNames','testFileNames','nHidden','epochs','featureTst','targetTst')
;
resultFile(1,loopCount) = loopCount;
resultFile(2,loopCount) = rate(1);

end %for ii =
save('resultFile','resultFile');
%END

 11-53

11.1.17 Training a Neural Net – trainNet.m
[trainedNet, targets, randOrder] = trainNet(filesPath)

%Train an MLP neural net using all normFeatures (in filesPath)
%and return trained net.
%normFeatures is a set of files produced by featXtract.
%featXtract produces feature files, each one of a single type of pollen.
%FILESPATH path to normFeatures files
%TRAINEDNET returned trained neural net
%TARGETS key to image feature vectors derived from different(separate)files
%RANDORDER numbers used to randomise the input vectors and targets

featCat=[];
imNames = {};
imNumPerSet = [];
pruneNum=8; %<<*****ADJUST ******<<remove images from set for later testing
fileList=dir(strcat(filesPath,'normFeatures*.mat'));

for ii = 1:size(fileList,1);
 tempData = load(strcat(filesPath,fileList(ii).name));
 tempFeats = tempData.normFeatures;%remove from structure.
 featCat = [featCat; tempFeats];
 imNumPerSet = [imNumPerSet; size(tempFeats,1)];
 %image names is derived from names of folders holding images used by featXtract
 imNames = [imNames; strrep(strrep(fileList(ii).name,'normFeatures',''),'.mat','')];
 clear tempFeats tempData
end %for ii

featCatNorm = featCat;
meen = mean(featCatNorm);
featCatNorm = (featCatNorm-ones(size(featCatNorm,1),1)*meen);
%featCat=featureCatNorm; %Switch normalise on ????

%%
%%%%%%%%%%%%%%%%%
% build an MLP neural network
%%
%%%%%%%%%%%%%%%%%
%variables:
%1) inputs are number of features(columns) extracted from images(rows)
%2) One hidden layer node numbers to be determined empirically
%3) outputs depend on number of pollen types to be identified
 %e.g. non-airborne Vs airborne has two outputs
nInputs=size(featCat,2); %inputs to neuralNet same as feature number
nHidden=22; %18 %nInputs*2+1; %suggested in text - use for now
nOutputs=size(imNames,1);%numer of files selected indicating
 %number of image types
%netLog = mlp(nInputs,nHidden,nOutputs,'logistic');
netSoft = mlp(nInputs,nHidden,nOutputs,'softmax');
%netLin = mlp(nInputs,nHidden,nOutputs,'linear');

%%
%%%%%%%%%%%%%%%%%
% train network
%%
%%%%%%%%%%%%%%%%%
options = foptions; %defaults
options(1) = 1; %Display parameter (Default:0). 1 displays some results.
options(14) = 150; %Maximum number of function evaluations.

 11-54

 %Vary to find best (when result is very near zero)
 %compromise compute time Vs nearer zero result.

targets=[];%create targets
adj=0;
%fill targets depending on number of pollen types and number
%of images used for each pollen type
for i = 1:nOutputs %fill targets
 if i == 1; else adj = adj+imNumPerSet(i-1);end
 for j = 1:imNumPerSet(i);
 targets(adj+j,i)=1;
 end
end

%%
%%%%%%%%%%%%%%%%%
% randomise images (targets follow change)
%%
%%%%%%%%%%%%%%%%%
randOrder = randperm(size(featCat,1))';
randFeatCat = featCat(randOrder,:);
randTargets = targets(randOrder,:);

%%
%%%%%%%%%%%%%%%%%
% train NET
%%
%%%%%%%%%%%%%%%%%
%netLog = netopt(netLog,options, randFeatureCatPrune, randTargets,'quasinew');
trainedNet = netopt(netSoft,options, randFeatCat, randTargets,'quasinew');
%netLin = netopt(netLin,options, randFeatureCatPrune, randTargets,'quasinew');

%net.pruneFeat=pruneFeat;%save feature prune info
save(strcat(filesPath,'netTrained'),'featCat','trainedNet','pruneNum','imNames','randOrder');

%END

	Copyright statement.doc
	Copyright is owned by the Author of the thesis. Permission is given for
	a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

	ThesisGAweb2.pdf

