
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



   

An Automated Pollen Recognition System 
 
 

 

A Thesis submitted to 
Massey University, Turitea, Palmerston North, New Zealand 

in fulfilment of the requirements for the degree of 
Master of Engineering. 

 

 

 

By 
Gary Allen 

 

December 2006 
 

 

 

Institute of Information Sciences and Technology 

 

Massey University 
 



   i

Abstract 

A system was developed with the aim of demonstrating that the 
tedious tasks of classifying and counting pollen on slides could be 
performed automatically to a standard comparable with that of human 
experts. Automation of pollen classification and counting will  advance 
the science and range of applications of palynology. 

The system developed is a completely functioning prototype. After 
initial set up and training it is automatic in operation. 

System tests have demonstrated that the concept is viable and that the 
prototype developed is at a stage that it is of practical use to 
palynologists. There are opportunities for improvements and added 
functionality. Now that the system is developed and characterised, it 
provides a benchmark for gauging the efficacy of future improvements 
and adaptations. 

The system is presently adaptable to many different classification 
problems within palynology and would be adaptable for other 
automated microscopic classification or imaging tasks. 
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1 Introduction 

This project is the aggregation, integration and augmentation of 
previous research outcomes in the design and development of a system 
now called “AutoStage”. With the development here of a complete 
working system, and an evaluation of it that shows it to be viable, a 
longstanding requirement for the study of pollen (palynology) is ready 
to be integrated into working laboratories.  

AutoStage is an aid to palynology and all the important uses to which 
pollen identification can be put. The broad requirements of AutoStage 
are to locate pollen grains on a prepared microscope slide, extract 
feature data from images of the pollen grains, classify the pollen by 
genus and produce a count of each type. The system developed aims to 
be an intelligent assistant for use in palynology. 

The core system operations are (described in subsequent paragraphs): 
• the capture of  images from a slide 
• the segmentation of pollen in the images 
• the extraction of features from pollen images 
• the classification and count of pollen types 

The capture of an image from a slide involves two focusable 
microscopes, lighting, and a mechanism to hold and move the slide 
with precision. A low magnification microscope allows quick coverage of 
the entire slide to determine pollen locations while a high 
magnification microscope captures images suitable for feature data 
extraction and identification of the pollen grains. The light source is a 
filtered and cooled halogen lamp.  The slide holder is situated between 
the light source and the microscope objectives. The slide holder is 
movable in two dimensions with a resolution less than the smallest 
pollen of interest. Pollen grains are 10-100 microns diameter. Image 
capture system parts are detailed in §3, §4 & §5. 

The segmentation of pollen in the images requires an algorithm to 
recognise shapes in a low magnification image that are likely to be 
pollen and ignore those that are not. A series of images is taken to 
cover the slide. The location on the slide of each likely pollen grain is 
determined from their position in the image. The high magnification 
microscope is driven to each location and segmentation is again 
performed to find objects, determine which was originally located, and 
test further for it being a valid pollen grain. If valid, then an image 
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slightly larger than the bounding rectangle of the object found is saved 
for feature extraction. Details of segmentation are in §6. 

The extraction of features from pollen images occurs after all the pollen 
grains have been found and their closely cropped images stored. The 
values of the grey levels of the image pixels are used to estimate 
geometric, textural and statistical qualities. The features used were 
determined in a previous study [74] and a description appears in §7.1. 

The classification of pollen types is performed by an artificial neural 
network. The network is trained using features from images of known 
pollen types. The features from pollen images taken from slides are 
then able to be classified by the trained network. The numbers of 
pollen grains of each type found on a slide are reported. This is the 
main system output.  Classification details are found in §7.2. 

  
Figure 1-1:  The AutoStage Prototype 
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1.1 Aims and Objectives  
The Aim of this project is to build a workable system to: 

1. demonstrate that automation of pollen identification and counting 
from slides is possible, with an accuracy comparable to that 
achieved by experienced palynologists 

2. be suitable as an experimental platform to improve the accuracy 
and repeatability of pollen classification and counting, and enable a 
second generation system to be specified 

The Objectives of this project are to build and evaluate a system as 
described above. Previous projects reported by Zhang [74] and 
Holdaway [34], have resulted in the determination of a set of features 
to allow pollen classification and the initial design of a suitable digital 
microscope respectively.  Objectives for this project are to: 

1. build and test the dual microscope system 

2. develop a suitable lighting system 

3. develop a two dimensional XY movement to securely hold and 
accurately position a microscope slide 

4. develop focus capability and develop algorithms for auto-focussing 

5. develop segmentation algorithms to locate pollen in microscope 
images and determine their precise location on the slide, and 
extract an image of the pollen suitable for features extraction. 

6. define a classification system using previously selected features 
and to consider the multi-layer perceptron  

7. integrate all the above into a coherent and operational system 
that will fulfil the aim of the project 

8. test and evaluate the system with regard to the aim of this project 

1.2 Design Specification: basic requirements 
Features were developed to be used for a classification system. A high 
magnification visible light microscope was designed for capturing 
digital images suitable for feature extraction. These were considered 
when specifying other system components.  

The specifications for the components of the system are listed below 
with implementations below each: 
1. A slide holder was required to keep a slide located with precision 

and repeatability. It was required to maintain the slide orthogonal 
to the optical axis and allow light to pass through the slide.  
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a. A standard microscope slide holder suited the requirements 
and was built into the structure. Orthogonality to the optical 
axis is achieved to a degree that the slide can be imaged by 
the low magnification microscope with a single focus setting. 
Pollen grain positions between the slide and cover slip vary 
enough that focussing on each grain using the high 
magnification microscope was required. 

2. The precision movement of the slide holder, under computer 
control, was required to place a pollen grain of 10 microns diameter 
within the 0.5mm square field-of-view of a microscope. It would 
also need to recall that pollen grain to a position within the 
microscope field of view; preferably to the same location within a 
few microns. As the XY stage holds and moves the slide holder, the 
XY directions required orthogonality to the optical axis at any 
position. 

a. A precision commercial XY stage was built into the structure 
of the AutoStage. The X and Y linear movement sections are 
specified for repeatability of movement of 3 microns. The 
movement is driven by stepper motors that add to the 
repeatability error and 20 microns resulted in the maximum 
error. 

3. A computer controlled focus mechanism capable of stepping at 
intervals of focus such that at least one and preferably more than 
one steps contain in-focus portions of a 10micron diameter pollen 
grain.  

a. A standard microscope focus mechanism was used to convert 
the rotary motion of a stepper motor to linear motion of the 
camera along the optical axis. The result just meets the 
requirement for the smallest pollen grain however the 
stepper motor driver does not drive the motors evenly and at 
every tenth step there is a larger step which can cause slight 
non-optimal focus. Depth of field has a corrective effect; 
however consistency suffers as a result. 

4. A second microscope with a larger field of view for locating pollen 
grains on the slide with a minimal number of images was added. 
The constraints were to maximise field of view while remaining 
capable of detecting the smallest pollen of interest defined as 10 
microns diameter. Auto-focus was considered to be a requirement. 

a. An available digital camera was used for the second 
microscope.  An adjustment to the distance along the optical 
axis, from its lens to its sensor, was made to alter the 
magnification. A magnification of 1x met the detection and 
field of view constraints. The camera was attached to the 
high magnification camera so the focus mechanism could be 
shared. 
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5. Lighting suitable for both microscopes needed to be adequate for 
the integration times of the sensors and associated electronics. All 
images should be of consistent exposure.  

a. Stable power supplies to power the incandescent lamp 
affords constancy of illumination. A Meanwell S-150 series 
power supply is used. It is a mains in, 12 volt out, 150 Watt 
switched mode power supply. With the specified combined 
line and load regulation of 0.6%, the luminous intensity 
would change by less than 2%. Locations for four quartz 
halogen lamps is provided but one 35 Watt, 8000 candela 
lamp is used.  

6. Frame construction required a physical stability and vibration 
damping to keep the microscope stationary and minimise blurring 
of the image. 

a. The frame construction and mechanical assembly was 
undertaken by the mechanical laboratory in the department 
of fundamental sciences at Massey University. A dense 
rubber mat was placed under the solid base with four shock 
absorbing feet added at the corners so the rubber is partially 
compressed by taking some of the weight with the feet 
taking the rest. This helps to isolate the unit from vibrations 
from the bench upon which it sits. 

7. Software, suitable for quick development and rapid changes, while 
capable of performing all or most tasks required for the project, was 
desirable. 

a. Matlab is essentially a prototyping software package that 
fits the requirements well. It was used to develop the feature 
algorithms so no translation was required, and has built in 
functions for image processing. A Matlab toolbox for 
communication to the cameras was purchased which allowed 
the entire design to be written using the one programming 
language. 

1.3 Contribution of the Author to this Project 
The 43 features used for classification were selected in a previous 
project. The high magnification microscope was designed in a previous 
project. The author’s contribution has been the design, development, 
integration and testing of the system including a performance 
comparison with expert palynologists, all tasks as outlined in the eight 
objectives of this report including controlling software as presented in 
appendix H. The AutoStage prototype was built in a mechanical 
workshop to a specification determined in this project. 
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1.4 Published Paper 
A paper entitled “Automatic Recognition of Light-Microscope Pollen 
Images.” was published and presented at the Image and Vision 
Computing New Zealand 2006 conference [20]. The paper is reproduced 
in Appendix B. 
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2 Background 

Introduction 

This section introduces topics related to the project to 
add background knowledge, put the subsequent 
discussions into perspective, and cover literature in the 
various fields. 

2.1 Palynology – the study of pollen 
Pollen is technically termed “the multinucleate gametophyte 
generation of flowering plants” [8].  It carries the male gametes, or sex 
cells, for fertilization of plants. Wind and insects are the main carriers 
of pollen with the grains themselves having characteristics that 
promote, usually one or the other of the two methods of transport. 
Birds and bats help out the insects in that task. Spores, included in 
studies under palynology, are “asexual reproductive bodies of lower 
vascular plants” and “algae, fungi, and mosses”[8]. They are asexual in 
that they are themselves able to grow into an organism. Wind is an 
inefficient method of transport so, for wind dispersal, vast numbers of 
pollen or spores are produced: roughly one million per cone for pine and 
up to 500 million for a single marijuana plant shoot [8]. 

Palynology has numerous applications. Fossil pollen analysis 
(palaeopalynology) is used to identify the plant taxa, from which, can 
be deduced [8, 27]: 
• vegetation variations with time 
• climate and its temporal variation 
• evidence of human activities including 

o land clearing 
o burning 
o atmospheric pollution (also natural, e.g. volcanic) 
o salinity 
o soil degradation and changes 

• archaeological information  
o dating of sediment levels and ages of artefacts found 
o what people may have eaten  
o what was buried with them – flowers etc. 

• oil deposit locations 
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Honey type, and location of origin, can be indicated by the pollen found 
in the honey (melissopalynology). Inhalant allergy sufferers can be 
advised of high pollen counts in the air (Aeropalynology) [18]. Forensic 
investigations can be aided by determining if an object has been in a 
certain general location by identifying the pollen grains attached [9].  

The layers making up a pollen grain wall are labelled in Figure 2-1.  

 
Figure 2-1: A section of pollen wall showing structure and some features. 

The taxa, or type, of pollen can be determined by pollen morphology, or 
structure. Large data bases of images and diagrams are being built so 
pollen can be identified by referring to them. Pores, (holes), culpi, 
(furrows), and the numbers of them are clues to pollen taxa.  

The exine (Figure 2-1) is made of sporopollenin. Sporopollenin is a 
substance composed of oxidative copolymers of carotoid and carotenoid 
esters. It is an extremely durable substance and can be found in 
anaerobic sediments dating back hundreds of millions of years. A pore 
is shown in the diagram but these may be elongated to a furrow and 
are called colpi [70]. The number of pores or culpi, and their 
arrangement on the sphere surface, is a strong indication of type. 
Surface features are used for identification using mathematical feature 
extraction in AutoStage. Some of the surface features can be seen in 
the scanning electron microscope images of pollen in Figure 2-2. 
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Figure 2-2:  Golden Rod (echinate), Oak pollen(colpi) and  Birch pollen 
(pores).  Scanning Electron Microscope (SEM) images of pollen from 
“National Pollen and Aerobiology Research Unit” web site[58]. 

Modern “pollen rain”, or the spatial distribution of pollen, is modelled 
to determine the vegetation taxa and climatic conditions that would 
have caused the pollen distribution found in sediment core samples [8]. 
Sample cores are extracted from lake beds, swamps etc., sliced 
horizontally to divide into samples of sequential depths, and analysed 
to make stratigraphic maps of the region. Carbon dating and other 
techniques are used to compare depth relationships to dates of 
deposits. The thickness of each core slice taken, determines the 
temporal resolution. Fine resolution [26], down to one year 
representing perhaps a millimetre of core depth, is often required but 
requires the preparation of hundreds of samples and many slides of 
pollen to prepare and count. A greater number of cores, taken in close 
proximity, will increase the reliability of the data and add information 
regarding localised variation. Regionalised layer variation is obtained 
by multiple core sampling at larger spacings. The counting of pollen 
from core samples requires experts to identify the pollen taxa as they 
count pollen grains on a slide. This is very time consuming and 
laborious work for trained people whose time could well be spent on 
less mundane tasks. This is one reason that AutoStage is being 
developed. 

The AutoStage will also aid pollen counting by aeropalynologists who 
advise of pollen counts in the air for benefit of inhalant allergy and 
asthma sufferers. At present there are a number of pollen counting 
stations, mainly in Europe [58] and North America [3]. Many have 
volunteer based counting [2], where volunteers spend 2-3 hours per 
day, 3 days a week counting pollen captured in pollen traps. 

A PhD student who uses Palynology as a prime research tool may 
spend up to 30 months of microscope work counting pollen. Any study 
using palynology would be advanced considerably if the counting were 
performed automatically and the time taken to collect research data 
reduced consequentially.  
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Preparation of samples is also time consuming and important to the 
outcome of the counting process. Fossil samples are treated to remove 
as much foreign materials as possible by sieving and chemical 
treatments. Density gradient centrifugation may have a part to play in 
the classification of pollen but at least it appears that it will be helpful 
in separating pollen from organic matter not removed by chemicals and 
sieving [16, 17, 56]. The problem of organic matter remaining is 
applicable to automatic pollen counting as the organic matter, as seen 
in the images in Figure 6-2, reduces segmentation effectiveness. 
Ultrasonic filtration [66], is an advance that may prove useful. 
Preparation is a separate part of the process but important to the aim 
of this project in two ways: 
• preparation involves laborious, time consuming work 
• preparation quality can influence the AutoStage processes and the 

reliability of the results 

A requirements list has been developed to begin integrating 
preparation into the whole automatic pollen counting process (§3.2.1). 

2.2 Microscopy 
Microscopy is significant to palynology considering the 10 to 100 
micron diameters of the objects under study. Of the many types of 
microscopy existing, the scanning electron microscope (SEM) would be 
a better tool than the light microscope, if it were not for the speed and 
cost of such systems [67]. Resolution is the advantage of SEMs as they 
are able to capture detail of pollen surfaces that are unable to be 
resolved or captured using visible wavelengths (see comparison images 
Figure 4-2 and Figure 4-3). The extra detail in SEMs holds information 
that can better distinguish between pollen types. A key to the utility of 
a system such as AutoStage is simplicity of use and affordability. Light 
microscopy is more suitable in those regards. The effort, therefore, is to 
optimise the images from a light microscope. The microscope, as 
designed and built, is adequate for a prototype and for the aim (§1.1) of 
this project. Any improvements to the microscopes for this project is a 
subject for future work (§9). 

Pollen grains are usually counted and classified by viewing slide 
mounted samples under a microscope. Collection of pollen for 
aeropalynology often uses ‘sticky’ rods or tapes which are then placed 
on a slide. One project under development for automation of airborne 
pollen counts is “Microbus”, by Omnibus [10]. This project has a tape 
only system for continuous monitoring and includes a preparation 
module within a unit that may be located, in its entirety, at some 
remote site. AutoStage is developed for slide microscopy in a 
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laboratory, however the use of other mediums is not precluded from 
future adaptations. 

Digital microscopes are not new and are commercially available. For 
example, Keyence produce some functionally sophisticated 
microscopes, some of which use short wavelength laser to produce up to 
1500x images [1] (see Figure 2-3). A digital microscope can readily be 
made at home [60]. The digital microscope was considered for use in 
this project by Holdaway [34], who made a careful analysis of the 
consequences in changing from conventional microscopy to direct 
digital imaging. 

 
Figure 2-3: pollen grain on a camellia petal at 1500x from a commercial 
(Keyence) digital microscope. 

The conventional microscope used for the capture of images for 
comparisons with images captured from AutoStage was an Olympus 
BX51 used at 40x objective magnification and a 10x eye-piece 
magnification giving 400x optical magnification. Images were captured 
via an Optronics magnaFIRE SS99802 digital camera with  
MagnaFIRE frame-grabbing software on a 2GHz Pentium computer.  

 
Figure 2-4: Olympus BX51 as used to capture conventional microscope 
images for comparison studies 
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 Lighting is an integral part of microscopy and affects the resolution 
and contrast of the image. The character of the light source produced 
by optics and the manner of transferring it to the object, affects the 
characteristics of the object that are represented in the image [23]. 

Differences of intended light paths, to actual paths through lenses, 
cause: chromatic aberration, spherical aberration, coma, astigmatism, 
distortion, chromatic differences in magnification, and curvature of 
field [23]. The use of a manufactured objective lens for AutoStage, 
designed to minimise most of these, is expedient. Two aberrations, 
“curvature of field” and “distortion”, could be of issue and are 
considered in §4.2.1. 

2.3 Automated Pollen Recognition 
Flenley, was first to identify the need to automate in 1968 [14]. He 
stated that two problems existed: infinite possible orientations of pollen 
grains and partial focus of grain under the microscope. Since then, 
Flenley [33, 40-44, 64, 67, 68, 75] has inspired others to help overcome 
those and other problems of automation, culminating in this project 
and the development of AutoStage.  

White was also early when he wrote about automation, concentrating 
on an image analysis system [72]. White’s concentration on the 
imaging problem only, as is true for most authors, was noted by 
Rodriguez-Damian et al. [59]. This is understandable considering that 
a workable classification criterion should be developed before 
continuing with the overall design which may seem straightforward or 
obvious. However, it has been our experience that all is not obvious 
until the system as a whole is explored, by theoretical design and 
prototyping. France et al. [19], who have written a good account of 
what is required and what problems are inherent in an entire system, 
were credited with an holistic effort by Rodriguez-Damian et al. [59]. 
That publication was very recent which indicates continued interest in 
automated pollen counting. 

“Nobody has yet developed a satisfactory automatic method for 
counting pollen” [58]. This statement is on the web-site of the United 
Kingdom’s National Pollen and Aerobiology Research Unit. There are 
studies and projects [10, 19, 59] with an aim to automation but the 
statement seems to still hold true. AutoStage is very close to being of 
practical use.  

Green, a proponent of numerical palynology, stated in 1997 that 
sporadic attempts over 30 years to produce automated systems, have 
produced no system of widespread use [27]. Numerical palynology 
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attempts to mathematically model pollen dispersal and its relationship 
to the vegetation present. Given the complexities involved and 
interpretations of pollen diagrams often being made by “eyeballing” 
them, aids to interpretation are possible through the modelling. The 
collection of sufficient data is a limitation and automation of the 
counting of pollen would allow improved progress in this area. 

Earlier interest in automation concentrated on the image recognition, 
but was hindered by slow computers with insufficient memory. Even 
now, the processing required takes some time but is not prohibitive.  

A workable set of features has been selected by Zhang [33, 74, 75], and 
the study of image capture, resulting in a digital microscope proposal, 
by Holdaway [34], have paved the way to a complete system that will 
usefully automate palynology. 

2.4 Neural Networks 
Artificial Neural networks were originally formulated in order to model 
how the human brain was thought to operate. The first was introduced 
by McCulloch and Pitts in 1943. “Artificial” is often not used now, as 
neural networks have become a useful tool in their own right for 
machine learning and classification tasks. Neural networks are 
massively parallel distributed processes made up of simple processing 
units and emulate the brain in two ways [30]:  1) knowledge is acquired 
by the network from its environment, 2) interneuron connection 
strengths, known as synaptic weights, are used to acquire knowledge.  

Hebb [31], a neuropsychologist, proposed a cellular level change to be 
the basis of learning, “when an axon of cell A is near enough to excite a 
cell B and repeatedly or persistently takes part in firing it, some 
growth process or metabolic changes take place in one or both cells 
such that A’s efficiency as one of the cells firing B, is increased.”  

Haykin [30], expands and rephrases this as a two part rule, the second 
part was not contained in Hebb’s original rule: 

1. If two neurons on either side of a synapse (connection) are 
activated simultaneously (synchronously), then the strength of 
that synapse is selectively increased 

2. If two neurons on either side of a synapse (connection) are 
activated asynchronously, then that synapse is selectively 
weakened or eliminated. 

A synapse as described above is called a “Hebbian synapse”. Weights in 
the model described next are equivalents to the synapses.  
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Figure 2-5: A model of a neuron [30] 

A single neuron, shown in Figure 2-5, is a summing node with a 
number of inputs that are weighted, biased by what is essentially an 
extra input, and presented to an activation function to form the output. 
The bias eliminates any chance of the inputs summing to zero. This 
model is named a McCulloch-Pitts model [30].  

The activation function shown as ϕ(·) in Figure 2-5, may be a simple 
decision to output 1 of the input, vk, is positive and -1 if negative. Three 
simple activation functions are shown in Figure 2-6. 

 
Figure 2-6:  Three simple activation functions, ϕ ·  

From left to right:   a) threshold, b) piecewise-linear, c) sigmoid. 

Taking one neuron and forming a network creates an artificial neural 
network. Figure 2-7 below, shows a feed-forward fully connected 
network with one hidden layer. If the input nodes are weighted and 
connected directly to the output neurons then it is a single layer 
network. Using the Perceptron model of neurons, the network may 
have an additional “hidden layer”, as shown in Figure 2-7, to become 
what is called a Multi-Layer Perceptron, or MLP, which is the type 
used for AutoStage.  It is possible to add more hidden layers. 



   15

 
Figure 2-7:  Fully connected feed-forward network with one hidden layer 
[30] 

While ‘unsupervised’ neural networks will sort unknown data into 
groups of similar type, ‘supervised’ networks, as described here, are 
trained on known data and can then sort new data into the groups it 
has been trained on. Training, for a supervised network, occurs in the 
network described above by setting known data at the inputs, setting 
goals or targets for the neural network outputs as required to indicate 
the known inputs, and adjusting the weights until the output matches 
the targets set. Training a neural network is some method of 
successively altering the weights to arrive at the given target. An 
output error may be quantified by subtracting the network output from 
the target, squaring the result, and adjusting the weights with the aim 
of making this ‘sum of squares error’ as near zero as possible. The path 
this error value takes over successive weight changes is differentiated 
to find its slope and direction to determine by what value to adjust the 
weights to continue this gradient descent. Unfortunately, when a 
minimum in the error is found, this may be a local minimum and not 
the global minimum so various techniques are implemented in an 
attempt to overcome this problem.  

The inputs are multiplied by the weights to the hidden summing nodes 
and then multiplied by more weights and summed for input to the 
activation function making this a “feed-forward” network. The error is 
calculated at the output and is fed back to the hidden layer; weights 
there are adjusted and fed back further to the input for the input 
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weights to be adjusted and this process is called back-propagation (of 
error). 

The amount of data in an image of pollen is generally too much for a 
contemporary computer running a neural network and data beyond 
that which is necessary may confound the neural network and actually 
cause degradation in performance. Consequently, features are 
extracted to represent the image using minimal data. Feature selection 
is important to the success of the classification as the data must, in 
some way, be separable by the network.  A simple example is the given 
by using the size and shape of two pollen types. 

 
Figure 2-8: Data for size versus roundness of two pollen types graphed 

In Figure 2-8, the data for two pollen types has ‘size” plotted on the x-
axis and “roundness” on the y-axis. If the two numbered circular points 
did not exist, the pollen type could be determined simply by size being 
greater or less than the x-axis value of the vertical dashed line. Now 
adding in the measured pollen indicated by ‘1’, the angled dashed line 
may be used and the data can be transformed, perhaps by rotating the 
axes making the angled dashed line perpendicular to a new axis. If the 
numbered ‘2’ circular point is added then a non-linear division is 
required. Then, if the Os were actually a random mixture of two pollen 
types, another feature would need to be added that distinguished those 
two types and a three dimensional graph would be displayed. Adding 
more features adds dimensionality and we can no longer visualise them 
and must use mathematics for representation. Forty three features are 
used for representing images of pollen in this project. It is, however, 
possible to make a series of graphs of two features per graph, so that 
each feature is graphed against each of the others. If displayed in a 
matrix, patterns may be observed. Pattern recognition is something 
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that humans do extremely well. Artificial neural networks also employ, 
“the process whereby a received pattern/signal is assigned to one of a 
prescribed number of classes (categories)”, which is the formal 
definition of pattern recognition given by Haykin [30].  

2.5 System Building 
Scientific and engineering methods have been used to develop a 
prototype of a system called AutoStage. Certain design criteria and 
constraints (§1.2) were considered and the prototype was built 
accordingly. Then the system was checked for conformation to the 
criteria. The criteria were sufficient for success but not over specified 
so that given a successful outcome, the system was inexpensive, 
adaptable, and easy to produce with room for enhancements. 

Taguchi et al. [65] determined means for design of quality products to 
include system design, parameter design and  tolerance design. System 
design uses scientific and engineering knowledge to produce a 
prototype. Parameter design and tolerance design use the prototype, 
and experience in its production, to help determine parameters to 
improve the prototype in a manner that is manufacturable. This 
project corresponds to the system design phase. The parameters 
defined here can be used to determine to what level the AutoStage can 
be developed to improve its performance in areas such as repeatability 
and speed of operation. Tolerance will then determine what level of 
component ‘quality’ and level of manufacturing processes will suffice to 
meet the parameter design.  At that stage, the compromise of price, 
accounting also for ability to manufacture, versus capability, is 
considered. At this design stage, the prototype was developed to meet 
critical functional levels to meet the aim of the project. Steps were to: 
1. identify basic requirements (listed in §1.2) 
2. develop initial prototype (described in this document) 
3. review functions with knowledge workers 

The third item, the reviewing of functions, has occurred with Massey 
University internal reports and Pollen Group review meetings. 
Experienced palynologists are within that group and constitute the 
“knowledge workers”. 

Systems Building, like any complex operation, has many theories as to 
how to go about it in a methodical and time saving fashion. There are 
many traps to fall into while developing a product. For example, 
“creeping elegance” where, as something is developed to plan, new and 
exciting things are thought of to add to the design. The risk is that the 
product is not completed on time and many difficulties with the new 
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idea are not foreseen because of the lack of early investigations and 
analyses. The timings of sub-module creation and intermediate testing 
are important, so that the testing results remain meaningful and not 
altered by subsequent additions or the interaction of the module with 
subsequent modules.  

For the AutoStage, preliminary investigations of features and 
microscopy are done. System analysis and design are required to ‘fit’ 
the required parts together in this system integration project. 
Development is the main body of work with testing and 
implementation proving that the system is capable of meeting the aim 
of this project: to demonstrate capability of classifying and counting a 
slide as well as a trained palynologist. 
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3 The Capture of an Image from a Slide 

Introduction 

This section describes the preparation of the pollen 
bearing microscope slides and the system for focussing 
the microscopes and traversing the slides to enable the 
capture of images of pollen. An overview of the system is 
first presented so that the next sections, which detail 
the microscopes and lighting, are put into context. 
Figure 3-1  represents the AutoStage image capture 
mechanism. 

3.1 Overview 
 

 
Figure 3-1: Elements of AutoStage Image Capture 
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A prepared slide is placed on the XY movement or “stage” where, under 
computer control, it is positioned between the light source and 
microscopes for transmission lighting microscopic image capture. An 
object of interest on the slide can, by the same XY movement, be 
positioned under either of the two microscopes. The Z direction of 
movement, under computer control, determines focus for both 
microscopes. The microscopes, once focussed, can then image the 
portion of slide in view; see Figure 3-2. Images are then uploaded to the 
PC for processing.  

3.2 The Slide 
 

 
Figure 3-2:  glass slide showing refraction effects.  

As transmission lighting is used, light travels through the slide so the 
glass needs to be of a quality that does not distort the light. Light is 
modified within the slide by refraction, reflection and diffraction 
depending on the object features. The light emanating from the object 
toward the objective lens is refracted while transitioning from cover 
slip to air. It is refracted outward so that less arrives at the objective 
lens, consequently reducing resolution (§4.2.2). The refractive index of 
the cover slip glass should be as small as possible to limit refraction 
into the air. The cover slip glass itself must be flat, with smooth 
parallel surfaces. Oil immersion lenses are sometimes used in high 
magnification microscopy to reduce the diffraction effect by increasing 
the refractive index of the medium between slide and lens, making its 
refractive index nearer to that of glass so the dispersion of light is 
minimised. 

Auto-focus can be adversely affected by objects on the bottom of the 
slide but especially on the top of the cover-slip, which is thin compared 
to the slide and its upper surface is very close to the focal plane of 
interest. In addition, the segmentation algorithms could be 
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compromised and images captured would be degraded if dust or oil 
were present, even with out-of-focus contamination. 

To improve the efficacy of the system the slides should be prepared in a 
prescribed and suitable manner. It is important that this be similar to 
current practice so that the system can be used without requiring 
changes to systems already in place. 

3.2.1 Slide Preparation 

The prescription proposed is for the pollen samples to be suspended in 
some setting gel with a refractive index similar to that of glass. Silicon 
oil may be desirable if the slides are to be checked on a conventional 
microscope, as are agar or glycerine if an aqueous medium is required. 
The suspension should have a concentration that results in no more 
than 500 pollen grains per slide to reduce clumping. Adding a drop of 
detergent to a last rinse before drying in any treatment of pollen will 
also help reduce clumping. The slide is placed on a warmer to help air 
bubbles escape the gel. The sample suspension volume is such that 
when dropped onto the slide and the cover slip is placed on top, the oil 
does not travel past the outer edges of the cover slip. Molten wax is 
dropped onto the slide at the edge of the cover slip to ‘wick’ under the 
cover slip and seal the pollen suspension in. the slide is removed from 
the warmer plate so the wax solidifies, contains the suspension and 
holds the cover slip firmly in place on the slide.  

The slide surfaces can now be cleaned without moving the cover slip or 
pollen grains within the slide.  

Fossil pollen grains are usually in mixtures of silicates, clays, 
vegetation etc and must undergo rigorous chemical and sieving 
treatments. These treatments are well documented and outside the 
scope of this study, however for automatic counting the slides should be 
cleaner and more sparse than are often used for viewing under a 
conventional microscope. Flenley et al. have suggested methods for 
improved removal of debris [17, 56]. 

3.3 The XY stage: specification and operation  
Specification: 
• 2.6 microns linear movement per step afforded by stepper motors 
• 3 microns repeatability for each of two Parker 404XR linear 

positioners used for X and Y sections of the stage movements  
• Measured: 20 microns repeatability when 1/10th micro-stepped 

stepper motors are used to drive the linear positioners 
• 6.3 pixels per step on the high magnification microscope 
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• 0.7 pixels per step on the low magnification microscope 
• variable steps per second: programmable with ramp-up and 

ramp-down 

A prepared slide is placed manually on the slide holder and is fixed in 
place by a spring holding the slide against two lateral surfaces. This 
ensures a fixed placement for the slide. If the slide is removed and 
replaced, its relocation is such that a pollen in view under the high 
magnification microscope remains in the same view to within a few 
microns.  

The slide is held between the light source and microscopes by the slide 
holder. The slide is held around its edges so light can pass through it. 
The slide holder is fixed to an XY stage designed for precision 
movement. Stepper motors drive the stage X and Y movements. The 
stepper motors have a step angle of 1.8º. The motors step by turning off 
the electromagnetic stator coil that holds them in place and turning on 
the neighbouring coil to attract the rotor to it. This may be done by 
gradually decreasing power to one coil while ramping up power to the 
next. By holding both coils at half power the rotor is held 
approximately half way in between. The drivers used for AutoStage are 
able to hold the rotor between coils, in this manner, at intervals of 
1/10th of the 1.8º afforded by a single step. A 1/10th step translates into 
a linear motion of the X or Y stage movement of 2.6 microns. Although 
the XY stage is described as ‘precision’, there will be some ‘slop’ and 
‘stickiness’ in the movement and the micro-stepping  motors will not 
have the power to drive against the friction at small intervals. It was 
empirically found that using the 1/10th “micro-step”, the stage can be 
relocated to a specific point with an offset maximum of 20 microns. The 
stepper motors are controlled from a PC via an RS232 serial connection 
to a commercial motor driver.  
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Figure 3-3:  Diagram of low magnification images on a slide. 

Figure 3-3 shows a slide and cover slip in plan view. The user drives 
the low resolution camera to the start position and marks the position 
by keyboard entry. The microscope is then driven to the far diagonal of 
some area of interest and a second position marked. The software 
calculates a series of evenly spaced overlapping images that will cover 
the area of interest completely. The centre of the final image is marked 
as the zero reference point for all subsequent locations. To store a 
location of a pollen grain in any image that relates to the reference 
point, considering Figure 3-4, the pollen location within the image is 
known by the number of pixels in rows, r, and columns, c, from the top 
right corner of the image. The row and column pixels to the centre of 
the image are subtracted so a pixel distance from the centre of the 
image is obtained. This is converted to ‘steps’ by a predetermined 
conversion factor (see pixels per step in the specification listing at the 
beginning of this section). The pollen grain distance from the image 
centre is added to the x,y distance from the reference point to the 
image centre, which is known in steps. The x,y distance in steps 
between the two microscope centres is known, so the high 
magnification microscope can now be driven to the reference point and 
hence to any pollen located in the low magnification imaging and 
segmentation operations. 
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Figure 3-4:  Location of an object in an image from the slide reference point.  
r and c are in pixels. Pixel distance from the centre is calculated and 
converted to steps to be added to x and y, known in steps. 

3.4 Auto-Focus 
Specification: 
1. 12 microns of linear movement per step. 
2. Approximately 10 seconds per focus 

For consistency and ease of integration, the movement control 
mechanism for the ‘z’ movement, or focus, is the same as for the ‘x’ and 
‘y’ movements: a stepper motor controlled by a commercial 
controller/driver unit that is under computer control via the serial port. 
The stepper motor rotational movement is converted to a linear 
movement by a standard microscope focus worm drive mechanism. 

Auto-focus is performed once for the low magnification imaging of the 
slide.  For each object imaged with the high magnification microscope 
an auto-focus is performed. The focus was developed to be completely 
automatic but a once-per-slide user pre-focus was added to increase 
reliability.  

There are three levels at which a focus might be found: the bottom of 
the slide; the top of the slide under the cover slip where the pollen is; 
and the top of the cover slip. There is often dust, oil, finger marks or 
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glass imperfections that show up at these levels. If the slide is very 
clean the focus algorithm could find the correct one by the magnitude 
of the parameter measured for finding focus. Built into the algorithm is 
a wide sweep for finding the three levels and deciding through a series 
of tests which local peak is the correct one.  

 
Figure 3-5:  A gradient squared measure of focus showing the three focus 
levels of a slide. The peaks from left to right indicate: the slide bottom, the 
slide/cover-slip with the pollen suspension, and the top of the cover slip. The 
slide is quite dirty which is indicated by the outer surfaces having more 
detail and therefore higher focus measurement values. 

It was decided that the risk of finding the wrong focal plane was 
reduced if the user set the focus manually while setting up the system 
and the algorithm then refocused around that point, assuming that the 
result would be more consistent using an auto-focus. The same 
user-initiated focus position, adjusted for the difference in height 
between the two microscopes, is used as a starting point in focussing 
for high magnification image capture.  

An auto-focus capture sequence for each object found is performed in 
an upward direction. As with the focus sequence capture, driving the 
microscope to the focus position found is always in the upward 
direction. The upward direction of critical focus movements reduces 
mechanical backlash and stickiness effects thus reducing variation in 
the resulting position. 

Stopping focus at or near the first focus peak found would speed up the 
focus process but risk focussing on dust or glass surface artefacts as 
was noted by Geusebroek et al. [22].  

For the focus algorithm, a quantitative measure of focus is extracted 
from each image and stored as an array of numbers in the order of 
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their capture. A local maximum algorithm finds any peaks in the 
array. A noise floor in the array is estimated to eliminate the smaller 
peaks. The peak values and the absolute maximum value are stored 
along with their position in the array. If the absolute maximum is at 
the beginning or end of the array then it is discarded. Remaining peaks 
are compared for height, and position within the array, and an 
algorithm determines which is most likely to be the peak representing 
the pollen focal plane.  

A number of focus measures were gleaned from the literature [28, 39, 
54, 61] and starting with the simplest and least computationally 
intensive, were trialled in images from the AutoStage to gauge their 
effectiveness. Eleven in all were trialled including: standard deviation 
of all grey levels; variance; a normalised variance measure; maximum 
of x,y direction gradient of neighbouring pixels; vollath4; vollath5; the 
derivative in x and y directions which is essentially a measure of the 
slope of values between pixels; a measure of power in all pixel values; a 
histogram measure; a measure of entropy in the image grey level 
values; and the Fourier transform where the mean of the largest 1000 
values of the real portion of a fast Fourier transform of grey level 
values is calculated. Functions that required a threshold required extra 
considerations to determine the correct threshold and were found to be 
less effective with large variations in image type.  Some of the better 
performing functions are shown in the graphs of function-value versus 
focus-step in  Figure 3-10. 

 
Figure 3-6:  Focus Function.  This figure from Groen et al. [28], defines the 
properties required of a good focus function. v should be small and 
reproducible while η is large, ideally ε = 0. This figure can be used to 
evaluate the graphs in Figure 3-10. 



   27

Groen [28], evaluated eleven functions and concluded functions based 
on squared derivatives and normalised standard deviation would have 
the required properties. Santos [61], concludes Vollath4 and Vollath5 
to be top of their performance list, however, Kehtarnavaz [39], shows 
results showing squared gradient to be better when compared to 
Vollath5: Figure 3-7. 

 
Figure 3-7:  Focus measures; squared gradient compared to Vollath5 [39] 

For images from AutoStage, the squared gradient produced very good 
results. Over a range of image types, all from AutoStage, the squared 
gradient was empirically more consistent in performance than others of 
similar effectiveness such as the derivative. In trialling the gradient 
measured in both x and y directions, the x direction was found to 
produce a better result more often. By choosing the maximum gradient 
value between x and y directions at each pixel, it was found to be even 
more consistent in performance so this was the chosen function and 
named “maxGrad” in the software code.  
A Matlab function for gradient is used to obtain x and y gradients and 
the maximum for each value is determined, squared and then all 
values are summed. The gradient is described in the Matlab help file 
as:  
{FX,FY} = GRADIENT(F) returns the numerical gradient of the matrix 
F. FX corresponds to dF/dx, the differences in the x (column) direction. 
FY corresponds to dF/dy, the differences in the y (row) direction. The 
spacing between points in each direction is assumed to be one. 

For low magnification images, the maxGrad was found to be too 
sensitive to noise and introduced many peaks which would hinder the 
local peak finding algorithm. The large “width at a low percentage of 
the maximum”, (η in Figure 3-6), property of the normalised standard 
deviation, considered to be valuable by Groen [28], was found to reduce 
the noise peaks and proved to be more reliable for low magnification 
images. The width at high percentage of maximum, (v in Figure 3-6), is 
also large but did not affect the result in the trials performed. The 
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variance proved to be a better function given Groen’s criteria (Figure 
3-6) but as standard deviation showed equal performance for the 
images tested and was computationally less demanding the standard 
deviation of the image grey values was chosen for the low 
magnification auto-focus function. 

 

 
Figure 3-8:  Cropped image series; #18, #19, #20.  #19 was selected as 
‘in-focus’ by the focus algorithm. 

 

                    
Figure 3-9:  The entire In-focus image, #19 of series used to produce 
associated graphs, the first of which is shown above, to the right . More 
graphs of function values versus focus step are shown in Figure 3-10, and a 
second image series example is shown in Figure 3-11. 
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Figure 3-10:  Focus graphs; focus algorithm values versus image series 
number. The focussed image is shown above.  A cross marks any local peaks 
and a dotted line across marks a noise floor calculated level, below which 
peaks are ignored. All algorithms detect image #19 but the shapes vary as 
shown. 

 
Figure 3-11:  Focus graphs for a second image (shown below) 
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Figure 3-12:  A second image series used for focus data: in-focus image #21.  
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4 Microscopes 

Introduction 

A suitable microscope was proposed for the project by 
Holdaway [34]. That design was reasonably faithfully 
followed for developing and building into the system and 
is described below. For this project a second, wide angle, 
or low magnification, microscope was also developed. In 
order to quantify any changes in the prototype it is 
important to have a base measure of parameters so 
measures such as resolution and depth of field are 
defined. These parameters may be used for parameter 
and tolerance design as described in §2.4. 

4.1 Low Magnification Digital Microscope 
specification: 

• 640 x 480 pixels  
• Magnification: 1x,  a 10 micron pollen grain is about 7 (2.62)pixels. 
• 1 pixel = 3.8 microns 
• Field of view is 2.43mm x 1.82mm 
• 100 low magnification images will cover the area under a standard 

rectangular microscope slide cover slip 

The low magnification microscope was included to capture images of a 
slide with enough resolution to detect the presence of pollen grains of 
all sizes of interest (10-100 microns) and a field of view to allow a series 
of as few images as possible to cover an entire slide. The aim for the 
inclusion of the second microscope was to speed up the pollen location 
process. Slides are to be prepared with a relatively low concentration of 
pollen to avoid clumping (see §3.2.1 ) and the high magnification 
microscope would have therefore captured many images with no pollen 
in them. Any requirement of auto-focus for the low magnification 
images would have slowed the process, reducing or negating its 
usefulness.  

An option had been to adapt one microscope for both tasks by making 
the high magnification microscope camera adjustable in distance from 
the objective lens to alter the magnification. That option required 
added mechanical complexity and perhaps another drive motor for the 
adjustment to be made automatically. Suitable cameras are now 
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inexpensive and the mechanism to drive the slide under each would 
exist, so the decision was made to add a second microscope for the 
prototype. 

The limiting factor for field of view was the need to detect the smallest 
pollen of interest (10 micron diameter). An optical magnification of 1x 
results in the area of an object of 10 microns diameter, being 
represented by about 7 pixels. Unity magnification, about 1/10th of 
magnification of the high magnification camera, was chosen. The 
resulting field of view is 2.43mm x 1.82mm. 

  
Figure 4-1: Low magnification microscope images showing, from left to 
right, 100micron spaced lines and pollen on a slide. The white mass near the 
edge is a wax seal. 

The depth of field is large enough, and sensitivity to focus low enough 
for the system to focus once and capture the entire slide with a single 
focus setting. The images from this camera form a series that overlap 
slightly and segmentation removes any objects found touching the 
borders. Pollen found twice as a result of the overlap are removed by an 
algorithm described in §6.3. An existing problem with this approach is 
that any pollen found twice adds to the time taken by the system as a 
whole. 

4.1.1 The Camera Sensor 

The microscope was made by removing the camera printed circuit 
board and lens from an inexpensive “web-cam” and adding a plastic 
tube between its sensor and lens to effectively increase lens to sensor 
distance and increase the magnification. The tube length required was 
5mm. The lens screws into its holder, which, in the camera, is a focus 
mechanism. It was useful for fine tuning the magnification.  

The magnification of the low magnification microscope is 1x. A small, 
inexpensive sensor and lens module on a printed circuit board was 
modified by increasing the lens-to-sensor distance sufficient to achieve 
the required magnification. The sensor and lens combination was 
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removed from an inexpensive “web-cam”. The magnification was 
measured using a slide micrometer: a microscope slide with 11 etched 
lines 100 microns apart (1mm) and lines 10 microns apart between two 
of them. By taking an image and counting the pixels from line to line, 
the microscope could be calibrated (see Figure 4-1). 

The camera was built into a housing, constructed at Massey 
University, and secured to the high magnification microscope. It has an 
8mm sensor with 640x480 pixels that are about 9 microns square.  

4.2 High Magnification Digital Microscope 
Specification: 

• 1024 x 768 pixels 
• pixel size is 4.65 microns square 
• sensor size has a 6mm diagonal  
• Magnification 11.2x, a 10 micron diameter pollen is represented by  

about 580 pixels  
• 1 pixel represents 0.415 microns of the object 
• Field of view is 0.425mm x 0.318mm 

 
Table 4-1: Microscope optical data with symbols used in formulae below. 

unit symbol value 

magnification m 11.2 

Image distance v 207.4mm 

Object distance u 18.6mm 

Object distance from front element  7mm 

Lens Focal length f 17mm 

Numerical aperture N 0.25 

Objective lens aperture a 2.5mm 

Circle of confusion c 0.0018mm 

Wavelength of light λ 550x10-6mm

Refractive index of air n 1.0 

The high magnification microscope captures detail almost down to the 
resolution allowed by the wavelength of light being used (see §4.2.2, 
equation (4.3)). This microscope consists of a CCD sensor and image 
forming lens. The lens used is a standard microscope objective. The 
advantages of the microscope as designed are that it is easily 
fabricated, inexpensive and has a low optical magnification. The low 
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optical magnification results in a larger depth of field than a 
conventional microscope with a similar ‘viewing’ magnification. The 
digital microscope viewing magnification is similar to the 400x 
conventional microscope used for capturing the images used in testing 
of the classification system (see §8.1). The additional magnification for 
viewing eventuates from the increase in pixel size from the 4.65 
microns in the imaging sensor to the medium used to view the image. 
For example, 1024x768 pixels in the 6mm diagonal sensor is translated 
to 1024x768 pixels on say a 432mm (17”) diagonal computer screen, 
resulting in about 72x magnification and 790x magnification overall, 
taking the 11.2x optical magnification into account. This accounts for 
images viewed on a computer screen. For feature extraction, the 
resolution (§4.2.2), and correct sampling of it by the sensor (§4.2.4) is 
important.  
The effects of aperture were discussed by Holdaway [34], and 
diffraction effects were found to be limiting the resolution. Aperture 
control is not implemented in AutoStage and the widest available 
aperture, limited by the objective lens, is used. In general, lighting 
intensity can be altered by:  

• adjusting the size of an aperture, “stopping” 
• reducing the intensity of the light source 
• and in the case of the digital microscope, altering the sensor 

capture time or ‘shutter speed’. 

Stopping down increases depth of field but also degrades resolution 
(§4.2.2). A pollen grain might be as small as 10 microns across. Some 
features, as shown in images from a scanning electron microscope 
(SEM, see Figure 4-2), are of sizes below the limits of resolution of this 
system, so resolution is the limiting factor here. No stopping function 
was added because resolution should not be reduced and image 
intensity is adjustable by the other means mentioned above.  
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Figure 4-2: Scanning Electron Microscope (SEM) images of  Scots Pine grain 
(left)  Birch Pollen grain (centre) grass pollen grain (right). Scale is 
unknown.  [58] 

  
Figure 4-3: An interesting comparison of pollen captured on AutoStage, 
compared to the SEM images in Figure 4-2. From left to right they are Pine 
(Radiata), Silver Birch,  and grass (Brown Top) A Silver Birch pollen may 
vary from 15 to 28 microns diameter. The pine pollen are about 50-70 
microns across. Relative scale of images is approximate only. 

4.2.1 Imaging Aberrations  

A number of possible aberrations are introduced in §2.2. Most are dealt 
with conveniently by the use of a manufactured objective lens. Two 
that may not, “Curvature of Field” and “Distortions”, are discussed 
below.  

Curvature of field is caused by the light radiating outward from the 
lens making equidistant points a curved field. This might be corrected 
by a curved image sensor, however the sensor is small enough on the 
curved surface that the effect is not significant as the following shows. 
The diagonal of the image sensor from centre to one corner measures 
3mm. Considering Figure 4-4, the maximum offset of the sensor from 
the true image, x, is calculated as follows: 
 tan 3/ 207.4 0.829a a= ⇒ = °  (4.1) 
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Figure 4-4: Field Curvature Distortion 

To determine if this is significant, by similar triangles: 
6 92.25 / 207.4 / 2.25 50 10 / 207.4 524 10c x c m− −= ⇒ = × × ≈ × ; where x, shown 

in Figure 4-4 and calculated in equation (4.2), is an error in focal 
position; and where c is the circle of confusion radius as in Figure 4-5.   

 
Figure 4-5: Circle of confusion for Depth of Focus 

The circle of confusion of 0.5 microns, resulting from the shift of 50 
microns along the focus field is not significant compared to the sensor 
element size of 4.65 microns. 

Distortions are often caused by misplaced apertures, or “stops”. 
AutoStage requires as large an aperture as possible to maximise 
resolution (§4.2.2). This is achieved by having no “stops” other than the 
restriction afforded by the size of the objective lens. As the objective 
lens group is manufactured, aperture size is fixed, however if stops 
were ever to be considered, this effect would need to be revisited. 

4.2.2 Resolution 

The smallest resolution we can theoretically obtain is defined first by λ, 
the wavelength of the light, however diffraction effects must be 
considered. Diffraction adds to the resolution limit imposed by 
wavelength. When a point source passes through a limiting aperture, it 
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produces a central bright “Airy disk” (Sir George Airy, 1801-1892) 
around the image point. There are also bright diffraction rings 
extending outward, but of decreasing intensity, the first of which has 
only 1.7% the radiant power of the centre of the Airy disk [62]. The 
Airy disk angular size is calculated by, sin 0.61 / aβ λ= × . Rayleigh 
proposed that two points are resolved if the centre of one is no nearer 
than the first dark ring just outside the Airy disk [62].  

 
Figure 4-6: Light through an aperture showing Airy disk, diffraction 
patterns. 

For a lens system such as in microscopes, the resolution depends on the 
diameter of the smallest light restriction in the objective and the 
lens-to-object distance. This characterises the light collecting ability of 
the lens and forms twice the angle β shown in Figure 4-9. which is 
called “angular diameter” of the lens.  

The numerical aperture of a lens is measured as the sine of ‘β’, 
multiplied by the refractive index, ‘n ’ of the medium that light passes 
into, from the lens. The refractive index is often taken as 1.0 for air. 
When oil immersion lenses are used, for increasing resolution, the 
refractive index of the oil must be used. Numerical aperture is often 
quoted on lenses as an indication of their resolving capability. 

Resolution depends on many things including conditions of 
illumination. Some formulae for resolution include the numerical 
aperture of the condenser lens in the lighting system. The Rayleigh 
criterion is often used, however that is a subjective value based on 
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empirical observations and involving the optics of the eye, so it is not 
suitable here. The Sparrow criterion estimates a 26% increase in 
resolution over the Rayleigh criterion and is less arbitrary in its 
definition by stating that two objects are resolved if the combined 
intensity half way between their Airy disk centres is equal or less than 
the centre of the Airy disk of lower intensity [23]. It can be visualised, 
by considering Figure 4-7, that as the two points move closer together 
and the combined intensity forms a single peak then the two peaks are 
no longer distinguishable. This criterion does not depend on the human 
eye so is more appropriate for digital imaging as is used in AutoStage. 

The Sparrow criterion is stated more formally:  

when both, [ ]d ( ) ( ) 0
dx Lf x f x σ+ + =   and  [ ]

2

2

d ( ) ( ) 0
dx Lf x f x σ+ + =  [38],  

f(x) is the instrumental response, and  σL is the Sparrow limit. 

The Sparrow limit: 0.47
sin

R
n

λ
θ

×=
×

, and Rayleigh limit:  1.22
sin

R
n

λ
θ

×=
×

. 

 
Figure 4-7: Airy disk intensity profiles (intensity versus distance across 
disk) showing Sparrow criterion 

Resolution is defined by equation (4.3) in [71] as a reasonable 
approximation of resolution for common usage, so for AutoStage:  
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What is essentially required for AutoStage is a practical maximisation 
of resolution. It does, however, need to be tempered with consideration 
for depth of field and particularly contrast. Adjusting parameters to 
minimise one will, in some cases, affect the others. 

The slide, cover slip and pollen suspension gel, also have an effect on 
resolution. Light from the object to the objective lens is refracted 
outward by the transition from the cover slip into air so resolution is 
decreased as it effectively reduces the angular diameter of the objective 
lens; see Figure 4-8.  

 
Figure 4-8:  glass slide showing refraction effects.  

 

4.2.3 Depth of Field 

Depth of field and depth of focus are similar measures, with depth of 
field being the range of “in-focus” distance of the object from the lens 
and depth of focus being the range of distance the image is “in-focus” 
from the other side of the lens. Only one point in each case is perfectly 
in-focus, but the blurring increases as distance away from that point 
increases and depth of field/focus is therefore some decision as to what 
level of blur is tolerable. The size of a “circle of confusion”, shown in 
Figure 4-9, is a measure of blur. In the case of the digital microscope 
with auto-focus, the sensor (image) is fixed in place, and the distance to 
the object is moved, or focussed, until determined “in-focus” by some 
algorithm. The image sensor is fixed and therefore defines the focal 
plane exactly. This leaves depth of field to be determined. As defined in 
Figure 4-9, depth of field is the range of object positions along the 
optical axis deemed to be in focus. 

To quantify depth of field, first a circle of confusion is defined. It could 
be defined as the size of the image sensor elements as any movement of 
the light ray across the width of the sensor element makes no 
difference to the illumination detected, but this assumes the sensor 
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detects the same level of light falling on any part of it and also assumes 
there is no Airy disk (see §4.2.2). An Airy disk size could be calculated 
and factored into the amount it could move before affecting a 
neighbouring sensor element.  

With the image sensor position fixed and defined as the image plane, 
the object depth of field can be calculated. The image sensor has 
elements that are 4.6 microns square. Any blurring within this size is 
assumed not to be detected by the sensor, so the circle of confusion size 
we define as no detectable blurring to be tolerated. The Airy disk 

angular diameter is calculated as 0.61sin
a

λβ ×=  [62]. Therefore, 

considering Figure 4-9, its diameter is: 
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So, a point forming an Airy disk on a 4.65 microns square image sensor 
element, with the centres concurrent, has almost 1.8 microns to move 
before affecting a neighbouring image element. That defines a circle of 
confusion radius, usable for AutoStage.  

Young et al. [73] say, “The depth-of-focus (Δz) of a microscope system 
has been described by a number of authors. Unfortunately, these 
descriptions do not agree”. That has been the result of searches for a 
suitable formula for AutoStage. A derivation of DoF for this project was 
performed with a result within the same range as the three equations,  
(4.5), (4.6) & (4.7) and is placed as an appendix in §A. The depth of field 
is estimated by these equations to be around 10 microns.  

By geometric manipulations of diagrams such as Figure 4-9, and 
manipulation or differentiation of the lens equation, 1/ 1/ 1/u v f+ = , 
some change in u, away from f along the optical axis, will cause a 
corresponding change in v which will result in the circle of confusion 
increasing in size. The equations (4.5) and (4.6) were derived much in 
this way, however equation (4.7) was derived as explained in [73]. 

Table 4-1, explains the common parameters used in these equations. 

Depth of Field may be calculated by [55]: 
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 (4.5) 

as cited by Holdaway, however there is no clear derivation offered. 
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Conrad [11], derives equations in detail and: 

 ( )
( )

( )
( )2 2,n f

Ncu u f Ncu u f
DoF DoF

f Nc u f f Nc u f
− −

= =
+ − − −

 (4.6) 

The subscripts in this equation for DoF indicate the portions of DoF 
from the object toward the lens (n), and from the object away from the 
lens (f). These are δu2 and δu1 respectively, in Figure 4-9. 

Young et al. [73], use diffraction more directly than using the circle of 
confusion to derive an equation that is empirically tested: 
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 (4.7) 

where Δz is depth of field. 

Figure 4-9 shows the rays that would form an image and the boundary 
rays that would define a circle of confusion around the image sensor.  

 

 

 
Figure 4-9: Ray Diagram for Depth of Field.  An image forming lens and its 
half angular diameter, β.  Image distance, v, divided by object distance, u, is 
magnification, m. For a given circle of confusion about the image point, 
there is an associated depth of field around the object point. A thick lens 
simply creates two principal planes that affect the values of parameters but 
do not affect the relative measures used in the associated equations. 

Numerical aperture (NA) is a commonly quoted figure of merit, 
indicating resolution of an objective lens and is described in §4.2.1. One 
important area for further testing is to determine whether increasing 
NA to increase resolution, with the side effect of decreasing depth of 
field, would improve images for feature extraction. Depth of field may 
then be improved by the integration of the most-in-focus parts of each 
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of a series of images taken in steps with the focal plane moving 
through the object. An example is shown in §9.3.2. 

4.2.4 Magnification 

The objective lens is a set of lenses designed to act as a single 
magnifying lens, but has corrections in the design to compensate for 
aberrations that occur (see §2.2 and §4.2.1). The objective lens has a 
nominal magnification of 10x and a numerical aperture of 0.25. A 
physical tube separates the objective lens from the eye piece in a 
conventional microscope but the standard measurement for “optical 
tube” is the distance from the image side focal point, f, to the 
real-image plane. Magnification is the optical tube length divided by 
the focal distance, f [23]. The objective lens has a 10x magnification 
when a JIS, Japanese standard 170mm optical tube is used. (160mm is 
the DIN or European standard). Therefore f = 170/10 = 17mm. The 
objective lens is being used with a magnification of 11.2 by moving the 
image sensor to 207.4mm from the lens. The new optical tube length is 
207.4 - 17 = 190.4mm and 190·4/17 = 11.2. This was verified by using 
the micrometer slide as used to determine magnification for the low 
magnification microscope. 

Given that the sensor is sampling the image, then it is expected the 
sampling theorem will hold. Sampling should therefore be at twice the 
maximum spatial frequency; that is half the minimum spatial 
resolution. Resolution is found to be about 0.9 micron in §4.2.2, so 
sample spacing required is at 0.45 microns or less. With a sensor pixel 
dimensions of 4.652 microns and a magnification of 11·2, the object 
area represented in a pixel is (4.65/11.2)2 ≈ 0.422 microns which 
satisfies the sampling criterion attributed to Nyquist [52], and stated 
more directly by Shannon [63]. Thus it is concluded that magnification 
is sufficient to capture all information that resolution affords the 
system. 

4.2.5 The Image Sensor and Camera 

The camera is a MicroPix™, model  M1024. Connection to the 
computer is by  IEEE 1394 serial data standard or “FireWire”. Using 
progressive scan it can transmit up to 30 frames per second. The 
MicroPix  incorporates a Sony™ ICX204AL image sensor (see appendix 
in §11.1.2). The active sensor area is a rectangle of 5.952mm diagonal 
incorporating 1024x768 pixels that are 4.65 microns square. 
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Figure 4-10: High magnification microscope construction 

The lens mounting provided on the MicroPix is a standard ‘C’ mount. A 
physical tube to optically seal and fix the distance from the sensor to 
the objective lens, was manufactured at Massey University. A tube 
length of 207.4mm fixes the magnification at 11.2x as in Figure 4-10. 

The Matlab image acquisition toolbox allows a data connection from 
the PC to the MicroPix camera via an IEEE 1394 (FireWire) serial 
connection. 

Some resulting images are shown in Figure 4-11. 

  
Figure 4-11: High magnification images cropped to the central portion 
(500x500) of the image. The pollen on the left is about 40 microns across and 
the pair in the right hand image are about 20 microns diameter. 
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5 Lighting 

Introduction 

Lighting sources were considered by Holdaway [34], and 
an incandescent lamp suggested as suitable on the 
grounds of “design simplicity”. Lighting is considered 
here further.  

A mains powered incandescent lamp outputs light of varying intensity 
due to the alternating supply voltage. With small image sensor 
integration times, the images would be of varying brightness unless 
appropriate capture timings were implemented. A simple and suitable 
alternative of a stable, regulated, direct current supply was chosen. A 
quartz-halogen lamp was found to be suitable for intensity output, size, 
price and availability. Heat was a problem so a cooling fan was added 
to mitigate the effects.  

Light emitting diodes (LEDs) were considered as a more efficient 
visible light emitter. The output of a high-intensity LED is about 12 
candella (Cd) compared to 8000Cd of the quartz-halogen lamp.  
Multiple LEDs using a timed and pulsed supply was considered but the 
incandescent lamp was selected, again for its simplicity. 

Holdaway [34], noted that band-pass filtering the light will result in 
less chromatic distortion. This is theoretically true however the 
objective lens is corrected for chromatic aberrations. Most objective 
lenses are spherically corrected at the sodium yellow wavelength of 
589.2nm [55]. The MicroPix camera is filtered internally so that its 
highest sensitivity is to the green part of the spectrum at about 550nm. 
Green to yellow/green light wavelength is in the 500-600nm range and 
human vision is most sensitive around 546nm. While no improvements 
could be discerned viewing images on a screen with such filtering, it 
was considered prudent to use a yellow/green filter to limit the 
band-width of the AutoStage lighting source.  

The light forming the image, is reflected (specular, diffuse, or both), 
refracted and diffracted by the object [23]. The plane of polarisation of 
light can be affected by reflection and scattering [24]. Image formation 
is therefore complex, and beyond the intended scope here to fully 
define. Pollen are transparent in nature with fresh pollen containing 
gamete material inside the shell, while fossil pollen have decomposed, 
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all except for the sporopollenin shell. Fossil and fresh pollen grains 
appear quite differently under the microscope. This prototype, 
AutoStage, allows for empirical measures of lighting quality by 
comparing classification results using different lighting schemes for 
various object types. The scheme adopted by initial design affords good 
resolution and excellent contrast. It was chosen as it performed best 
when examined on a computer screen. The results show an 
improvement in classification accuracy when compared to conventional 
light microscope images, indicating that the lighting choice was a good 
one. Further improvements may be possible, now that the system is 
operational. 

Speckle is a phenomenon of coherent light, where reflection from 
surfaces with features in the order of the wavelength of the light, cause 
the reflected light to add constructively or destructively depending on 
the surface distances from the light source. This causes bright and 
dark spots in the image. Coherence of light is a continuum from 
coherent, as with laser light, to incoherent, as with diffusely reflected 
light. Directed light from a point source through a collimator lens, as 
used in many optical microscopes, forms light that is somewhat 
coherent, but not as coherent as laser. The lighting for AutoStage, 
being sourced from a wide scattering filter, is very much at the non-
coherent end of the continuum.  

5.1 Dark Field Illumination 
Further research and experiments on lighting found that simply 
blocking the path from the light source directly into the objective lens, 
and adding a diffuser to allow light to “divert” to the object, created a 
simple form of dark-field lighting that increased contrast. Contrast is 
next to resolution in importance to imaging. If resolution is adequate 
but contrast is not, the distinction between two points may not be made 
as their grey colour level will be close in value.   

An unexpected effect observed was the merging into the background of 
some detritus, as shown in Figure 5-1. An explanation offered is that 
opaque objects appear black and merge into the background while 
transparent objects (pollen) appear much lighter with features that are 
darkened but without blocking light entirely. Edges of opaque objects 
will show as the light reflects off them, toward the objective lens.  
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Figure 5-1: light-field and dark-field illumination (respectively) showing 
pollen grains standing out more amongst detritus in the dark-field image.  

Dark field imaging is perhaps better obtained, and still reasonably 
simple, with more directed side lighting as shown in Figure 5-2. This 
would improve efficiency of the lighting and reduced heating. It was 
decided not to spend effort on modifying the lighting further until the 
system could be tested properly, and a benchmark obtained with which 
to show a cost effective advantage to the purpose of the system.  

 
Figure 5-2: Dark-field lighting. Left: implemented. Right: simple alternative - 
in three dimensions this lighting forms a hollow cone of light with apex at 
the object and the objective lens inside the hollow. 

Dark-field lighting is generally known to, and shown to have better 
contrast as in [49] where an increase of contrast from 10% to 80% was 
achieved in changing from light-field to dark-field microscopy and in 
[48] where, “The microscope uses a halogen bulb light source and a 
silicon vidicon camera detector. High-contrast images of defects are 



   47

shown as bright detail on a dark background. For the same view, DFM 
gives image detail contrast as high as 100%, compared with 25% in 
bright-field illumination.”  

There are many statements of objects smaller than the resolution of 
the system being “visualised” rather than resolved, as in [4]. In this 
case an object smaller than the wavelength of light used, appears in 
the image, although not to scale. Whether this exists in some degree for 
AutoStage, and whether it is an advantage or disadvantage has not 
been determined. It would be difficult to attempt to image particles 
smaller than 1 micron and be sure the resultant image showed those 
particles and not others – that is to say, ensure an absolutely clean 
slide and then have those particles only, placed on it. The article cited, 
[4], was attempting to show that the particles observed in the image 
were not simply clumps of the smaller particles. 
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6 The Segmentation of Pollen 

Introduction 

A segmentation scheme was proposed by Holdaway [34], 
but the algorithm required user input, was developed 
for a limited number of pollen types, tests differed from 
the proposed design due to a lack of background images, 
and lighting was different from that used here. A new 
segmentation scheme was therefore developed for 
AutoStage. Two segmentation algorithms were required 
to find pollen in images from each of the microscopes, 
but the basis of the algorithm is the same for each. 
Holdaway was successful for his image set but had 
problems with two pollen grains too close together. This 
is still the case here and “clumping” is an as yet 
partially unsolved problem. It is suggested, in 
discussion within the Pollen Group, that the counting of 
clumped pollen grains is a difficult image processing 
problem which will require a separate study. 
Palynologists within the group say that clumping is also 
difficult to do “by eye” and clumps of pollen are often 
ignored as too difficult to discriminate. 

6.1 Segmentation and Segmentation of Touching Objects 
It is stated by Pal and Pal [53] that, “it is known that no method [of 
segmentation] is equally good for all images…”. They review some 
segmentation techniques including grey level thresholding, iterative 
pixel classification, Markov random field based approaches, neural 
network based approaches, surface based segmentation, edge detection 
and fuzzy set theory based methods. Edge detection was chosen as the 
basic technique here, as pollen against the dark background form 
sharp edges that are relatively easily detected. The problem of 
clumping was avoided by specifying sparsely populated slides, however 
from results it appears that clumping, and pollen touching other 
objects, cause a slight reduction in counting compared to manual 
counting. The Hough transform is likely to be a useful tool in later 
developments in sorting pollen in clumps as its ability to locate circles 
of certain radii could be used to pick out the pollen grains within one 
large blob. Some clumping examples are shown in Figure 6-1. As 
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texture is already being successfully used for differentiating pollen 
then it would be a good candidate for use in clump splitting, although 
the implemented differentiation is between pollen types and for this 
problem, differentiation between pollen and non-pollen is required. It 
seems logical to combine edge and region detection as was done by 
Narandra [51], however a simpler and more specific method should be 
sufficient given the somewhat predictable nature of clumps of pollen. If 
a clump is larger in diameter than the largest pollen grain and/or 
irregular in shape (that is it would be rejected by the present 
segmentation algorithm) then it requires the detection of features or 
regional patterning and once defined as a clump, the edges of 
individual grains within that clump need to be detected.  

 

  
Figure 6-1: Examples of clumping. The image on the left shows clumping 
with overlapping and on the right, pollen grains overlap with detritus. The 
translucent nature of the pollen is apparent in these images. 

6.2 The Segmentation of Low Magnification Images 
The low magnification microscope images are varied in nature between 
images and across individual images. They may contain a black 
background with white pollen, added detritus, large white areas of the 
wax used to seal cover slips, or cover slip edges etc. Some examples are 
shown in Figure 6-2. 
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Figure 6-2: Two low magnification images and their segmented image below, 
from a series of images of a slide of fossil pollen from a core sample taken 
from Easter Island by Prof. John Flenley.  

The wax seal required an added test for black object on white 
background as the speckled nature of it found many edges with many 
of those being of similar shape and size to pollen. 

Details of the algorithms are found in the software description in 
§11.1.12.2.4. Essentially, the algorithm subtracts a background image, 
finds edges, joins any breaks in what may have been a connected edge 
and fills any resulting shapes enclosed by edges to create solid “blobs” 
formed in a binary image. A series of tests for size, shape and relative 
background intensity eliminate many of the blobs. Examples of blobs 
are seen in the segmented, low magnification images of Figure 6-2. 

A background image for the system was taken without a slide in place 
so it could be subtracted from subsequent images to remove any 
constant effects from lighting, lens and sensor. 

The image processing tasks to achieve forming blobs are a canny edge 
detector, dilate, fill then erode. The edge detector requires a threshold 
of the image. The threshold value varies from image to image but 
changes drastically when a large portion of white such as the wax seal 
appears in an image. To counter this unwanted effect the threshold 
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was taken from the background image so it is constant across all 
images and is effective in finding edges for objects above the 
background intensity. The effect of this change is shown in Figure 6-3, 
between image numbers 2 & 3. Image 2 is missing edges for a large 
number of the less intense pollen grains in the image.  

 
Figure 6-3:  Images of segmentation sequence. Top left to bottom right are: 
1. original image, with the wax seal covering the left half  
2. edges using the original image to calculate threshold – note missing pollen 
3. edges using background image to calculate threshold 
4. edges dilated, filled and the borders cleared 
5. erosion brings blobs to original object size and smoothes edges 
6. final objects are found with some objects removed by various tests 

described in the text 

1 2

3 4

5 6
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The ‘fill’ checks each black pixel in the binary image and if it can not 
find a black pixel path to the edge of the image, it changes all black 
pixels in the necessarily edge-enclosed area to white, creating the blob. 
The edge was dilated to join the gaps but it increased pixels in all 
directions making the final blob larger than the original object, so an 
erosion is performed to reduce the blob size to about the size of the 
object in the original image. This also has the effect of smoothing the 
edges of the blobs. 

After blobs are created they are tested for the likelihood of being a 
pollen grain. The number of pixels in a blob represents area and is 
used to discard blobs that are too large or small to be pollen grains. A 
bounding rectangle around each blob is tested for width to height ratio 
and if found too large or small, the blob is discarded as being too 
elongated in an X or Y direction. The area of the bounding rectangle 
compared to the area of the blob is used to deselect more objects that 
are elongated in a 45° direction. A convex hull is created for each blob 
and the ratio of its area to the area of the blob is used to eliminate any 
object that is essentially round but with its boundary making 
excursions in toward its centre. 

Some more sophisticated methods of segmentation were trialled on the 
images, for example, watershed and Hough transform methods. A 
reference text used, [25], allowed an internet download of a Matlab 
toolbox, “DIPUM” which was useful for implementing these algorithms. 
It was found that the more complex or sophisticated the algorithm, the 
more selective or specific it was and would not as easily adapt to the 
variety of tasks required across a variety of slides.  

A slide preparation prescription has been proposed as although 
segmentation is successful for pre-existing slides (examples of which 
are those shown in Figure 6-2), it is more robust for slides prepared in 
the prescribed manner (§3.2.1). The prescription is deliberately as 
similar to present practice as possible so the integration of AutoStage 
into a laboratory would be seamless. 

6.3 The Segmentation of High Magnification Images 
The high magnification microscope is driven to the location of each 
pollen grain found in the previous segmentation, so that its location is 
ideally central in the image. Rounding of the conversions from 
pixel-size to motor-step-size, and tolerances in the movement of the 
XY-stage, cause the pollen to appear with an offset from the centre of 
the image. If other objects are in the central field of view, then it can be 
unclear which one is the pollen target, so a second segmentation is 
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performed. The increase of information in the higher magnification 
image enables the elimination of more non-pollen objects.  The image 
size is reduced to a size within which the intended object is expected to 
appear given all tolerances. The size reduction reduces computation 
time. The size was determined empirically as 500x500 pixels, centrally 
located within the 1024x768 pixels of the full image. The central 
location of the reduced image size suggests that there is little offset 
from centre of the mean of the positions of all objects. This is because it 
is a simple matter to adjust the software to correct for any such offset. 

 

  
Figure 6-4: Illustration of the same pollen being selected twice. The left 
image is evaluated first, then the right image. The larger pollen is the target 
in the first image and the smaller pollen is the target in the second. The 
target pollen grains are tending to appear below and left of centre of the 
image. If the centre, or position at which a pollen is expected, is altered to 
be between the last found pollen and true centre (shown at the narrow 
cross) then the correct pollen is more likely found each time. 

A pollen grain may be imaged twice if it is close to another. When the 
second pollen is to be imaged, its offset in position may cause the pollen 
already captured, to be imaged again, as indicated in Figure 6-4.  To 
overcome this problem, two processes are implemented. The first 
process moves the expected position of each pollen from the centre of 
the image, to a pseudo-centre determined as some distance between the 
centre of the image and the centre of the last pollen grain found. This is 
effective because the offsets from image centre of successive pollen 
grains tend to drift slowly around the centre rather than jump 
randomly. In the second process, each valid pollen grain found has its 
global position on the slide stored and compared to the locations of all 
previous grains found. The pollen is discarded if its location matches 
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any other within an adjustable tolerance. If this location match 
discards a pollen grain, then the segmentation algorithm continues to 
look for the next closest pollen to the pseudo-centre of the image. If all 
objects in that particular image are discarded, the slide is driven to the 
next location.  

The “blob-finding” algorithm for high magnification images is in 
principal the same as for low magnification images (see §6.1) with the 
parameters changed to suit the differences between images.  

Once shape and size have eliminated some of the blobs, the nearest to 
the pseudo-centre, that has a slide location not found previously is 
located, as described above. The final selection is cropped to slightly 
larger than its bounding rectangle and saved in a folder for 
classification. 
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7 Features Extraction and Classification of Pollen 

Introduction 

The contents of each image are represented by 43 
numbers representing 43 features of that image.  
Classification is performed by an artificial neural 
network. The neural network is trained using features 
from images of pollen grains that have been identified 
by trained palynologists. Once pollen images are 
captured from a slide of mixed pollen types, the 
extracted features are classified into groups of pollen 
taxa by the trained neural network. The number in each 
group is the resulting count of the slide for each pollen 
taxa. The associated images are displayed on the 
computer screen thus each grouping can be viewed by 
the user and the count adjusted if required. In testing 
the classification process, errors ranging between three 
and twelve percent were found.  

7.1 Pollen Features 
Feature extraction is performed to reduce the data, in this case in an 
image, to the necessary and sufficient amount to perform the 
classification. Having too much data input to a classification system 
may reduce effectiveness [6]. Too much data invites the curse of 
dimensionality [5].  

A suitable set of features was identified and reported by Zhang [74], 
and published in 2004 [75]. Zhang himself used empirical methods to 
reduce the feature set to about 12 features.  

The features, and numbers of each (in parenthesis)  are: 
• Geometric features: area, circumference, compactness (3) 
• Histogram features (2) 
• Second Moment features (7) 
• Grey Level Co-occurrence Matrix, GLCM features (5) 
• Co-occurrence Matrix GGCM features (12) 
• Gabor features (8) 
• Wavelet features (6) 
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There are a total of 43 features.  Essentially there are some shape and 
statistical features but the Gabor and Wavelet features are the 
textural representations which is considered the main method of 
distinguishing the pollen grains.  

Textural features used are based on orthogonal wavelet decomposition 
and Gabor transforms [74]. The wavelet transform is a joint 
spatial/spatial-frequency method [45] and achieves high resolution in 
these domains. These transforms are consistent with recent theories of 
human vision [12]. Two-dimensional Gabor functions are local, spatial 
band-pass filters. Textural analysers implemented using Gabor 
transforms produce a strong correlation with human segmentation 
[57]. 

The Zhang feature set was known to have elements of redundancy, so a 
study was performed at Massey University by Etheridge [13], to 
determine the effect of a reduced set of features by comparing 
classification results with a Linear Discriminant Analysis (LDA) of the 
data and then seeing if LDA could show any possible reduction in 
features. Sets of highly correlated features were determined. All but 
one feature from the correlated sets were removed. Consequently, the 
full set of 39 features was reduced to 24 with discrimination errors of 
10 using the full set rising to 14 errors using the reduced set. It was 
decided that, as the computational effort required for the full set was 
not excessive, the gain in computational time did not warrant even a 
slightly increased error rate. Another result was that the classification 
rate of an LDA was not better than the Multi-layer Perceptron neural 
network. 

Principal Components Analysis (PCA) was performed to again evaluate 
feature set reduction and found only one or two features removable. 
Classification using features sets reduced using PCA results, found a 
reduction in accuracy not considered worth the saving in computational 
time, so it was decided to maintain all 43 features in the system. 

Now that a complete functioning system is available and evaluated, it 
may be used as a benchmark for any future modifications.  The 
performance of any modified or new feature set may be compared to the 
Zhang set. It is likely there will be some benefit to matching the 
feature set to a particular discriminatory task: for example, when 
classifying grass pollen that are very similar in appearance.  

7.2 Classification Using an Artificial Neural Network 
Zhang tested his feature set [74] using a Multi-Layer Perceptron 
neural network (MLP) to perform classification of images with good 
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results. The MLP is used in this project. Support Vector machines 
(SVM) are considered useful for similar tasks with the advantage of not 
being subject to over-training [59]. Over-training is explained in the 
next paragraph. An SVM, with its binary decision mechanism, was 
trialled on two grass pollen image sets and compared to the MLP for 
the same two pollen image sets. The MLP scored a little over 90% 
correct classification while the SVM scored 80%. The MLP is used for 
the system as results are better than SVM. It is considered that any 
major work on comparisons is better done once the prototype is 
complete and whole-of-system trials are possible to compare new 
concepts. 

A neural network can be configured to work optimally on a particular 
data type and the discussion below describes how the Netlab algorithm 
used is optimised for pollen image features used in AutoStage.  Netlab 
is an MLP algorithm written by Ian Nabney [50] and available under 
the GNU licence and freely available on the internet. The help file is 
reproduced in (Appendix D).  

Over-fitting and under-fitting can be a problem when trying to describe 
data that is a sample of some population. 

 
Figure 7-1:  Under/over-fitting: the example data population is sinusoidal. 
The data can be fitted with a straight line, a sinusoid, or a polynomial of 
sufficient order to cut every point exactly. The polynomial models any noise 
present and is thus “over-fitted”, as it does not represent the population 
data as well as the sinusoid.  

In Figure 7-1, the sampled data can be represented by increasingly 
complex functions: a straight line, a sine wave, or a 10th order 
polynomial. If the data population was in fact sinusoidal, with noise 
causing random variation in the data, then a straight line would not 
contain enough information to describe the population well, a sinusoid 
would almost fit and a 10th order polynomial might fit the sample data 
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exactly. The straight line would lack information and the polynomial 
would contain added information about the noise in the particular 
sample. With neural networks, repeated training causes 
“strengthening of the synapses”, or the weights are more finely tuned 
to the particular training data. If training is stopped too early, the 
weights are not adjusted well enough. If training is continued too long, 
the weights can become too finely tuned and when used for recognition 
of new data, may reject it for being too different from the training data. 
So for neural networks over-fitting is a result of over-training. 
Under-fitting is the result of “early stopping”, or under training, of the 
neural network. The number of hidden nodes affects the number of 
weights and therefore the training effort per training epoch. The 
number of training epochs and the number of hidden nodes need to be 
determined for good classification results. They are determined by 
verification of the neural network using exemplar data, in the case of 
AutoStage, this data is features extracted from images of pollen that 
have been identified by experts. A problem presents itself here in that 
the exemplar data has been chosen by humans and so our training can 
only be as good as the data presented as “known”. 

Once a reasonably sized data base of images from the AutoStage was 
compiled, 25% of the images were set aside for final classification tests, 
results of which are reported in §8.1.  The remaining 75% were used for 
training the neural network for those tests. The 75% training image set 
was again split into training and verification sets for running checks to 
determine which parameters were optimal for the task of classifying 
AutoStage images. How the number of epochs, number of hidden nodes 
and number of training data were determined, is discussed in the next 
three paragraphs.  

The number of network training epochs is limited in the Netlab [50] 
MLP algorithm when the activation error gradient reaches zero, or 
when a maximum training count, or ‘epoch’ number, is reached; 
whichever is first. A manual method of determining when overtraining 
occurs was trialled by running training loops and evaluating the 
classification result after each loop. More training reduces 
classification error until over-training occurs at which time the 
classification error begins to rise as shown in Figure 7-2.  
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Figure 7-2:  Optimisation between early-stopping and Over-fitting 

After a series of trials using the type of data expected, an average 
overtraining point could be determined. The number of epochs required 
was found to vary from 80 to 150 within the range of pollen type 
quantities expected: 3 to 50. The variation in classification error over 
that range of epochs was not great, so a fixed number of epochs could 
be used. For the results presented in this report, the training number 
of epochs was fixed at 80. 

The number of hidden nodes required was found by verification trials 
using the verification sets of data. Classification runs on 100 images 
using the remaining 25 for verification tests were performed varying 
the number of hidden nodes until the success rate was maximised. 

The number of training images required was found by trials varying 
the numbers of images for training and checking the classification 
result. The data bases collected included 200 images.  Of these, 50 were 
set aside for final testing. This left 150 for training and verification. 
Varying portions of the 150 were used as training and verification sets 
and the classification results recorded. It was found the more images 
used, the better the result, so 150 images were used for training the 
neural network for the final testing. This quantity is also required for 
practical use of the machine as too many training images would be a 
waste of resources and time. There was not a large change in accuracy 
when using between 120 and 140 training images so it is thought that 
the practical limit is close to the 150 training images used for the final 
tests.  

The MLP neural network implemented functions optimally with the 
input data sets all with inputs compressed to between minus-one and 
one. This fits the data into the same range as the sigmoid activation 
function used (see Figure 2-6 in §2.4). To achieve the data compression, 
the features matrix has its column data normalised; that is to say 
transformed to have a mean of zero and standard deviation of one. This 
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produces data marginally outside of the (-1, 1) limits. Tests showed 
that it produced results slightly better than fitting the data exactly into 
the (-1, 1) limits.  The parameters required to normalise the data were 
saved and will be used to transform any new data. That is, if another 
pollen type data base is added to the present system, then the features 
extracted will be transformed using the saved parameters. In that way 
the data is very close to the values they would have been if they had all 
been transformed together. 

7.3 AutoStage Reports 
The data reported by AutoStage is simply a count of each pollen type 
found on a slide. The training of the neural network predetermines the 
pollen types expected. The neural network used does not have the 
ability to detect novel data, so all images are classified into one of the 
predetermined groups. An additional pseudo-pollen type is added by 
imaging common detritus found and forming another group. The pollen 
images are displayed in their groups as classified, and a trained 
operator selects any pollen grains that have obviously been 
misclassified and alters the count accordingly. Some incorrectly 
classified pollen grains stand out well amongst the others in an image 
matrix so the count can be improved by a quick manual adjustment. 
The display of image groups is useful for giving confidence to the 
palynologist that the classification and count is a reasonable one. As 
location data of images is stored, it is possible to adapt the program to 
move the slide back to an image of a particular pollen grain for further 
identification by the user.  
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8 Testing and Comparison with Experts 

Introduction 

Testing was performed by: 
1) testing the classification system on various image 
sets. The classification system consists of the features 
set and neural network. It is tested by compiling three 
data bases of images to train and test neural networks 
using the features extracted from the images. 
2) comparison of the complete system results with 
results of classification and counts by palynologists. The 
complete AutoStage system is verified by classifying and 
counting four slides four times each, and comparing the 
results to the classification and count of the same slides 
by five trained experts.  

 

To test the system, a ‘known’ slide might have been manufactured and 
counted by the AutoStage to measure accuracy. Two problems with 
such a slide are ensuring that it is representative of many ‘real’ slides, 
and knowing absolutely what is on it. It is very difficult to know for 
certain what is on a slide at the microscopic level given the variation in 
counting by “experts”, as shown in the results of the experiments 
performed here. There is, at present, no other known method of 
analysing slides that would be accepted as “better”. A manufactured 
slide would not necessarily be representative of a prepared pollen slide 
and therefore not a suitable test.  

It was decided that the best way forward was to compare the 
classification and counting of the AutoStage with that of humans. If 
the means of a number of counts are the same and the variances the 
same or smaller, then we could assume the machine would do as well 
as humans and the advantage would be in the time saved. Until a 
method of knowing the quantity of a variety of pollen on a slide is 
found, the aim will be to match human accuracy and do better than 
human variance.  
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8.1 Classification tests 
A series of classification tests were performed on the three image sets 
from the three data bases of images:  

1. AutoStage images 
2. conventional microscope images 
3. “Bangor” images from a data base used by France et al. [19]. 

The aim, description and results of the tests are given in each case. The 
AutoStage and conventional microscope images are captured from the 
same reference slides of known pollen. Only the capture mechanism 
was different. The AutoStage images were captured automatically, 
thus including the image background size, lighting, resolution and 
focus, as factors in the testing.  

Results are presented as the total correctly identified pollen grains in 
the test, as a percentage of all pollen grains in the test. Five tests were 
performed in each case and the five results are shown in tabular form. 

8.1.1 Comparing Stained with Unstained Pollen 

8.1.1.1 Aim 

Staining is common in conventional microscopy as a means to highlight 
features and making the pollen grain stand out against detritus that 
usually does not take the stain. It is not certain that it is useful for 
AutoStage and is an additional preparation step that might be left out. 
Classification is compared for conventional microscope images that are 
both stained and unstained. The aim is to see if the staining process 
may be removed from slide preparation. 

8.1.1.2 Description 

29 training images and 10 test images of stained pollen and of 
unstained pollen of the same 6 pollen types are used in the 
classification process. Five tests each of stained and unstained are 
performed. 

Next a mixture of stained and unstained pollen images, of the same six 
types, was classified to determine if the distinction made by staining 
was sufficient to discriminate between the same pollen types. 
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8.1.1.3 Results 

Stained Slide Results: 

Test # 1 2 3 4 5 

% correct 95 95 95 96.7 96.7 

 

Unstained Slide Results: 

Test # 1 2 3 4 5 

% correct 93.3 93.3 93.3 91.7 93.3 

 

Mixed Stained/Unstained Results: 

Test # 1 2 3 4 5 

% correct 74.2 69.2 72.5 70 72.5 

 

8.1.1.4 Discussion 

Comparing the stained and unstained results in the first two tables 
shows a consistently better result using stained pollen indicating 
staining has a positive effect for classification. 

Regarding the third table of results above, as fifty percent of the data 
are stained/unstained, then we could expect a fifty percent error rate if 
the each set of stained/unstained image sets were otherwise randomly 
assigned to the two groups of the same pollen type. As there is also 
generally between two and ten percent error between groups of 
different pollen types then the expected success rate should be less 
than fifty percent. The seventy percent result indicates there may be 
some discrimination of the stained/unstained grouping. The low 
success rate of about 72% indicates that staining does not differentiate 
the pollen enough to be discriminated well by the classification system. 

All other testing and evaluation exercises in this project were 
performed using non-stained pollen. A confirming test should be 
performed using AutoStage images and if the result supports the 
conclusion here, then the decision to use stained pollen for the system 
should be made.  
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8.1.2 Comparing Conventional Microscope and AutoStage images for 
classification 

8.1.2.1 Aim 

The aim here is to compare the discriminatory accuracy of the 
classification system used by AutoStage, on conventional microscope 
images as compared to images captured on the AutoStage. The images 
of all seven pollen types used in this test were captured from the same 
reference slides. 

8.1.2.2 Description 

40 training images and 10 test images of 7 pollen types were captured 
from a conventional microscope and the same reference slides were 
used to capture images using AutoStage. The images were classified 
and counted.  

8.1.2.3 Results 

Conventional Microscope Image results 

Test # 1 2 3 4 5 

% correct 94.3 92.9 94.3 94.3 94.3 

 

AutoStage Image Results: 

Test # 1 2 3 4 5 

% correct 98.6 97.1 100 97.1 98.6 

 
 
t-Test: Paired Two Sample for Means where the second 
sample is the result in the previous test §8.1.2.3   
   

Excel t-test  94.286 98.571 
Mean 93.92875 98.21425
Variance 0.51051025 1.87044225
Observations 4 4
Pearson Correlation 0.522188645  
Hypothesized Mean Difference 0  
Df 3  
t Stat -7.348468778  
P(T<=t) one-tail 0.00260393  
t Critical one-tail 4.540702858  
P(T<=t) two-tail 0.00520786  
t Critical two-tail 5.840909309   
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8.1.2.4 Discussion 

The mean accuracy over five tests for conventional microscope images 
is about 94% and for AutoStage images, 98%. 

For the t-test that the means are equal at the 0.01 significance level, 
we reject the null hypothesis that the means are equal. 

The conclusion is that the AutoStage images are significantly better for 
classification with the system of features and neural network used 
here. 

8.1.3 Large Pollen Type Count Using Conventional Microscope Images 

8.1.3.1 Aim 

The aim here is to test classification of a large pollen type group. The 
conventional microscope data base has more pollen types than for 
AutoStage images, however the AutoStage data base has more images 
per pollen type so both are tested separately.   

8.1.3.2 Description 

All pollen types available with more than fifty images available, but 
including only one of the seven grass pollen grains, were used to test 
the classification accuracy. This resulted in a test using twenty-nine 
pollen types. Forty training images and ten test images were used. 

Usually grasses are counted by palynologists as a single type because 
they are very difficult to discern by eye. Grasses are tested separately 
in a later test. 

8.1.3.3 Results 

Conventional Microscope Images of Forty Pollen Types  

Test # 1 2 3 4 5 

% correct 78.6 77.6 78.3 80 78.3 

8.1.3.4 Discussion 

A 78.5% mean is not adequate for the system. In this test, the 
restricted number of images per pollen allows for less training images 
so the result will improve if 150 training images are used. Using the 
conclusion from AutoStage/conventional microscope comparison in 
§8.1.2, it can be concluded that AutoStage images will improve the 
result further. Previous tests indicate that this would be improved by 
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using larger numbers of training images and AutoStage data-base 
images. The next test, 8.1.4, further defines AutoStage limitations. 

8.1.4 Large Pollen Type Count Using AutoStage Images 

8.1.4.1 Aim 

The aim here is to test classification of a large pollen type group.  

8.1.4.2 Description 

Nineteen pollen types were tested using 150 of each type for training 
and 50 for testing. All available pollen types from the AutoStage 
data-base were used except only one of the three grasses available was 
included. 

8.1.4.3 Results 

AutoStage Images of Nineteen Pollen Types 

Test # 1 2 3 4 5 

% correct 89.1 89.4 88.5 89.5 88.3 

8.1.4.4 Discussion 

89% is possibly only just acceptable but not a great result. It can be 
seen that the classification system performs worse with larger numbers 
of pollen types. This is a subject for future work and a suggestion for 
overcoming this is made in §9.3.6. 

8.1.5 Comparing Results from a Separate Project Data-Base 

8.1.5.1 Aim 

The aim is to compare the classification system using images from a 
data base of images used in a separate project: France et al. [19], and 
to compare results reported in that project using three pollen types 
from their data-base. 

8.1.5.2 Description 

Images available on the internet from a project by France et al. were 
classified by the AutoStage classification system. Seven pollen types 
using 140 training and 50 test images from the data base were used to 
check overall classification results of images captured outside of this 
project. 
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Then a more direct comparison of three pollen types against the results 
reported by France et al. [19] for the same three types. France et al., 
recorded results using 3 pollen types from their data base with 
60/60/84 images made available on the internet. Here, 45 of each set of 
these images were used for training and 15 images for testing. 
Validation was not required as the same neural network configuration 
determined for AutoStage images was used. 

8.1.5.3 Results 

Results for Seven Pollen Types From a Separate Data-Base 
Test # 1 2 3 4 5 
% correct 93.4 94.3 92.9 92.9 92.3 

 

Results for Three Pollen Types From a Separate Data-Base 

Test # 1 2 3 4 5 

% correct 93.3 95.6 95.6 95.6 95.6 

This is compared to France et al. achieving 82%: 3% misclassified and 
15% rejected by the classification scheme. 

8.1.5.4 Discussion 

Independent images used in an entirely separate project give 
reasonable results at 93% accuracy. A comparison with AutoStage 
images can not be made directly as the pollen types are different and 
may be an inherently easier or more difficult data set for the 
classification system. Training and test numbers however are similar 
as are the number of pollen types used for tests on AutoStage and 
conventional microscope images used in §8.1.2. 

France achieved overall 82% correctly identified in the final 
classification stage with 3% being misclassified and 15% being rejected. 
The AutoStage was, on average, 95% successful in distinguishing 15 of 
the same images with 5% misclassification. 

8.1.6 Classification of Grass Pollen 

8.1.6.1 Aim 

Many grasses are very difficult to distinguish by eye and often they are 
simply counted as one type by palynologists. The aim here is to test the 
classification system for accuracy in classifying different grass taxa 
using AutoStage and conventional microscope images.  As more grass 
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types were available in conventional microscope images than from the 
AutoStage data-base, both were tested. 

8.1.6.2 Description 

Seven pollen types of grass were classified using 30 training images 
and 10 test images from the conventional microscope data-base. 

Using AutoStage data-base images, three grass types were classified. 
From this data-base 150 training and 50 test images were available. 
Examples are shown below: 

      a selection of brown-top grass images 

    a selection of cocksfoot grass images 

    philaris grass images 

8.1.6.3 Results 

Conventional Microscope Grass Images – Seven Types 

Test # 1 2 3 4 5 

% correct 87.1 84.3 82.9 81.5 80 

 

AutoStage Grass Images – Three Types 

Test # 1 2 3 4 5 

% correct 90 90.7 90 90 90 

8.1.6.4 Discussion 

The result for conventional microscope images is understandably low 
as the grasses are very similar in appearance and a low training 
number is available, however given the difficulty of the task the result 
is very promising. 

Again, the results are very promising considering the difficult task. 
There remains the opportunity to develop features that are specific to 
classifying grass pollen.  Grasses may be filtered out as one type and 
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then reclassified separately. This would reduce numbers of types which 
has been shown to improve classification results. 

8.2 A Complete System Test 

8.2.1 Four Slides Classified  by AutoStage Compared to Classification by 
five Experts 

8.2.2 Aim 

To test the complete AutoStage system, a practical test was performed 
operating the AutoStage as it is intended to be used in service.  The 
aim was to operate the AutoStage as intended and verify a count of 
slides against counts by a method acceptable to palynologists as 
sufficiently accurate. 

8.2.3 Description 

Although there are discussions regarding the efficacy of pollen counting 
by humans, at present there is no other known method to accurately 
count pollen on slides.  To be statistically measurable, at least four 
slides, at least four counts by the machine and at least four counts by 
humans were proposed. Five experts were available as counters, so five 
human counts were performed. Two professors, a post doctoral 
researcher, a technician in the palynology laboratory at Massey 
University and an honours year student heading for a PhD involving 
palynology were the five selected. 

The four slides were prepared by suspending six types of pollen in 
glycerine. Slides were placed on a warmer and a drop of the suspension 
placed using a pipette onto each slide. Once any air bubbles had 
escaped the suspension the cover slip was placed on and molten wax 
dropped onto the slide at a cover slip edge. The slides were removed 
from the warmer and left to cool, setting the wax to form a seal. The 
suspension was supplied by one of those who counted the slides.  

The counters were given a test slide to trial and a series of light 
microscope images showing what the pollen on the slide looked like, 
along with identifying names. Two images of each of the six pollen 
types used appear in Table 8-1, below.  

A lighting fault occurred during counting of the slides on AutoStage so 
further counts were performed until four were available. The results 
from the first four counts which included the lighting fault, made no 
difference to the statistical inferences and vary small differences to the 



   70

general appearances of the graphs. The major effect of the lighting 
fault was a large count of detritus. 

 
Table 8-1: Images of pollen types used in verification testing 

   
Betula pendula (silver 

birch tree) P36. 
Dactylus glomerata 

(cocksfoot grass) P119. 
Cupressus macrocarpa 
(macrocarpa tree) P64 

 
 

 

 

Ligustrum lucidum 
(privet) P148 

Wattle acacia P147 

  

Pinus radiata P136 

8.2.4 Results 

The results are counts of each type found on each slide. The graphs 
below show the mean and range of each pollen type counted. Results 
for man and machine are side by side and in the same colour for each 
pollen type. 

The time taken for AutoStage to count one slide was about three times 
longer than the time taken for a person to count the slides. The focus 
time of 15 seconds combined with the number of false positives 
identifying pollen in the low magnification segmentation due to the 
wax not being solid enough in some areas of some slides were causes.  
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Figure 8-1: Slide-A results 

 

 

 
Figure 8-2:  Slide-B results 
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Figure 8-3: Slide-C results 

 
Figure 8-4:  Slide-D results 
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Figure 8-5:  Data points for all tests. Slides a, b, c, d are in columns; pollen 
types Pnn are in rows; X-axis is pollen count; Y-axis is person/machine. 
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Figure 8-5 was produced by “R” [21], a statistical program available 
under the GNU general public licence on the internet. Each pair of 
data points are the counts of P = person and M = machine for slides: a, 
b, c, d and pollen type Pnnn, where Pnnn is the pollen identification 
shown in Table 8-1. 

8.2.5 Discussion 

An analysis of variance, performed also in R, determined that the 
overall mean of the machine counts was “significantly different” from 
the overall mean of the counts by experts at the 95% confidence level.  
The machine tends to count lower than people which is explained by 
clumping together of pollen grains. The relatively small variance in 
counting by AutoStage puts the counts mostly within the range of 
counts by palynologists.  

Overall, the conclusion is that the task of automated counting of pollen 
is possible and AutoStage is capable of counting slides on a commercial 
scale with results similar to that of trained palynologists. For 
acceptance of the system it may be necessary to do side-by-side tests 
using counts from the system and counts by palynologists on an entire 
palynological project. For palynology the result here appears to be 
significant with implications of increasing the amount of data able to 
be gathered, processed and reported and an increase in consistency of 
reports enabling higher resolution and therefore greater information 
for a study than was previously possible for a given effort.  

Some further work to better finding pollen grains in contact with other 
objects would improve the results. The system at present relies on the 
preparation reducing clumping to the level seen in these tests. No 
image segmentation solution to finding pollen grains in contact with 
other objects has been implemented so improvements are foreseeable.  

The variation in counting is far smaller for AutoStage than for human 
experts. AutoStage has a major advantage in not tiring of repetitive 
work and is less likely to make errors of the types that humans will 
make. It is expected then that comparisons of studies made in quite 
different locations will be better compared if using an automated 
system such as AutoStage and standardised slide preparation is 
implemented.   

From the classification tests we can conclude that the classification 
tool-set used, is an excellent starting point for the system prototype 
development with classification results comparable or better than those 
in current literature.  
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The cost of the system was under $NZ15,000 for prototype parts. It is 
likely that a unit developed for production could be sold for between 
$15,000 and $30,000 which would be affordable by a modest laboratory 
and could save that much in labour costs within its first year of 
operation. Compared to commercially available microscopes such as 
that used by Hilsenstein [32] (Figure 8-6) which is valued at about 
$AUS150,000, the AutoStage would be a very inexpensive option.  

 
Figure 8-6: Olympus BX61.  A commercial automatic microscope with digital 
camera, auto-focus, XY stage movement and slide stacker valued at about 
$AUS150,000 

Development time for reducing the time taken for processing a slide 
was given second-place status to the main aim of showing the task to 
be possible. It could be argued that time taken is not an issue as the 
unit still performs the required tasks, removing the drudgery while 
trained personnel are engaged in more interesting work. However it is 
recognised that time taken will be an issue and deserves some serious 
attention. At present it takes 15 to 20 minutes to capture and process 
the low magnification images and then 15 seconds per object found to 
focus, process and capture. At that rate a slide of 500 pollen grains 
should take about 145 minutes to complete. However, false positives, 
due largely to the wax being too sparse in places, can double that time. 
This is mostly a matter of correct preparation; however segmentation 
improvements may be able to reduce these false positives. 

Adding staining to the slide preparation process suggested here may 
improve results. 
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Tests for this project have all been performed using fresh pollen with 
the cellulose shell still intact and containing gamete material so their 
appearance therefore is different to fossil pollen. Other projects have 
successfully used MLP neural networks with fossil pollen [41, 43, 44]. 
Tests should be performed using fossil pollen on the AutoStage 
classification system explicitly. The segmentation algorithm has been 
developed by including existing slides of fossil pollen (see Figure 6-2). 

The grass tests show a reasonable discrimination of pollen types that 
are often not done using light microscopy as it is very difficult to 
distinguish many grasses by eye. The results of this test shows the 
possibilities of discrimination of features that are not readily 
distinguishable by eye even under a microscope. This opens up the 
possibilities of developing features to distinguish other discrimination 
tasks found difficult by eye and to attempt the further classification of 
pollen by family, down to genus and perhaps down to species. 
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9 Thesis Conclusions and Future Work 

9.1 Thesis Conclusions 
All eight of the objectives of the project, as listed in §1.1, were achieved. 
The criterion for selection of the objectives was the development of a 
system sufficient to fulfil the aim. 

The aim of this project is considered achieved with the completion of a 
system that classifies and counts slides automatically with results 
mostly within the range of counts by expert palynologists. The system 
shows such promise that the prototype could have immediate, if 
limited, uses within a palynological laboratory and any shortcomings 
are clear with evident paths to improvement, as suggested in §9.3.  

Specifications have been determined so for any future modifications 
made, changes in specification can be compared to changes in 
classification results, making the prototype useful for design of a next 
generation AutoStage. 

9.2 Final State of the Project 
The project is at a significant milestone, with a working prototype that 
is demonstrated to be working and able to be used as a benchmark for 
further refinements. In summary, from the people for whom the 
development is aimed, two testimonials are presented. 

From Professor John Flenley; palynologist: 

“It seems to me that the machine is performing as well as the person, if 
not better. At a glance, I should not be surprised if the overall data set 
showed no statistical difference between the two. There may be some 
systematic variation, e.g. in sample P64, it appears that the person 
captures more images than the machine. But in P119 b and d, the 
reverse is the case so this may be random variation.  I am particularly 
interested in the low number counts in P147 and P136. Think of the 
time saving in scanning these sparse slides by machine and then 
examining a matrix of images.  I conclude that I would be delighted to 
have such a machine in my laboratory. It could transform the laborious 
laboratory work of palynology, and greatly increase efficiency.” 
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From Alistair Clement, Massey scholar and palynological student: 

“ [AutoStage] has great potential for easing much of the burden of the 
pollen counting process from palynologists practicing in any area, and 
is nothing less than an exciting technical achievement. Given the 
impressive results produced by the project in a very short period of time, 
I eagerly await the opportunity to go 'hands-on' with the system in the 
lab.” 

9.3 Future Work 
Introduction 

As this project was to show the viability of the system as 
an aid to palynologists, there is a vast amount of future 
work, especially when considering microscopic 
automation for areas other than palynological 
endeavours. For improving the system for 
auto-palynology, some of the possibilities are discussed 
briefly below. Given software control, and classification 
sub-system design and training options, variations in 
system application are numerous.  

9.3.1 Output Reports 

The output at present is a simple count of pollen types found. The 
opportunity exists to add a pollen diagram as is often produced by 
palaeopalynologists showing counts of pollen types for each layer 
depth. Any further additions to reporting is a relatively simple matter 
of augmenting the software to accept addition information as inputs 
from the user and produce a report in almost any way desired.  

9.3.2 Focal Integration Images – Improving Depth of Focus  

Improving focus can be achieved by integration of focussed parts of a 
series of images with varying focal planes. As the depth of field is 
smaller than most pollen grain diameters, then parts of a grain will be 
more in focus than other parts. Those parts may be extracted from a 
series of progressively focussed images to form one image using the 
most focussed areas of each in the series. 

Forster et al. [15], describe three different techniques: point based; 
neighbourhood based; and multi-resolutional based image fusion. They 
propose wavelets as the method to extract localised frequency 
information to determine the most focussed pixels from a series of 
images that vary in focal point through the object. 
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An example is shown below where the program, “combinez”  , available 
under the GNU licence from the internet [29], using a series of nine 
pollen images from this project, processes them to produce the right 
hand image shown in Figure 9-1. 

 

 
Figure 9-1:  The two most in-focussed images out of nine used for focus 
integration (left and centre) and the result (right) 

9.3.3 Focus Mechanism Improvement 

The focus mechanical gear used has just sufficient resolution to capture 
in-focus images but with a step size that varies slightly. A finer 
resolution of five times the present gearing would improve the 
situation by allowing a half step driver. A ten times reduction would 
make single stepping possible and a twenty times reduction would also 
allow twice the present focus step resolution.  

Focussing may also be improved, or automated further, by adding a 
distinctive mark to the surface of the slide to focus on as a starting 
point for the auto-focus. The mark could be found automatically and if 
placed in a fixed location on a standardised slide, pave the way to the 
addition of a slide feeder for automatic, multiple slide processing. 

9.3.4 Pre-processing of final Images 

The images used for classification are segmented only with no 
pre-processing to improve any characteristics that may improve the 
classifier performance. Suggestions are complete image background 
removal, edge enhancement and histogram stretching.  

9.3.5 Texture Isolation 

Images for feature extraction may be segmented further to contain only 
the area showing surface features and excluding all background and 
larger features such as culpi and pores. As the larger features can be 
hidden and in different locations and angles of view, then they are 
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perhaps showing as differences between the same pollen types rather 
than similarities. A segmentation algorithm would need to be 
developed and the idea tested against current classification accuracy. 
In [43], 13 pollen types were classified with 100% accuracy using 
images containing pollen texture only. 

9.3.6 Improving Results with Large Numbers of Pollen Types 

By grouping the pollen that are more likely to be confused by the 
classification system into one group for initial classification, and then 
running classification on the sub groups within each group, the number 
of pollen types per classification task would be reduced, and with this 
divide and conquer technique, the overall classification rate would be 
improved, but at a cost of time. 

9.3.7 Clumping and Clump Splitting 

Clumping is only partially solved in the present system by reducing the 
likelihood of it occurring. Although the amount of clumping is minimal, 
it is still present and other pollens not used here may have stronger 
tendencies to stick together. The pollen grains are also found lodged 
next to detritus and bubbles. It would improve the system to find 
pollen grains in these circumstances and so improve the accuracy of the 
counting. There are many algorithms in the literature that would be 
worthwhile investigating, especially in the area of cell and tissue 
segmentation. Some interesting examples are [35-37]. The Hough 
transform, particularly the variant for detecting circular patterns, may 
be useful in selecting individual pollen grains in large clumps. 

9.3.8 Novelty Detection 

At present the pollen types to be classified must be pre-determined and 
the neural network trained on exemplar images of those types. Novel 
pollen types will be found and included in the classification results but 
grouped with the pollen type that most resembles it. The reliance on 
the palynologist to discern and separate out a new pollen type might be 
reduced if the classification could perform the detection. Novel 
detection is often handled using unsupervised networks, as used by 
Marsland [46], where a “grow when required” network was developed 
which may be useful in this area of development. Novel detection may 
be implemented initially by taking the groups as separated by the 
present neural network and further separating them using a novel 
detection scheme to test if there are any sub-groups, and presenting 
these to the palynologist for final analysis. The ability to drive the slide 
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back for a ‘live’ display of the possible novel pollen, would allow the 
palynologist to use manual focus variation and to roll the pollen grain 
to view other facets, as is done presently in conventional microscopy to 
aid the determination of pollen type. 

9.3.9 Speeding up the Process 

The main delays in the operation are in the capture of images and 
focussing. Altering the processing of slides to ensure all pollen are as 
close as possible to a single plane, and increasing depth of field, may 
remove the requirement of automatic focussing for each high 
magnification image. This would speed up the process considerably.  If 
this proves impractical, then the working on the individual elements 
involved, to speed each one, will produce adequate results. Matlab is 
designed for rapid development and not speed of execution. Well 
written C code, for example, is likely to improve speed of execution 
considerably. There is at present the requirement to add delays in the 
software while images are captured from the cameras. It is thought to 
be a property of Matlab, but it is possibly caused by the cameras 
themselves. 

9.3.10 Spatial Sampling of Slides 

Tests in this project were performed by counting an entire slide. For 
palaeopalynological studies, this is not how it is usually done. 
Sampling is performed by counting microscope field of view widths 
across a slide until a predetermined number of pollen have been 
counted or the minimum of a predetermined number of pollen and all 
strips across the slide are completed from edge to edge. It has been 
suggested that present practice is not a random selection of pollen; an 
assumption made for the statistics utilised to be valid [7]. To improve 
randomness of sampling it is proposed that it be done by AutoStage in 
the following manner.  

The area of interest on the slide is divided into rectangular areas and 
random selections of these areas are imaged by the high magnification 
microscope. Each area is then segmented, classified and counted for 
each rectangular sample. A statistical analysis could then be performed 
to determine the slide populations of each pollen type found.  

 i
Acount x
na

= ×∑  (9.1) 

 ( )sd x ASE
nan

= ×  (9.2) 



   82

 ˆip
n

= ∏∑  (estimate of population) (9.3) 

 ( )ˆisd p SE
n

× = ∏  (9.4) 

A = area of the slide 
a = area of small areas captured 
n = number of small areas captured 
Π = population of the slide 
pi = probability of ith species in the sample 
sd = standard deviation  
SE = standard error  

By first running trials on slides with known populations, the standard 
deviation and mean could be determined and a suitable sample size, n, 
calculated. This should prove a better method than the present manual 
methods. 

If this proved to be a more satisfactory method of counting a slide, then 
the low magnification camera might be dispensed with. The errors 
introduced by the low magnification imaging and segmentation would 
need to be weighed against the errors of sampling to determine the 
better technique. It may be that the system retains the low 
magnification microscope and the sampling is an option for certain 
circumstances. 

9.3.11 A More Compact Microscope 

To compact the structure of the AutoStage, an infinity-corrected 
objective lens would allow the optical tube length to be shorter but 
requires the addition of a suitable image forming lens. 

9.3.12 Dark Field Illumination 

Another simple method of dark field illumination, proposed in 1982 by 
Molesini et al. [47], utilises detuned interference filters. An 
interference filter shows a selective peak transmittance as a function of 
both wavelength and angle of incidence. With reference to Figure 9-2, 
filter-1 is defined by peak wavelength γ1 and half bandwidth, Δγ1. 
Filter-2 is then defined by γ2 and Δγ2. Usually, γ2 > γ1 and Δγ2 > Δγ1. Light 
from filter-1 can not pass through filter-2 unless the angle θ is greater 
than some angle depending on the difference, γ2-γ1. This angle is 
calculated to be larger than the aperture angle of the objective lens so 
only light scattered by the object can reach the objective lens at an 
acceptable angle.  
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The advantage of such a system over the present design is that 
positioning of the lighting source would not be as critical. At present 
the opaque light-blocks require careful shape and placement and cause 
some variation in lighting intensity across the image. 

 
Figure 9-2:  Dark field Illumination using detuned interference filters. 
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A. Defining Depth of Field for AutoStage 
The circle of confusion is to be defined (Figure 11-1) and for visual 
systems, this can be subjective.  

 
Figure 11-1: Circle of confusion and depth of field 

For this digital system with sensor elements of a fixed size we can 
define the circle of confusion such that movement of an object point, 
toward or away from the lens within the depth of field limits, will not 
cause the light from that object point to affect a neighbouring image 
sensor element. The object point forms an “Airy disk” at the sensor 
which is calculated to be 0.61λ/a (§4.2.2). Considering the diameter of 
that circle and the distance across a sensor element (see Figure 11-2) 
the amount the image point may move before encountering the 
neighbouring pixel is simply the distance from centre to edge of the 
sensor element minus the radius of the Airy disk:  

 
1

0.5
2 / 22 sin tan

pc
a
u

λ
−

×= −
⎛ ⎞⎛ ⎞× ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (11.1)  

where p is the pixel, or sensor element dimension, and the Airy disk is 
calculated using the geometry of Figure 4-9 to find the angle β. The 
sensors are unable to be manufactured with sensitive elements butting 
exactly so elements are actually somewhat smaller, and have gaps 
between them making the circle of confusion defined here a 
conservative estimate. 

Having defined the circle of confusion the depth of field is calculated. 
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Figure 11-2: The Airy disk and its limits of movement on the image sensor 
that will define a circle of confusion used for depth of field calculation. 

 

The lens equation, rearranged to find u, is: 

 1 1 1 f vu
v u f f v

×+ = ⇒ =
−

 (11.2) 

To find a change in u with a change in v we differentiate: 

 
( )2

du f f v
dv f v f v

×= +
− −

 (11.3) 

And: 

 
( )2

f f vdu dv
f v f v

⎛ ⎞×= × +⎜ ⎟
⎜ ⎟− −⎝ ⎠

 (11.4) 

That defines an infinitesimal change and as an approximation, we 
assume the same holds true for a larger change, δu and δv. Now δv = 
δv1 + δv2 (see Figure 4-9 and Figure 11-3) is required, and derived 
from geometry in Figure 11-3. 
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Figure 11-3:  Image Side Ray Diagram showing depth of focus and circle of 
confusion 

 
/ 2tan a c

v
α +′ = , where a is the aperture of the lens and a/2 is axis to 

aperture edge. The ray forming α' forms the same angle below the axis 
and intersects with the circle of confusion (CoC) at the image plane so 
CoC radius (c) divided by dv1 is tan(α').  So, 
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/ 2
c vv
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δ ×=

+
 (11.5) 

Similar arguments find  2
/ 2
c vv

a c
δ ×=

−
 (11.6) 

So, depth of field is:  

 
( )2/ 2 / 2

c v c v f f vu
a c a c f v f v

δ
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 (11.7) 

Ignoring c in the denominators, because it has 3 orders of magnitude 
difference to a, the equation reduces to: 
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Figure 11-4: 
AutoStage 

B. Published Paper 
Automatic Recognition of Light-Microscope Pollen 
Images. 

 
G.P.Allen1, R.M.Hodgson1, S.R.Marsland1, G.Arnold1, R.C.Flemmer2, 
J.Flenley3, D.W.Fountain4  
1 Massey University, Institute of Information Sciences and Technology. 
2 Massey University, Institute of Technology and Engineering. 
3 Massey University, Geography Programme, School of People, Environment and 
Planning. 
4 Massey University, Institute of Molecular BioSciences. 

Email: g.p.allen@massey.ac.nz 

Abstract
This paper is a progress report on a project aimed at the realization of a low-cost, 
automatic, trainable system “AutoStage” for recognition and counting of pollen.  
Previous work on image feature selection and classification has been extended by 
design and integration of an XY stage to allow slides to be scanned, an auto-focus 
system, and segmentation software. The results of a series of classification tests are 
reported, and verified by comparison with classification performance by expert 
palynologists. A number of technical issues are addressed, including pollen slide 
preparation and slide sampling protocols.

Keywords: pollen recognition, image processing, classification, microscopy 

Introduction 
Fossil pollen analysis is used to determine 
flora genus from which climate data, 
evidence of human activity and oil deposit 
locations, can be deduced. Honey type, and 
location of origin, can be indicated by the 
pollens found in the honey. Allergy 
sufferers can be advised of high pollen 
counts in the air. Forensic investigations 
can be aided by determining if an object 
has been in a certain general location by 
identifying the pollen types attached.  
The need for an automated pollen counting 
system has been identified and detailed for 
many years [61]. A previous paper reported 
on progress toward such a system [33] and 
a significant milestone in that project is 
reached, and reported here, with the 
complete system designed, built and 
evaluated as a functioning unit.  
The system will:  

• reduce the massive amount of laborious 
counting required by highly skilled people 
involved in palynological endeavours (30 
months in a PhD);  

• increase sample quantities allowing more 
accurate pollen studies, especially in fine 
resolution sampling [26];  

• increase the frequency and locations of 
pollen counts, which are of use to inhalant 
allergy and asthma sufferers.  
A good description of the problems involved 
and requirements of a complete automated 
system have been described recently [19, 
56]. The broad requirements are to locate 
pollens on a microscope slide and classify 
each into taxonomic 
categories at reasonable 
cost, and with a success rate 
at least that of a skilled 
person. The saving is 
labour, and time consumed 
by people with skills that 
could be better applied to 
less mundane tasks. 

The steps involved 
in the AutoStage 
project are: 

1. develop a set of 
features derived from 
optical images of pollen 
that are discriminable. 
[72] 

2. develop a supervised 
classification system based on the 
features-set developed in step 1.  
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3. design a suitable low cost digital 
microscope [34] 

4. develop an image segmentation 
scheme to isolate images of pollen and 
exclude detritus 

5. develop and build an XY stage to 
allow slides to be scanned using 
transmitted or reflected light 

6. develop a system to find the location 
of pollen on a slide and to capture 
in-focus images 

7. integrate the system resulting from 
steps 1-6 

8. evaluate and verify classification and 
count performance of the system, and 
compare to trained palynologists. 

Steps 1-3 were completed [33]. This project 
is to develop and build a working 
microscope, build in an XY stage and focus 
hardware, develop working segmentation 
and focus algorithms: steps 4-8. We report 
development of the final stages and 
describe the completed system that takes a 
prepared slide and captures microscopic 
images from which pollen are segmented, 
image features extracted and pollen taxa 
classified and counted. 

Automated System Description 
The system described here finds pollen 
grains on a slide and captures images of 
them together with their location 
information. Image features are extracted 
and used for classification of pollen types, 
enabling a count of the number of grains of 
each pollen type. The classification of 
pollen can be manually checked.  
Selection of any portion of a slide to be 
processed is accomplished by the user 
moving the camera to opposite corners of a 
rectangular area of interest. The current 
system is capable of capturing areas 
shaped with a pixel resolution of 1/2 micron. 
The system comprises: 
1. a machine to capture the images (§2.1) 
2. segmentation, auto-focus and 

classification algorithms (§2.2) 
3. a computer to run the algorithms and 

control the hardware (§2.3) 
In addition to the sub-systems, slide 
preparation (§2.4) and slide sampling (§2.5) 
are discussed. 

The Machine 
The ‘machine’, is an XY stage with 
attached slide holder. Two digital 
microscopes are solidly mounted above a 
filtered and cooled light source. As 

transmission lighting is used, the slide sits 
on an aperture in the XY stage positioned 
between the cameras and light source as in 
Figure 2. 
There are two power supplies for lighting 
and stepper motors. Two motors move the 
XY stage to locate pollen under the 
microscope and a third motor adjusts the 
relative height of the cameras for 
focussing. 

 
Figure 2: AutoStage elements 

The Stage 
The slide is held in a standard microscope 
holder and is moved by a commercial XY 
precision stage driven by two stepper 
motors. The motors are micro-stepped to 
1/10th of their 1.8º step angle, allowing a 
linear movement of 2.6 microns per step 
(the smallest pollen of interest is about 10 
microns across). The field of view of the 
high magnification camera is 165 x 123 
steps. The speed of movement is set below 
maximum to about 5mm per second. 

Two Microscopes 
A low magnification microscope with a 
large field of view (FOV), locates pollen 
grains quickly while a high magnification 
microscope captures images with sufficient 
detail for feature extraction.  
A digital camera sensor and a standard 
microscope objective lens placed 207mm 
from the camera sensor plane, forms the 
“high magnification” microscope with an 
optical magnification of 11·2x. Because the 
camera sensor elements are 4.65 microns 
square, the magnification that is required 
for a human to view the formed image 
occurs in translation from a 1024x768 
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Figure 11-5: hi-mag 
segmented image (Pinus 
radiata. ~50µm)  

pixels in the 6mm diagonal rectangle of the 
sensor, to 1024x768 pixels on a computer 
screen. That is about 72x, and 720x 
including optical magnification. 
The small optical magnification results in a 
depth of field greater than for a 
conventional microscope with the same 
overall magnification. 
The FOV of the main camera is less than 
half a millimetre square. To image an 
entire slide more quickly, the low 
magnification camera with about 1/10th the 
magnification, is used to more quickly 
cover the slide and locate potential pollen 
grains. A segmentation algorithm identifies 
most detritus and the locations of 
remaining objects found are stored for the 
high magnification camera to investigate. 
Segmentation, using the high 
magnification 
camera and 
finding an 
acceptable object, 
produces an image 
slightly larger 
than the object 
bounding 
rectangle. The 
image is stored for 
feature extraction 
and classification 
(Figure 3).  

The Lighting 
Lighting is provided by a simple 
arrangement of a quartz halogen lamp 
directly below the cameras, with filtering, 
and a fan for cooling. One filter is a 
band-pass to reduce any chromatic 
aberrations caused by the objective lens. A 
green filter was chosen because the camera 
is filtered to have a maximum sensitivity in 
the same area of the spectrum as human 
vision, λ ≈ 550nm: green. 
A diffusion filter is the topmost filter and 
has a light blocking rectangle below each 
camera. The diffused light therefore strikes 
the object oblique to the optical axis, 
making it a simple form of “dark field” 
illumination. Little of the light direct from 
the source enters the objective lens directly 
so the background is dark and objects are 
light with darker ‘shadows’ formed by the 
surface features. Contrast is increased over 
light-field transmission microscopy with 
one study measuring an increase from 10% 
to 85% contrast [44]. Sub-resolution 
visualisation is another property of 

dark-field illumination [4]. This is where 
objects smaller than the resolution of the 
optical system are indicated, but not 
resolved. That this has a positive or 
negative effect on image features extracted 
in this case would require further study.  
The dark-field effects are helpful for 
finding pollen in the low magnification 
camera and creating a better image for 
feature extraction. 

The Algorithms 

Auto-Focus 
The low magnification camera is initially 
focussed manually at the same time the 
user is setting the limits for a region of 
interest within the total area of the slide. 
The auto-focus software then steps the 
camera through that manually set focus 
position, to refocus. The auto-focus 
operates by calculating the standard 
deviation of all grey levels of each image as 
it steps through the focal plane. The 
sequential values are stored as a vector 
and a suitable peak is located by a “local 
maximum” algorithm. The camera is 
moved back to the step where the local 
maximum was found. Movements of critical 
placement are always in the upward 
direction. This focus position is then used 
for all images taken with the low 
magnification camera as a high depth of 
field keeps pollen sufficiently in focus. 
There are several focus measurement 
methods in the literature [22, 28, 36, 58]. 
After experimentation, the standard 
���������������h�����������
��������������������������
�H�H�Ĉ�����������Z��������
desired smoothing effect and it is not 
computationally demanding. The high magnification camera is fixed on 
the same focus movement so once the low 
magnification camera is focussed, the high 
magnification camera can be moved to a 
near focus position. This position is used to 
perform an automatic refocus.  
Auto-focusing is performed on each object 
because the pollen grains are not 
necessarily all within the same focal plane 
and depth of field is less for this 
microscope. 

 
Figure 4: glass slide with cover slip 
The auto-focussing algorithm used with the 
high magnification camera incorporates a 
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squared gradient measure where for each 
pixel, the maximum grey-scale 
gradient-squared, between y direction and 
x direction is chosen and all chosen values 
summed.   

 
Figure 5: plot of focus image against 
gradient with a dirty slide giving 
greater focus values at the outer 
surfaces. Centre peak is the focus aim. 
The values plotted against focus step 
number, results in a large ‘spike’ in value 
for 3 or 4 steps of the focus movement. To 
improve the auto-focus, the step size would 
need to be made smaller and an algorithm 
with greater selectivity might then be used. 
To reduce computation time and help 
ensure the object of interest is in focus, the 
image area is reduced to around the centre 
of the image where the object may be 
located.  
It takes 15s for one complete pollen grain 
capture: move stage; auto-focus; capture; 
segmentation, save image. Auto-focus takes 
2/3 of that time at 10s. 

Segmentation 
Segmentation is difficult and often problem 
specific.  For a review on segmentation 
techniques see [49].  
A stored background image, taken with no 
slide in place, is subtracted from images 
captured to remove any image anomalies 
caused by the system. Objects are located 
by first finding edges using a Sobel edge 
operator. As pollen are small objects with 
well defined outlines, then the edge 
detection results in a mostly closed loop. 
Morphological operations follow: dilation, 
to join any broken edges; filling any closed 
loops to form solid ‘blobs’. Erosion then 
reduces the blob size to be close to that of 
the original object.  
The blob pixel counts are measured, and 
any blobs too small or too large to be a 
pollen grain are removed. The smallest 
pollen grains of interest (about 10 microns 
across) have a blob area of 5 pixels in an 
image from the low magnification camera. 

Large pollen grains, 100 microns across, 
are represented by a blob area of about 500 
pixels.  
For each blob of correct size, a bounding 
rectangle and its area are calculated. If the 
rectangle has an aspect ratio too small, or 
the blob area to rectangle area ratio is too 
small, then the blob is removed. 
The area of a convex hull for each blob is 
calculated and if the blob area to hull area 
ratio is too small, the object is removed.  
The centres of remaining blobs are found 
and their positions on the slide calculated 
and stored. The high magnification camera 
is moved to each of those positions and 
performs a segmentation process to find a 
valid object nearest the centre of the image. 
Tolerances in movements cause the object 
to appear with a variable offset. 

Classification 
To perform taxonomic classification, image 
features  extraction and a multi-layer 
perceptron [46] are used in line with [40]. 
The features used are those identified in 
[71] consisting of 43 shape and texture 
features. 
Texture features are represented by a 
series of Wavelet transforms that measure 
localised spatial/spatial-frequency content 
using Gabor and Orthogonal Wavelet 
transforms. Orientation sensitivity is 
reduced by averaging the results 
corresponding to different directions [72]. 
Other textural features used are Grey 
Level Co-occurrence Matrix, and Grey 
Gradient Co-occurrence Matrix. Shape 
features are geometric, histogram and 
second moment. 
Linear Discriminant Analysis, together 
with Principal Components Analysis, were 
employed to compare discrimination and 
check for any redundant features [13]. No 
reduction of feature-set size was found 
useful. A Support Vector Machine 
algorithm, with its binary classification 
capability, was used to discriminate two 
grass pollens and found to be less effective 
than the multi-layer Perceptron. 

The Computer 
The computer used is a PC with a 2.6GHz 
processor and 1Gbytes of RAM running 
Windows XP professional. All the code is 
written in Matlab including: image 
acquisition via USB and IEEE1394 
(FireWire); control of the stepper motors 
via a serial port; and the auto-focus, 

Slide
bottom

Slide 
top 

Slide/cove
r-slip 
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segmentation, and classification 
algorithms. 

Slide Preparation 
To improve the efficacy of the system the 
slides should be prepared in a prescribed 
and suitable manner. It is important this 
should be similar to current practice. 
Auto-focus can be adversely affected by 
objects on surfaces other than the top of 
the slide and the bottom of the cover-slip. 
The segmentation algorithms could be 
compromised and images captured would 
be degraded if dust or oil were present, 
even if they were out-of-focus. 
The prescription proposed is for the pollen 
samples to be suspended in some setting 
gel. Silicon oil is suitable and may be 
desirable if the slides are to be checked on 
a conventional microscope, as are agar or 
glycerol if an aqueous medium is required. 
The suspension should have a 
concentration that results in no more than 
500 pollen grains per slide to reduce 
clumping. The sample medium volume and 
viscosity is such that when dropped onto 
the slide and the cover slip is placed on top, 
the medium does not travel past the outer 
edges of the cover slip.  
The slide is placed on a warmer to allow air 
bubbles to escape the gel.  Wax is dropped 
onto the slide at the edge of the cover slip 
to ‘wick’ under the cover slip to seal the 
pollen suspension in, and hold the cover 
slip firmly in place. The slide surfaces can 
now be cleaned without moving the pollen 
grains within the slide. Adding detergent 
to a last rinse will help reduce clumping.  

Spatial Sampling of Slides 
If sampling the slide is applicable, the high 
magnification camera only might be 
utilised. It may perform sampling better 
than in the current methods of manual 
counting.  
It is proposed that the area of interest of 
the slide be divided up into rectangles, a 
sample of those rectangles randomly 
selected, and that the camera capture an 
image of each selected rectangle. The 
images would be segmented, classified and 
counted for each rectangular sample. A 
statistical analysis would estimate the 
slide populations of each pollen type.  
By running trials on slides with known 
populations, a suitable sample size could be 
calculated.  

This should prove a better method than the 
present manual methods, as the 
randomness of the present slide sampling 
approach is suspect [7].  

Experiments and Results 
Three image data bases were compiled:  
1. CM: captured using a conventional 

microscope  
2. AS: captured using AutoStage  
3. BR: images used by France et al. [19]  

A selection of the data base images 
was made of 50% for training, 25% for 
validation and 25% for the final tests 
reported here. The validation set was 
used with the training set to adjust 
neural net parameters for optimum 
results and verify the system working. 
The training and validation sets were 
then combined for training and the 
test set used for the final test. The 
feature sets extracted from the 
images, were presented in random 
order to the classification software. 
Results are expressed as total 
correctly classified pollens as a 
percentage of all pollens, and the 
means and standard deviations over 5 
tests recorded.  

Compare AS with CM 
The aim of this experiment is to compare 
classification results using images taken 
from the same slides by AutoStage and by 
a conventional microscope. 
Test description: Take 40 training, 10 test 
and 7 types of images from AS and CM 
data bases. Classify both sets and compare 
mean results and check for difference with 
a Students t test. 
Results:  The AS mean was 98% 
correct (sd = 1.2) and the CM mean was 
94% correct (sd = 0.6). Using a 95% 
confidence t-test, the means are 
significantly different. 

 Classification of Grass Pollens 
The aim of this experiment is to check 
performance of the AutoStage when 
classifying grass pollens which are 
commonly counted as one type as they are 
very difficult to distinguish manually 
under a light microscope. 
Test description: take 3 grass pollen image 
sets from the AS data base, using 150 
training and 50 test images. Classify the 
sets. 
Results: Mean = 90% correct (sd = 0.3). 
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Large Pollen Type Count 
The aim of this experiment is to check the 
performance of the AutoStage using a 
wider range of pollen types in a single test.  
Test description: 19 types were used for the 
experiment including all types available, 
however 2 of the 3 grass pollens were 
excluded. 150 training and 50 test images 
were used. 
Results: Mean = 89% correct (sd = 0.5). 

AS Compared With another 
Project 

The aim of this experiment is to compare 
AS classification results, to results 
recorded by France et al [19]. 
Test description:  France, recorded results 
using 3 pollen types with 60/60/84 images 
made available on the internet. Here, 45 of 
each set of these images were used for 
training and 15 images for testing. 
Validation was not done as the neural 
network configuration and weights were 
not altered from other tests. 
Results: France achieved overall 82% 
correctly identified in the final 
classification stage with 3% being 
misclassified and 15% being rejected. The 
AS was, on average, 95% successful in 
distinguishing 15 of the same images with 
5% misclassification.  

AS Compared with Experts 
The aim of this experiment is to compare 
the total process of pollen counting from a 
slide by the AutoStage, with the count of 
the same slide by experts. 
Test description: A slide with 6 pollen types 
is prepared. Five ‘experts’ including two 
professors, a post doctoral student, a 
technician working in palynology and an 
honours student, count the slide. The 
AutoStage then counts the slide. 
Result. The table below shows statistics of 
the human count and one AutoStage count. 
Pollen 
type 5 People AutoStage

 Mean StdDev Range Raw Count
1 65.6 13.4 43 - 77 64 
2 14.2 4.8 9 - 20 13 
3 21.8 8.7 16 - 37 18 
4 86 17.9 58 - 102 75 
5 0.8 0.4 0 - 1 1 
6 8.6 1.5 7 - 11 7 

Table 1:  The performance of 
AutoStage was compared to five 
human experts. 

Conclusions 
1. Most importantly, for a complete 

working system and functional test 
described in §3.5, AutoStage has 
matched the result of experts. The 
variability of AutoStage has yet to be 
determined with multiple counts by 
AutoStage on more slides and a 
comprehensive statistical analysis. 

2. The AutoStage system is giving 
classification results improved upon 
known published results.  

3. The system is completed, functions well 
with promises of the ability to meet the 
requirements to be useful to a 
palynologist. 

4. Images from the AutoStage used for 
classification performed better than 
images from a conventional microscope.  

5. The lighting system described gives 
images of excellent contrast.  

6. The auto-focus system performs well. 
The digital microscope, having a 
greater depth of field than a 
conventional microscope, makes 
focussing less critical. 

7. The XY stage, with movement limits 
larger than a slide, a repeatability of 
position of 20 microns, speed in excess 
of 10mm per second, and a spatial 
resolution of 2.6 microns, would be 
satisfactory for a manufactured 
product. 

8. The component costs of the prototype 
system were under $NZ15,000 
including the computer. 
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C. Data Sheets 
These data sheets are embedded in PDF format and will only be 
viewable from within the soft copy of this thesis; an accompanying CD. 

11.1.1 High Magnification Camera 

Adobe Acrobat 7.0 
Document Micro-Pix technical reference manual 

Adobe Acrobat 7.0 
Document MicroPix specification 

11.1.2 High Magnification camera sensor 

Adobe Acrobat 7.0 
Document  MicroPix sensor manual – Sony ICX204AL 

 

11.1.3 Stepper Motor Drivers and RS422 Controller 

Adobe Acrobat 7.0 
Document  mStep-407 hardware manual with SIN-11 serial line 

converter 

Adobe Acrobat 7.0 
Document  Stepper driver, SMC-40 (v1.07) Software Guide  

11.1.4 Power Supplies 

Adobe Acrobat 7.0 
Document Power supplies data sheets 
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11.1.5 Linear Stage Movement 

Adobe Acrobat 7.0 
Document Linear Product Manual 
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D. Raw Data From Verification Testing 

 

T
able 11-1:  R

aw
 data from

 verification testing. 

The raw
 data as collected appears in Table 11-1.  There w

as a change noticed in the lighting w
hich 

affected the data slightly so m
ore collections w

ere m
ade once the problem

 w
as fixed. The results are not 

m
arkedly different as the noticeable change w

as in the count of detritus and som
e additional errors in 

classification w
ere fixed by the user adjustm

ent.
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E. mlpfwd – NETLAB help file 

11.1.6 Purpose  
Forward propagation through 2-layer network.  

11.1.7 Synopsis  
y = mlpfwd(net, x) 
[y, z] = mlpfwd(net, x) 
[y, z, a] = mlpfwd(net, x) 

11.1.8 Description  
y = mlpfwd(net, x) takes a network data structure net together with a matrix 
x of input vectors, and forward propagates the inputs through the network to 
generate a matrix y of output vectors. Each row of x corresponds to one input 
vector and each row of y corresponds to one output vector.  

[y, z] = mlpfwd(net, x) also generates a matrix z of the hidden unit activations where 
each row corresponds to one pattern.  

[y, z, a] = mlpfwd(net, x) also returns a matrix a giving the summed inputs to each 
output unit, where each row corresponds to one pattern.  
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F. MLP - NETLAB help file 

11.1.9 Purpose  
Create a 2-layer feedforward network.  

11.1.10 Synopsis  
net = mlp(nin, nhidden, nout, func) 
net = mlp(nin, nhidden, nout, func, prior) 
net = mlp(nin, nhidden, nout, func, prior, beta) 

11.1.11 Description  
net = mlp(nin, nhidden, nout, func) takes the number of inputs, hidden 
units and output units for a 2-layer feed-forward network, together with a 
string func which specifies the output unit activation function, and returns a 
data structure net. The weights are drawn from a zero mean, unit variance 
isotropic Gaussian, with varianced scaled by the fan-in of the hidden or output 
units as appropriate. This makes use of the Matlab function randn and so the 
seed for the random weight initialization can be set using randn('state', s) 
where s is the seed value. The hidden units use the tanh activation function.  

The fields in net are  

 
  type = 'mlp' 
  nin = number of inputs 
  nhidden = number of hidden units 
  nout = number of outputs 
  nwts = total number of weights and biases 
  actfn = string describing the output unit activation function: 
      'linear' 
      'logistic 
      'softmax' 
  w1 = first-layer weight matrix 
  b1 = first-layer bias vector 
  w2 = second-layer weight matrix 
  b2 = second-layer bias vector 

Here w1 has dimensions nin times nhidden, b1 has dimensions 1 times nhidden, 
w2 has dimensions nhidden times nout, and b2 has dimensions 1 times nout.  

net = mlp(nin, nhidden, nout, func, prior), in which prior is a scalar, allows the 
field net.alpha in the data structure net to be set, corresponding to a zero-mean isotropic 
Gaussian prior with inverse variance with value prior. Alternatively, prior can consist of 
a data structure with fields alpha and index, allowing individual Gaussian priors to be set 
over groups of weights in the network. Here alpha is a column vector in which each 
element corresponds to a separate group of weights, which need not be mutually exclusive. 
The membership of the groups is defined by the matrix indx in which the columns 
correspond to the elements of alpha. Each column has one element for each weight in the 
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matrix, in the order defined by the function mlppak, and each element is 1 or 0 according 
to whether the weight is a member of the corresponding group or not. A utility function 
mlpprior is provided to help in setting up the prior data structure.  

net = mlp(nin, nhidden, nout, func, prior, beta) also sets the additional field 
net.beta in the data structure net, where beta corresponds to the inverse noise variance.  
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G. Software Description 
Introduction 

The AutoStage control software is written in Matlab in one ‘m’ file but 
is separated into functions within the same file. Matlab facilitates 
development by having many pre-written functions and uses an 
interpreted scripting that is quick to implement. The control of both 
cameras was performed by an image acquisition toolbox which could 
control them directly from within the Matlab program. 

The software described here controls the AutoStage to capture images 
and save them to a directory. It asks the user for features from a 
library of known pollen features, trains a neural network and classifies 
the saved images into the groups as selected by the user. This is the 
complete set of operations as performed for final all-of-system testing 
performed. 

11.1.12 The System Control Software 

Named mainStage.m, the Matlab ‘m’ file contains seven functions of 
which one is the main function. The other, sub-functions, are: 
movestage; stepstage; focus; segim1; segim2; loclmax, featXtract and 
trainNN. These functions: move the stage (XY stepper motors); focus (Z 
stepper motor) segment captured images from cameras one and two; 
find the peaks or local maximums in a vector, extract features from 
image files and train neural networks with supplied feature data (see 
Sub-Functions). 

11.1.12.1 Main Function 

The main function finds the stepper motors on the RS232 serial link 
(converted to RS422 by a device supplied with the motor drivers to run 
all, 3 in this case, on the same bus), finds cameras; one on the USB 
serial link and one on the IEEE1394 or “FireWire” serial link. 

The cameras’ parameters (contrast, exposure, etc)  are setup. 

A dialog box allows the user to select a major folder for file storage and 
each session is stored in a folder below that, in a uniquely (based on 
time and date) named folder. 

MoveStage is used to allow the user to move to the two extreme corners 
of the area of interest. At a place between where there is some pollen, 
an auto-focus is performed and the ‘z’ position set to zero. Once 
accepted as focussed by the user, the second corner is marked and the 
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area is divided into camera view-sized rectangles and an image taken 
at each position. The images are saved, named to indicate their 
row/column position in the area of interest. 

Once all images are taken they are all segmented and those files are 
saved with “segment” added to the original images name. 

Image names and location vectors are added to a data file stored in the 
folder. 

The high-magnification camera now moves to the first object found and 
focuses. A course focus followed by a narrow and fine focus is used for 
the first position and just the fine focus after that. If the software 
detects a bad focus, it goes back to doing a course focus first. Each focus 
starts at the zero focus position as found by the focus done with lo-res 
camera, but adjusted up for the hi-res camera. 

After focussing, the hi-res camera takes its image which is immediately 
segmented. If it fails to find a ‘good’ object, the image is not saved and 
its name is added to a ‘bad image’ file list in the data file (“data.mat”). 
The segmentation function returns an image that is closely cropped 
around the valid object found, which is saved into a folder below the 
lo-res camera folder labelled “hiRes”. The whole image and the closely 
cropped image are again both saved together. 

11.1.12.2 Sub-Functions 

11.1.12.2.1 Setting the Stage in Motion - Movestage 

This function allows movement of the stage by the user controlling it 
from the keyboard. Using the numbers with arrows on them, the stage 
can be moved a constant speed in any of the four directions. Two may 
be used to move diagonally. Any other key stops all movement. 

11.1.12.2.2 Stepping the Stage by a Fixed Amount - Stepstage 

Stepstage moves the stage by a given xy co-ordinate amount from its 
present location. 

11.1.12.2.3 Segmentation in High Magnification Images - SegIm1 

Segmentation of images from camera 1 (hi-res camera) is performed.  

A ‘canny’ edge detector finds edges, producing a two level, Black and 
White image. The edges are dilated to join any small breaks in outlines 
of objects. A fill is performed make a solid “blob” of any enclosed 
shapes. Any white pixels near the edge, and all white neighbours of 
those pixels, are removed. Erosion then reduces the size of any (white) 
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“blobs” back to about the same size as the object in the original image. 
Bounding rectangle, area of blob, and convex hull  are defined. 

The area of the blob is used to determine if the object is the right size 
to be a pollen grain.  

Bounding rectangle aspect ratio is used to determine if it is elongated 
in X or Y directions and the ratio of pollen area to bounding rectangle 
eliminates any elongated angled blobs. 

The ratio of blob area to Convex Hull area indicates non-regular 
shapes. Pine pollen do have concavities in their shape so once a method 
of determining the presence of a pine pollen by other means during 
segmentation is found, then the Hull can be set to be more effective in 
eliminating other irregular shapes. 

The centre of the object is found, measures to the outer edges of the 
object determined and that portion of the original image is saved as the 
final image to go toward feature extraction and classification. A 
variable sets the area calculation to add a small amount of image area 
so that the object sits within the borders of the image, rather than 
touching. 

The image is only accepted if the objects centre is within a certain 
radius of the centre of the image. This allows for inaccuracies and 
resultant offsets in placement of the pollen under high magnification 
microscope. To eliminate multiple images of the same pollen, each 
pollen found has its location in steps from a fixed location on the slide 
recorded and each subsequent pollen found is checked against the list. 
If a pollen is found that has already had its location recorded then the 
next nearest pollen is considered. 

11.1.12.2.4 Segmentation in Low Magnification Images - SegIm2 

This algorithm is essentially the same as segIm1 but with values 
changed to suit the lower magnification image and smaller sizes of 
objects expected. It returns only the centre locations of the ‘blobs’ found 
so they can be found again by the high magnification camera. The 
original captured image and its segmented version is saved as a 
by-product for later evaluation. 

Finding Local Maximum - LclMax 

This is associated with focussing. A series of focus images produces a 
series, or vector, of numbers, each with a value that indicates how 
“focussed” the associated image is. LclMax takes that vector and 
returns the values of local peaks, or maximums, within the vector and 
the index to those values in the original vector. The peaks are in order 



   11-21

of local height so outside of the function, the maximum peaks, the 
maximum value and  the order of peaks in the series can be extracted. 
The latter is done by reordering the indices (ascending or descending). 

This function runs along the input vector and if it finds a 
low1-high-low2 value it sets it as a peak and calculates the height of 
the peak as: high-(low1+low2)/2. 

LclMax also returns the maximum value overall and indicates if that 
value is at either end of the vector. 

11.1.12.2.5 Focussing - focus 

Focus is used for both cameras. The focus data output is used in each 
case in an algorithm in the main function to suit the camera and 
situation. 

This function moves the cameras up from input arguments that 
determine number-of-images and number-of-steps between images. 

There are 11 focus algorithms to choose from when calling the function.  
They are: standard deviation; variance; normalised variance; gradient 
(maximum of X and Y directions at each point used); vollath4 (so 
named by the developer) vollath5; derivative; histogram; power; 
entropy; Fourier Transform. 

A region of interest can be defined that reduces the image to some 
portion of the original. This reduces computation time of the focus 
algorithm. It is set to the area in which the object is expected to be 
(given errors in the system in finding the objects between cameras). 
This makes it more likely to find focus on the object and not be 
influenced by surrounding objects that may be in a different focal 
plane.   

A background image is subtracted from, and its mean pixel value 
added back to, the focus image. 

11.1.12.2.6 Neural Network Training – trainNN 

trainNN asks the user for files of image features of known pollen types 
to use to train the neural network. Each time the system runs, the 
expected types of pollen can be selected from a library of pollen 
features, including detritus and bubbles. 

11.1.12.2.7 Feature Extraction - featXtract 

Feature extraction is a series of “get-feature” m-files written by 
Zhang[74] as implementations of the features selected for use with 
pollen discrimination.  
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featXtract takes all images in the current folder and calls each get-
feature algorithm until a complete set of features (43) has been 
compiled. It is stored in a matrix with features in columns and images 
in rows. The data is then normalised using the same parameters that 
were used to normalise the data used for the trained network and then 
presented to the trained neural network for classification 
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H. Software Source Code – Matlab M files 
NetLab is required as is a slightly modified version of the confusion 
matrix viewing algorithms. These are found on the accompanying CD. 

11.1.13 Main Code Module – mainStage.m 
function stage() 
%Program to control STAGE for Pollen Project at Massey University 
%Allows user to define a region of interest and moves camera across the 
%region taking overlapping images, segments pollen in images and determines 
%their position within the region of interest.  Then moves the main camera 
%to each identified pollen, takes its image, cuts the rectangle  
%containing only that pollen and stores it for classification. Classifies 
%and counts pollens and flags those that are not certainly identifiable for 
%optional classification by an operator. 
close all; 
clear all; 
closepreview; 
% Written by Gary Allen 2006 
 
data=[]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
maxTarget = 100000;% select maximum number of pollen to collect 
folderName = 'TSTd7-';%adds date-time stamp to this name to ensure uniqueness 
 
%motors give 2.6um per step @ 1/10th microstepping 
%Camera2 is 8mmx6mm FOV. 
C2FOV=[8E-3, 6E-3]; %field of view - not used 
C1FOV=[4.3E-4, 3.23E-4]; %field of view 
C1rc = [768;1024]; 
C1xy = ['172'; '127']; %Was 165 123 step length of image - must be same length string 
 
C2xy = ['672'; '900']; %672,904;WAS 670;877(673;904)(;)  step length of image - must be same length strings 
overLap = ['0040'; '0040'];%Border not considered in Image 20 steps is 1/2 of 100 micron pollen 
 
mPerStep = 2.6E-6; %meters per step 
C2toC1=['13020'; '00122';'00345']; %was 13010;00122;00345- must be same length strings 
stepsPerPixelr=1.454;% used for cam2 - pixels dont seem to be square 
stepsPerPixelc=1.41; % so the Y direction has a different value 
 
C1exposure=1023; 
C1contrast=350;%325 
C1brightness=250;  
C2exposure=38;%was 35  was 30 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% get path to save files 
topPath=uigetdir('D:\','Select Folder. Files saved in created subfolders'); 
cd(topPath); 
nuDir=datestr(clock); 
nuDir = strrep(nuDir, ' ', ''); 
nuDir = strrep(nuDir, ':', ''); 
nuDir = strrep(nuDir, '-', ''); 
nuDir=strcat(folderName,nuDir); 



   11-24

mkdir(nuDir); 
cd (nuDir); 
%%add folder for Hi-res, LoRes images and data.Folder above is for final 
%%pollen images so classification SW can find them 
mkdir('data'); 
cd ('data'); 
% cd (topPath); 
 
%+++open port 
serPort=instrfind('Port','COM1'); 
if ~isempty(serPort) 
fclose(serPort);  
end 
serPort = serial('COM1','BaudRate',9600,'DataBits',8); 
fopen(serPort); 
 
%+++set stepper drivers to party mode and retrieve x & y handles 
 
 fprintf(serPort,'%s','&','async'); 
 pause(8); 
 ret=fscanf(serPort,'%s'); 
if isequal(ret,'xyz')==1 
else 
    fprintf(serPort,char(13),'async'); 
    pause(1); 
    ret=fscanf(serPort,'%s'); 
    pause(1); 
    if isequal(ret,'#')==1 
    else 
    error('stagerr1:stageCamFocMSy', 'connection suspect\n'); 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
%% IMAGING SET UPS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 
cams=imaqhwinfo('winvideo'); 
camNum = size(cams.DeviceIDs,2); 
if camNum==2  
    if (isequal(strtrim(char(cams.DeviceInfo(1).DeviceName)), '1394 Streaming Digital Camera')) && 
(isequal(strtrim(char(cams.DeviceInfo(2).DeviceName)), 'VGA USB Camera')) 
        T.cam2in=videoinput('winvideo',2, 'RGB24_640x480' ); 
        T.setcam2=set(T.cam2in); 
        T.cam2s=getselectedsource(T.cam2in); 
        T.setcam2s=set(T.cam2s); 
        pause(.1); 
        T.cam1in=videoinput('winvideo',1,'Y800_1024x768' ); 
        T.setcam1=set(T.cam1in);%set common camera proerties 
        T.cam1s=getselectedsource(T.cam1in); 
        T.setcam1s=set(T.cam1s);%set camera source properties, unique to camera 
    elseif  (isequal(strtrim(char(cams.DeviceInfo(2).DeviceName)),  '1394 Streaming Digital Camera')) && 
(isequal(strtrim(char(cams.DeviceInfo(1).DeviceName)), 'VGA USB Camera')) 
        T.cam2in=videoinput('winvideo',1, 'RGB24_640x480' ); 
        T.setcam2=set(T.cam2in); 
        T.cam2s=getselectedsource(T.cam2in); 
         
        T.setcam2s=set(T.cam2s); 
        pause(.1); 
        T.cam1in=videoinput('winvideo',2,'Y800_1024x768'  ); 
        T.setcam1=set(T.cam1in);%set common camera proerties 
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        T.cam1s=getselectedsource(T.cam1in); 
        T.setcam1s=set(T.cam1s);%set camera source properties, unique to camera 
    end 
else error('errCamerAcq2','Must be Two cameras attached\n'); 
end 
 
set(T.cam1s,'BacklightCompensationMode','auto'); 
set(T.cam1s,'BacklightCompensation','on'); 
set(T.cam1s,'Brightness',C1brightness); 
set(T.cam1s,'ContrastMode','manual'); 
set(T.cam1s,'Contrast',C1contrast); 
set(T.cam1s,'ExposureMode','manual'); 
set(T.cam1s,'Exposure',C1exposure); 
 
set(T.cam2s,'Brightness',0); 
set(T.cam2s,'ColorEnable','off'); 
set(T.cam2s,'ExposureMode','manual'); 
set(T.cam2s,'Exposure',C2exposure); 
set(T.cam2s,'FrameRate','30.0000'); 
set(T.cam2s,'HorizontalFlip','off'); 
set(T.cam2s,'Hue',0); 
set(T.cam2s,'Saturation',13); 
set(T.cam2s,'Sharpness',6); 
set(T.cam2s,'VerticalFlip','off'); 
 
 
% get(T.cam1in,'source') %source should be one only and set to on 
% get(T.cam2in,'source') %modify here if problems later 
%  T.cam1in.SelectedSourceName = 'input1'; %to change from source 0 to 1 
% preview, stoppreview, closepreview (T.cam1in) 
%  start,  stop(T.cam1in) 
%delete(T.cam1in) 
 
%set trigger 
triggerconfig(T.cam1in, 'manual'); 
triggerconfig(T.cam2in, 'manual'); 
triggerconfig(T.cam1in, 'Immediate'); 
triggerconfig(T.cam2in, 'Immediate'); 
set(T.cam1in,'TriggerFrameDelay',0); 
set(T.cam2in,'TriggerFrameDelay',0); 
set(T.cam1in,'FramesPerTrigger',1); 
set(T.cam2in,'FramesPerTrigger',1); 
 
 
%Focus Motor set up (should perhaps be set up in driver memory) 
 
fprintf(serPort,'zE254','async');%hold motor on fully for  
    pause(0.2);                        %YEnnn ms before hold current 
    fscanf(serPort,'%s'); 
     
cam1Bgnd = imread('D:\Acode\cam1Bgnd','tif');%read in background images 
cam2Bgnd = imread('D:\Acode\cam2Bgnd','tif');% these may be read in as part of 
                                                % each user set up - ?     
 
%% END IMG set ups 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
fprintf(serPort,'zI56','async'); %56-> 
    pause(1); 
    fscanf(serPort,'%s'); 
 
    fprintf(serPort,'zV56','async');%56-> 
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    pause(1); 
     
    fscanf(serPort,'%s'); 
     
    fprintf(serPort,'zK0 0','async'); 
    pause(1); 
    fscanf(serPort,'%s'); 
     
    fprintf(serPort,'zE250','async');%hold motor on for nnn<255=n.nns until hold current reduces 
    pause(1); 
    fscanf(serPort,'%s'); 
 
%% Set up stage coordinates 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%+++move stage to lower left corner of area of interest and set 
%co-ordinates to zero 
preview(T.cam2in);  
 
fprintf('move camera2 to the bottom right corner of the section to be scanned \n'); 
movestage(serPort); 
fprintf(serPort,'xO','async');%mark position as X's origin 
xhome = ''; 
while isempty(xhome); 
     pause(.4); 
     xhome=fscanf(serPort,'%s'); 
     xhome=strtrim(xhome); 
     if ~isempty(xhome) 
         if xhome(1)=='?' 
             error('error in xhome sending xO0 to serPort \n'); 
         end 
     end 
    % fprintf('xhome in while=%s \n',xhome); %need error message here?  
end 
 
fprintf(serPort,'yO');%mark posistion as Y's origin 
yhome = ''; 
while  isempty(yhome); 
    pause(.4); 
    yhome=fscanf(serPort); 
    yhome=strtrim(yhome); 
    if ~isempty(yhome) 
         if yhome(1)=='?' 
             error('error in yhome sending yO0 to serPort /n'); 
         end 
     end 
    %fprintf('yhome in while= %s\n',yhome);%need error message here?  
end    
xhome=xhome(2:size(xhome,2)); 
yhome=yhome(2:size(yhome,2)); 
fprintf('serPort set at zero position %s, %s \n',xhome,yhome); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
 
 
% set z axis to zero 
fprintf(serPort,'zO');%mark posistion as z's origin 
pause(1); 
zPos = fscanf(serPort); 
fprintf('User Set Focus set to zero: %s\n',zPos); 
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% 
initFocus = 'f'; 
%Initial Cam2 Focus repeat until user satisfied 
while ~(isequal(initFocus,'c') || isequal(initFocus,'C')) 
    fprintf('move camera2 to some central area where there is lots of detail \n'); 
    movestage(serPort); 
    goBack = 30; 
    xtra = 30; 
    fprintf(serPort,strcat('z-',num2str(goBack+xtra)),'async'); 
    pause(0.2); 
    fscanf(serPort); 
    fprintf(serPort,strcat('z+',num2str(xtra)),'async'); 
    pause(0.2); 
    fscanf(serPort); 
 
     %  
    stepSize = 2; 
    stepNum = ceil(goBack*2/stepSize); 
    algorithm = 'sDev';                  %%ADJUST vars for focus on cam2 
 
    % FIND ROI BY SELECTING AREA WITH MOST EDGES...??? 
    ROIcam2 = [100 100 440 280]; 
        [steps,useMax,focThold] = focus(serPort, T.cam2in, stepNum, stepSize, ROIcam2, 
algorithm,3,cam2Bgnd); 
    %While not case 1 else, add to go back checking not greater than max dist to slide...     
 
    switch size(steps,2) 
        case 4 
            if useMax == 1 
                step2 = steps(1,1);%max value 
            else 
                step2 = steps(1,2);%steepest peak 
            end 
        case 3 
            if useMax == 1 
                step2 = steps(1,1);%max value(Consider first peak here) 
            else 
                step2 = steps(1,2);%steepest peak 
            end 
        case 2 
            if useMax == 1 
                step2 = steps(1,1);%max value 
            else 
                step2 = steps(1,2);%steepest peak 
            end 
        case 1 
            if useMax == 1 
                step2 = steps(1,1);%max value 
            else 
                fprintf('no peaks and max is at one end or other \n'); 
                step2 = steps(1,1);%steepest peak 
            end 
        otherwise 
            error('woops1'); 
    end%switch 
 
         
    focusSteps = (step2)*stepSize;     
    fprintf(serPort,strcat('z+',num2str(focusSteps)),'async');%move back to focus point 
    pause(0.2); 
    fscanf(serPort); 
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 initFocus = input('Press ''r'' to refocus, else press ''c'' to continue','s' );    
end %if initFocus 
 
fprintf(serPort,'zZ','async'); 
pause(1);                          %check FOCUS position 
autoFoc = fscanf(serPort);% => zZ z-nnn so later take from 5th position only... 
 
fprintf('First Focus: %s',autoFoc);%print position 
%% END 1st FOCUS 
 
 
%+++move stage to one corner of area of interest and get co-ordinates 
fprintf('Move camera2 to the top left corner of the section to be scanned \n'); 
movestage(serPort); 
 
fprintf(serPort,'xZ','async'); 
xfar = ''; 
while isempty(xfar); 
     pause(1); 
     xfar=fscanf(serPort); 
     xfar=strtrim(xfar); 
     if ~isempty(xfar) 
         if xfar(1)=='?' 
             error('error in xfar sending xZ to serPort \n'); 
         end 
     end 
   % fprintf('xfar in while= %s \n',xfar);%need error message here?  
end 
 
fprintf(serPort,'yZ','async'); 
yfar = ''; 
while isempty(yfar); 
     pause(1); 
     yfar=fscanf(serPort); 
     yfar=strtrim(yfar); 
     if ~isempty(yfar) 
         if yfar(1)=='?' 
             error('error in yfar sending yZ to serPort'); 
         end 
     end 
    %fprintf('yfar in while= %s \n',yfar);%need error message here?  
end    
xfar=xfar(5:size(xfar,2)); 
yfar=yfar(5:size(yfar,2)); 
data.regionSize={xfar; yfar}; 
%fprintf('serPort set at far corner of Area Of Interest. %s, %s \n',xfar,yfar); 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% have coordinates of  Area Of Interest, focussed - now start capturing on Camera2. 
 
 
OlapAdjX = (str2double(C2xy(1,:))-(str2double(overLap(1,:)))); 
OlapAdjY = (str2double(C2xy(2,:))-(str2double(overLap(2,:)))); 
 
imRows = ceil(abs(str2double(yfar)/(OlapAdjY)))+1; %calc number of rows to capture 
imCols = ceil(abs(str2double(xfar)/(OlapAdjX)))+1; %calc number of columns to capture 
imNames = {}; 
 
for x = 1:imRows 
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    y=1; 
    pause(0.1); 
    closepreview; 
    preview(T.cam2in); 
    pic2 = getsnapshot(T.cam2in); 
    pic2 = pic2 - cam2Bgnd + mean2(cam2Bgnd); 
    pause(0.5); 
    imwrite(pic2,strcat(num2str(x),'-',num2str(y),'.tif'),'TIFF'); 
    imNames(x,y)={strcat(num2str(x),'-',num2str(y),'.tif')}; 
    for y = 2:imCols 
        stepStage(serPort,num2str(OlapAdjX),'0'); 
        pause(4);%stage move time 
        closepreview; 
        preview(T.cam2in); 
        pic2 = getsnapshot(T.cam2in); 
        pic2 = pic2 - cam2Bgnd + mean2(cam2Bgnd); 
        pause(0.2);%stage stabilisation time 
        imwrite(pic2,strcat(num2str(x),'-',num2str(y),'.tif'),'TIFF'); 
        imNames(x,y)={strcat(num2str(x),'-',num2str(y),'.tif')}; 
    end 
    if x ~= imRows 
        fprintf(serPort,strcat('xR',xfar),'async');%move to position 'xfar' relative to origin 
        fscanf(serPort,'%s'); 
        stepStage(serPort,'0',num2str(OlapAdjY)); 
        pause(5);%stage move time 
    else 
         data.imNames = imNames; 
    end 
end 
closepreview;%cam2 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Have images on disk, segment images 
 
zz=0; 
ROILocs=[]; 
%  p and q are rows and columns respectively of  Cam2 images because imNames is saved 
%  as rows/cols in a matrix the same pattern as the images were taken. 
 
for p=1:size(imNames,1) %row 
    for q=1:size(imNames,2) %col 
        zz=zz+1; 
        imName=imNames(p,q); %get name back 
        tempim = imread(char(imName)); %read image 
        [imOut,pollLocs] = segIm2(tempim,cam2Bgnd);%segim2 function 
        %rename file to indicate it is segmented 
        imName = strrep(imName,'.tif',''); 
        segImName = char(strcat(imName,'seg.tif')); %add 'seg' to image name 
        imwrite(imOut,segImName,'TIF'); %write image 
        data.(strcat('Loc',num2str(zz)))=pollLocs; 
            imCentreX = str2double(xfar) + ((q-1)*(str2double(C2xy(1,:))-str2double(overLap(1,:)))); 
            imCentreY = str2double(yfar) + ((p-1)*(str2double(C2xy(2,:))-str2double(overLap(2,:)))); %FIX stage is -
ve in Y direction 
            %imCornerX = imCentreX + (round(str2double(C2xy(1,:))/2) - str2double(overLap(1,:))); 
            %imCornerY = imCentreY - (round(str2double(C2xy(2,:))/2) + str2double(overLap(2,:))); %FIX stage is 
-ve in Y direction 
            imCornerX = imCentreX + round(str2double(C2xy(1,:))/2); 
            imCornerY = imCentreY - round(str2double(C2xy(2,:))/2); %FIX stage is -ve in Y direction 
 
        for r = 1:size(pollLocs,1) %for each pollen found in an image, calculate the location within ROI 
            pX = imCornerX - round(pollLocs(r,1)*stepsPerPixelr); 
            pY = imCornerY + round(pollLocs(r,2)*stepsPerPixelc); 
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            ROILocs = [ROILocs; [pX, pY]];  %Pollen locations x,y steps in region of interest on slide 
        end 
    end 
end 
 
%Add indicators of locations found that are close 
%this code not used yet - maybe used to check if two images are taken of 
%the same pollen 
closeEnough = 90;%90 
for d = 1:size(ROILocs,1)-1 
    for e = (d+1):size(pollLocs,1) 
        tooClose = (abs(ROILocs(e,1)-ROILocs(d,1))<closeEnough) && (abs(ROILocs(e,2)-ROILocs(d,2))< 
closeEnough); 
        if tooClose 
            ROILocs(d,3)= double(tooClose); 
            ROILocs(e,3)= tooClose; 
            indx = find(ROILocs(e,:)); 
            indx = indx(size(indx,2))+1; 
            ROILocs(e,indx)= d; 
        end%if 
    end%for e 
end%for d 
 
data.ROILocs = ROILocs; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Have ROI locations list as xy step numbers for total ROI - now move cam1 
% to each and take image: 
preview(T.cam1in); 
%move CAM1 to focus position relative to CAM2,  
    fprintf(serPort,strcat('z+',(C2toC1(3,:))),'async'); 
    pause(0.3);         %move to cam1 focus (from cam2) 
    fscanf(serPort); 
         
     
 
%move cam1 to origin using stage measures and reset origin 
fprintf(serPort,strcat('xR',C2toC1(1,:)),'async');  
pause(1);  
fscanf(serPort); 
fprintf(serPort,strcat('yR',C2toC1(2,:)),'async'); %move cam2 to origin... 
pause(15); %%??? find better way to determine drive has ended 
fscanf(serPort); 
fprintf(serPort,'yO','async'); 
pause(0.2); 
fscanf(serPort); 
fprintf(serPort,'xO','async'); %And mark it as new origin for stage 
pause(0.2); 
fscanf(serPort); 
 
 
badimg=[];%save bad image numbers - where segIm1 finds nothing 
%input('Moved to focus from cam2 to Cam1 focussed?\n'); 
 
%focHome = str2double(C2toC1(3,:)); 
autoFoc = autoFoc(5:size(autoFoc,2)); 
wideFoc = 0; 
found = [0,0]; 
finalLoc=[]; 
%MAIN LOOP 
for s = 1:min(maxTarget,size(ROILocs,1))%maxTarget, alter in code at top    
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    %drive focus to user focussed cam2 adjusted for cam1 
    fprintf(serPort,strcat('zR+',num2str(str2double(autoFoc)+str2double(C2toC1(3,:)))),'async'); 
    pause(1);  
    focPos = fscanf(serPort); 
 
    picLocX = ROILocs(s,1); 
    picLocY = ROILocs(s,2); 
    fprintf(serPort,strcat('xR',num2str(picLocX)),'async');%move to position relative to origin 
    pause(.4); 
    fscanf(serPort); 
    fprintf(serPort,strcat('yR',num2str(picLocY)),'async');%move to position relative to origin 
    pause(.4); 
    fscanf(serPort);     
    pause(.4); 
    focusing = 1; 
    ROIcam1 = [337 209 350 350]; %made square 
    ROIcam1Plus = [262 134 500 500];%[302 174 420 420];%[322 224 380 380]bigger to make a useful circle for 
near centre limit in segIm1 
    % make Bground image same size as reduced image ready for subtraction 
    % inside loop 
    roiA = ROIcam1Plus(1,2)+1; 
    %b=ROI(1,2) + ROI(1,4); 
    roiC = ROIcam1Plus(1,1)+1; 
    %d = ROI(1,1) + ROI(1,3); 
    cam1BgndIn = cam1Bgnd(roiA:size(cam1Bgnd,1),roiC:size(cam1Bgnd,2)); 
     
     
     
    %FOCUS PRELIM 
    if s == 1 %always do a coarse focus on first 'pollen' found 
        wideFoc = 0;%Turn off wide focus with 0 turn on with 1 
    end 
                 
    while focusing == 1; 
        if wideFoc == 1 
            wideFoc = 0; 
            %add reset to focus here?? 
             
                fprintf(serPort,strcat('zR+',num2str(str2double(autoFoc)+str2double(C2toC1(3,:)))),'async') 
                pause(0.2);         %move to cam1 focus (from cam2) and below for refocus upward 
                fscanf(serPort); 
             
                xtra = 30; 
                goBack = 100; %go back half amount to refocus; fine resolution 
                %fprintf('goback should be 100: %s and: %d \n',num2str(goBack),goBack);%ok 
                fprintf(serPort,strcat('z-',num2str(goBack+xtra)),'async'); 
                pause(0.2);         %move to cam1 focus (from cam2) and below for refocus upward 
                fscanf(serPort); 
                fprintf(serPort,strcat('z+',num2str(xtra)),'async'); 
                pause(0.2);       
                fscanf(serPort); 
                % END FOCUS PRELIM 
 
   
                stepSize = 10; 
                stepNum = goBack*2/stepSize; 
                algorithm = 'deriv';                  %%ADJUST vars for focus on cam1 
                %ROIcam1 = [320 230 380 300];%now back above while statement 
                    [steps, useMax, focThold] = focus(serPort, T.cam1in, stepNum, stepSize, ROIcam1, 
algorithm,3,cam1Bgnd); 
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                switch size(steps,2) 
                    case 4 
                        if useMax == 1 
                            step3 = steps(1,1);%max value 
                        else 
                            stepSteep = steps(1,2);%steepest peak 
                            [valSort, sortIndx] = sort(steps(2,2:4),'descend');%get highest peaks in desc order 
                            sortIndx = sortIndx+1;%account for 1st being max value - sorting LocalMax values 
                            stepHigh = steps(1,sortIndx);%get back to index numbers of largest values in order 
                            %stepHigh = steps(1,ndxSort(1));%Highest peak 
                            if stepHigh >= stepSteep 
                                step3 = stepSteep; 
                            else 
                                step3 = stepHigh; 
                            end 
                        end 
                    case 3 
                        if useMax == 1 
                            step3 = steps(1,1);%max value 
                        else 
                            step3 = steps(1,2);%steepest peak 
                        end 
                    case 2 
                        if useMax == 1 
                            step3 = steps(1,1);%max value 
                        else 
                            step3 = steps(1,2);%only peak 
                        end 
                    case 1 
                        if useMax == 1 
                            step3 = steps(1,1);%max value 
                        else 
                            wideFoc = 1; 
                            fprintf(serPort,'zZ','async'); 
                            pause(1);         
                            zPos = fscanf(serPort); 
                            fprintf('Focus-Bad FOCUS @ cam1-1st: %s',zPos); 
                            fprintf('no peaks and max is at one end or other \n'); 
                            step3 = steps(1,1);% NOT GOOD NEED ANOTHER FOCUS 
                            fprintf('NEED ANOTHER FOCUS @ Cam1-1st!! /n'); 
                        end 
                    otherwise 
                        error('woops3'); 
                end%switch  
                 
            focusSteps = step3*stepSize;% 
            fprintf(serPort,strcat('z+',num2str(focusSteps)),'async');% 
            pause(0.3); 
            fscanf(serPort); 
 
% 
    %input('Finished first focus on CAM1 \n');  
 
        else %if wideFoc == 1 
            goBack = 18; 
            xtra = 20; 
            fprintf(serPort,strcat('z-',num2str(goBack+xtra)),'async'); 
            pause(0.5);         % 
            fscanf(serPort); 
            fprintf(serPort,strcat('z+',num2str(xtra)),'async'); 
            pause(0.1);         % 
            fscanf(serPort); 
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            stepNum = 25; %goBack*2; 
            stepSize = 1; 
            algorithm = 'gradMax';                  %%ADJUST vars for focus on cam1 
            %ROIcam1 = [320 230 380 300]; %change image size if required 
     
            [steps, useMax, focThold] = focus(serPort, T.cam1in, stepNum, stepSize, ROIcam1, algorithm, 
2,cam1Bgnd); 
              focusing = 0; 
           
               switch size(steps,2) 
                     
                    case 3 
%                             step4 = steps(1,2);%highest peak 
                            [minVal minNdx] = min(steps(1,2:3)); 
                            [maxVal maxNdx] = max(steps(1,2:3)); 
                        if  steps(2,minNdx+1) > focThold; 
                            step4 = minVal;% first peak 
                        elseif steps(2,maxNdx+1) > focThold; 
                            step4 = maxVal;%1st peak is lower than Thold 2nd peak is highest  
                        else 
                            step4 = steps(1,1);%max value 
                        end 
                    case 2 
                        if useMax == 1 
                            step4 = steps(1,1);%max value 
                        else 
                            step4 = steps(1,2);%only peak 
                        end 
                    case 1 
                        if useMax == 1 
                            step4 = steps(1,1);%max value 
                        else 
                            focusing = 1; 
                            fprintf(serPort,'zZ','async'); 
                            pause(1);         
                            zPos = fscanf(serPort); 
                            fprintf('Focus-Bad FOCUS @ Cam1-2nd: %s',zPos); 
                            fprintf('no peaks and max is at one end or other \n'); 
                            %step4 = steps(1,1);% NOT GOOD NEED ANOTHER FOCUS 
                            %fprintf(serPort,strcat('zR',num2str(C2toC1(1,3))),'async'); 
                        end 
                    otherwise 
                        error('woops3'); 
                end%switch                   
            if focusing ~= 1 
            focusSteps = (step4)*stepSize;     
            fprintf(serPort,strcat('z+',num2str(focusSteps)),'async');% 
            %fprintf('STEP4 = %d \n focusSteps = %d \n stepSize = %d \n',step4,focusSteps,stepSize); 
       %input('Finished SECOND focus on CAM1 \n');    
            pause(0.5); 
            fscanf(serPort); 
 
            end%if focusing 
        end % if wideFoc == 1    
    end %while focusing ==1 
             
             
  
            %END FOCUS**      
    closepreview; 
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    set(T.cam1in,'ROIposition',ROIcam1Plus); 
    preview(T.cam1in); 
    pic1 = getsnapshot(T.cam1in); 
        %make back ground image same size as captured image 
        cam1BgndIn = cam1BgndIn(1:size(pic1,1),1:size(pic1,2)); 
    pic1 = pic1 - cam1BgndIn + mean2(cam1BgndIn); 
    pause(0.5); 
    imwrite(pic1,strcat(num2str(s),'.tif'),'TIFF');%can remove this later 
    pause(0.5); 
    [pic11, found, foundLoc] = segIm1(pic1,ROIcam1,ROIcam1Plus,cam1Bgnd,found,finalLoc,ROILocs(s,1:2)); 
% pic11 is a small closely bordered image of a segmented pollen grain. 
     
    if ~isempty(foundLoc) 
    finalLoc = [finalLoc;foundLoc];%list of pollen found to eliminate finding same one again 
    end%if 
        if size(pic11)~=[0,0] 
            cd ..; 
            imwrite(pic11,strcat('pollen',num2str(s),'.tif'),'TIFF'); 
            pause(0.5); 
            cd('data') 
        else 
            badimg = [badimg; {strcat('pollen',num2str(s),'.tif')}]; 
        end %if size(pic11) 
end % s    
 
data.badimg = badimg; 
data.finalLoc = finalLoc; 
 
%%TEMP move cameras back 
fprintf(serPort,strcat('xR-',C2toC1(1,:)),'async');  
pause(.5); 
fscanf(serPort); 
fprintf(serPort,'yR40','async');  
%pause(15); 
fscanf(serPort); 
 
closepreview; 
%%END TEMP 
 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% CLEAN UP FROM IMAGING 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
save data data; 
%closepreview(T.cam1in); 
clear tempim; 
%%!!! Clean up Cameras 
%delete(T.cam1in); 
%delete(T.cam2in); 
%clear T; 
% Close serial ports 
fclose(serPort); 
%clear all; 
%% END CLEAN UP  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% IMAGES ON FILE, NOW CLASSIFY 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%cd ..;%move to nuDir folder with images 
%[name,imagePath]=uigetfile; 
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%parameters from main data base to convert mean and stdDev to same as main 
%data base. 
normParams = 
[5030.134980307913,231.3034371643394,11.549145573441029,0.293437972241872,0.227959697576128,0.074001360
388508,0.000198687762285,0.000016941121767,0.000006335590846,0.000000000008587,0.00000001362427,-
0.000000000044924,0.440962893954756,0.220468737572616,0.955566969815511,6825.828280073598,117.263694951
66487,0.77756426949119,2485182.0254206937,1497.7238042250021,38.56475676785264,1101240.540736761,140219
3.7644309185,1954679.6813661144,4063279.210944027,3872055.6853244323,1537042871.0196767,1460751068.2200
918,15240603486338705000,0.008659205087587,0.005295770481277,0.004894526646877,0.004182615161962,0.0032
47431079919,0.003328716734365,0.002790500456022,0.003369855374229,99.09191585246701,0.908084147533,96.7
5340994541313,0.618414164599578,91.66260346632902,0.392911669629661;3460.333605618244,80.9061667604875
5,2.236268994033373,0.061566809328527,0.045626694361407,0.014966302126472,0.000453335049101,0.000028902
27307,0.000008106466735,0.000000000173313,0.000000092755801,0.000000000221719,0.187331184360503,0.05791
0192164941,0.059807099483805,5224.615706898697,86.89454714842559,0.221293882750971,5284786.335172836,34
17.2158562600184,23.568266770203916,2407543.8788592117,2893574.3608193165,3784126.675981967,7594492.505
268886,7092315.602556042,3913485349.063464,3633766697.0870805,77015982694969260000,0.003071396507139,0.
00164390615226,0.001663863105227,0.001319338601508,0.000996686773119,0.001058083429597,0.0008079262294
12,0.001098144523812,0.383358513513111,0.383358513513083,1.227158269430299,0.188171754579054,2.50855563
7726779,0.096577306785522;]; 
cd ..; 
[normData, imList] = featXtract(normParams); 
%imList is list in order of images used to present to MLP 
 
%************************************************************************* 
    %%%Commented parts below untested 
    %%%uncomment if the data base of features requires a trained net on 
    %%%certain selection of pollen types. 
[trainedNet,randOrderImages] = trainNN(); 
 
%OR 
% [netName,netPath] = uigetfile('*.*','select a trained net'); 
% trainedNet = load(strcat(netPath,netName)); 
 
%OR 
%trainedNet = load('D:\Acode\trainedNet'); 
%classList is a cell of names of nornFeature files used to train net: the 
%class or pollen type trained to. 
classList = trainedNet.classList; 
trainedNet = trainedNet.trainedNet; 
%************************************************************************* 
 
%classify normData from unknown images wiht trained net 
classifNet = mlpfwd(trainedNet,normData); 
%result is classifNet, matrix of imList x classList 
 
%[images, classes]=size(classifNet); 
%determine winning class from MLP result 
[mxm, imClass] = max(classifNet, [], 2); 
 
 
%RESULT TO PRINT: matrix of imageNames, classified type 
classRes = imList; 
classRes = {classRes, classList(imClass)}; 
close all; 
%get a series of matrices of images of each classified type 
for p = 1:size(classList,1) 
    postn = find(imClass==p); 
    tmp = imList(postn,:); 
    %classSorted.(char(strcat(int2str(q),classList(q))))= imList(:,q); 
    %classSorted.(char(strcat(classList(p),'class')))= imList(:,p); 
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    %figure(p), title (classList(p)), hold on; 
    plotSize= 72; 
    rLimt = ceil(size(tmp,1)/plotSize); 
    %qLimt = size(tmp,1); 
    if rLimt > 0 
        for r = 1:rLimt 
            if r == rLimt 
                qLimt = mod(size(tmp,1),plotSize); 
                if qLimt == 0 
                    qLimt = plotSize; 
                end 
            else 
                qLimt = plotSize; 
            end%if r 
                figure(str2num(strcat(num2str(r),num2str(p)))), hold on; 
 
            qLimt 
            for q = 1:qLimt%plot each series as matrix plot 
                imTemp = imread(char(tmp((r-1)*plotSize+q,1))); 
                %subplot(floor(sqrt(size(tmp,1))) , ceil(size(tmp,1)/(floor(sqrt(size(tmp,1))))),q),imshow(imTemp); 
                subplot(floor(sqrt(qLimt)) ,ceil(qLimt/(floor(sqrt(qLimt)))), q),imshow(imTemp), 
title(strcat(classList(p),'-',num2str(r))) 
            end%for q 
        end %for r   
    else 
        figure(str2num(strcat('NILL',num2str(p)))),title(classList(p)); 
    end%if rLimt 
    truesize; 
    hold off; 
    hgsave(strcat('fig-',num2str(p))); 
    %save(class);  
end%for p 
 
 
%%###################################################### 
%%  FUNCTIONS 
%% _____________________________________________________ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% movestage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    function movestage(serialport) 
%function to allow manual positioning of stage by user 
 
uin='9'; 
fprintf('USE ARROWS ON KEYPAD WITH NUMLOCK ON \n'); 
while ~isequal(uin,'x') 
    uin = input('''8''= +X,  ''6''= +Y,  ''4''= -X,  ''2''= -Y,  \n Any other key stops movement  \n Type ''x''  when 
camera positioned \n','s'); 
    switch uin  
        case '6' 
            %fprintf('you typed %s \n',uin); 
            fprintf(serialport,'xM0','async'); 
            fscanf(serialport); 
            fprintf(serialport,'xM+1000','async'); %move until stopped 
        case '2' 
            %fprintf('you typed %s \n',uin); 
            fprintf(serialport,'yM0','async'); 
            fscanf(serialport); 
            fprintf(serialport,'yM+1000','async'); %FIX should change hwen reverse Y motor direction 
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        case  '4' 
           % fprintf('you typed %s \n',uin); 
            fprintf(serialport,'xM0','async'); 
            fscanf(serialport); 
            fprintf(serialport,'xM-1000','async');   
        case  '8' 
            %fprintf('you typed %s \n',uin); 
            fprintf(serialport,'yM0','async'); 
            fscanf(serialport); 
            fprintf(serialport,'yM-1000','async'); %FIX should change hwen reverse Y motor direction 
        case '0' 
            %fprintf('x?? You typed %s !! \n',uin); 
             fprintf(serialport,'*M0','async'); 
        otherwise 
           % fprintf('other?? You typed %s !! \n',uin); 
            fprintf(serialport,'*M0','async'); 
    end 
  ret =  fscanf(serialport); 
%   pause(0.2); 
%   ret =  fscanf(serialport); 
  ret=strtrim(ret); 
  if ~isempty(ret) 
      if ret(1) == '?' 
           error('movestage1:stageCamFoc', 'key entry failure \n'); 
      end 
  else 
      fprintf('Check your input key usage \n'); 
      ret='9'; 
  end 
  %fprintf('uin is: %s \n',uin); 
end 
%% END movestage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%% stepStage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function stepStage(serialport,x,y) 
% moves stage x and y steps using serialport object and string inputs 
% representing x and/or y direction step numbers 
 
if ~isequal(x,'0');  
    retx=''; 
    while isempty(retx) 
        if str2double(x)>=0 
            fprintf(serialport,strcat('x+',x),'async'); 
        else 
            fprintf(serialport,strcat('x',x),'async'); 
        end 
        pause(0.2); 
        retx = fscanf(serialport,'%s'); 
        if ~isempty(retx); 
            if isequal(retx(1),'?'); 
                error('stepStage error in x'); 
            end 
        end 
    end 
end 
 
 
if ~isequal(y,'0'); 
    rety=''; 
    while isempty(rety) 
        if str2double(x)>=0 
            fprintf(serialport,strcat('y+',y),'async'); 
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        else 
            fprintf(serialport,strcat('y',y),'async'); 
        end 
        pause(0.2); 
        rety = fscanf(serialport,'%s'); 
        if ~isempty(rety); 
            if isequal(rety(1),'?'); 
                error('stepStage error in y'); 
            end 
        end 
    end 
end 
 
%% END stepStage %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% SEGMIM2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        function [imOut, pollLocs] = segIm2(img,bgnd) 
% function [imOut, pollLocs] = segIm2(img,bgnd) 
% 
% Takes in an image and segments the pollen grains.  
% Returns a matrix: 
% Rows are of objects found  
% Columns (2) are of row/col co-ordinates for object centres in the  
% input image. 
% Also returns a B&W image where white blobs are objects found 
 
 
K=img(1:size(img,1),1:size(img,2));%remove third dimension if exists 
 
%figure, imshow(K), title('original'); 
%L = edge(K, 'sobel', (graythresh(K) * .25));              %edge Thold ALTER 
bgnd=bgnd(1:size(bgnd,1),1:size(bgnd,2));     
Thrshold = graythresh(bgnd);%normalised value in range [0,1] 
if Thrshold == 0 
    Thrshold =0.0001; 
end 
 
L = edge(K,'canny',[Thrshold*0.1,Thrshold*1.7]); 
 %figure, imshow(L), title('Edges'); 
  
se90 = strel('line', 2, 90);     % try alter middle param: original=3 ALTER 
se0 = strel('line', 2, 0);       % try alter middle param: original=3 ALTER 
M = imdilate(L, [se90 se0]); 
N = imfill(M, 'holes'); 
P = imclearborder(N, 8); 
 %figure, imshow(P), title('dilate, fill and clear border'); 
seD = strel('diamond',1);%original=1,  
Q = imerode(P,seD); 
Q = imerode(Q,seD); 
%figure, imshow(Q), title('erodex2'); 
[L,n] = bwlabeln(Q,4); 
regTholdlo = 5.5;     % 5.47=>10um diameter  <size of smallest pollen ALTER 
regTholdhi = 5470; %5470=> 100um diameter <size of largest pollen ALTER       
%imAvg = mean2(K); 
 
for a=1:n 
    [r,c] = find(L==a); 
    nm = find(L==a); 
    Sr = size(r,1); 
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    %Tim = mean(K(nm)); 
    maxR = max(r); 
    minR = min(r); 
    maxC = max(c); 
    minC = min(c); 
     
    bgndAdd = 20;%add to object size to estimate background ADJUST 
    %Test if object is too near border and limit to border 
    if maxR+bgndAdd > size(K,1) 
        addR = size(K,1); 
    else 
        addR = maxR + bgndAdd; 
    end 
 
    if maxC+bgndAdd > size(K,2) 
        addC = size(K,2); 
    else 
        addC = maxC + bgndAdd; 
    end  
     
    if minR-bgndAdd < 1 
        minusR = 1; 
    else 
        minusR = minR - bgndAdd; 
    end  
 
    if minC-bgndAdd < 1 
        minusC = 1; 
    else 
        minusC = minC - bgndAdd; 
    end  
    AvimObjPlus = mean2(K(minusR:addR,minusC:addC));%avg of area larger than object 
    AvimObject = mean2(K(nm)); %avg of object 
    AvimLocBgnd = (2*AvimObjPlus) - AvimObject;%avg of area that is not object (local bckground) 
    if AvimObject > AvimLocBgnd %if object is darker than local background, don't count it. 
            LocR = maxR-minR+1;%get some dimesions 
            LocC = maxC-minC+1;%add 1 to avoid 0 if used as divisor 
            LocBoundArea = (LocR * LocC); 
            LocFit = Sr/LocBoundArea; 
            LocSkew = (min(LocR,LocC))/(max(LocR,LocC)); 
        if(Sr > regTholdhi) || (Sr < regTholdlo);%compare with Thold 
            Q(nm) = 0;%remove large or small 
        elseif LocFit < 0.55 | LocSkew < 0.65;%pine set it at 0.55 | 0.65 
            Q(nm) = 0;%remove long and thin 
        else 
            %eIm = zeros(size(Q)); 
            %eIm(nm) = 1; 
            %figure, imshow(eIm), title('edges');hold on; 
            %[re,ce] = find(eIm==1); 
            [CH, CHa] = convhull(r,c,[]); 
            LocHull = (Sr/CHa);%ratio of object area to localHull area 
            %plot(ce(CH),re(CH),'r-'); 
            if LocHull < 0.97 %pine sets at 0.97 
                Q(nm) = 0;%remove areas with large concaves 
            end %if LocHull 
        end %if Sr 
    else 
        Q(nm) = 0; 
    end %if Tim > 
end 
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pollLocs=[]; 
[L,n] = bwlabeln(Q,8); 
for a=1:n 
    [r1,c1] = find(L==a); 
    pollLocs(a,:)=[round(((max(r1)-min(r1))/2) + min(r1)), round(((max(c1)-min(c1))/2) + min(c1))]; 
end 
%figure, imshow(Q), title('small objects removed'); 
R=zeros(size(Q)); 
for b=1:size(pollLocs) 
    R(pollLocs(b,1),pollLocs(b,2))=1; 
end 
 
 imOut = Q; 
return; 
%% END SEGIM2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% SEGIM1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  function [imOut, found, foundLoc]=segIm1(img, ROI,ROIplus, bgnd,found,finalLoc,ROILoc) 
% function [imOut]=segIm1(img, ROI, bgnd) 
% 
% Takes in an image and a region of interest being used for focus and 
% bacground image for subtraction 
% found is co-ordinates from *centre* of image of found object 
% segments the pollen grains if they fall in that region. 
% Returns an image that just surrounds the pollen grain nearest the centre 
% of the input image (with limits to distance from centre) 
imgsize = size(img); 
K=img(1:imgsize(1),1:imgsize(2));%remove third dimension if exists 
bgnd=bgnd(1:size(bgnd,1),1:size(bgnd,2));     
%L = edge(K, 'sobel', (graythresh(K) * .083));              
Thrshold = graythresh(bgnd);%normalised value in range [0,1] 
if Thrshold == 0 
    Thrshold =0.0001; 
end 
 
L = edge(K,'canny',[Thrshold*0.09,Thrshold*0.3] );            %edge Thold ALTER  
   %figure, imshow(L), title('EdgesCanny'); 
 
se90 = strel('line', 5, 90);                 % try alter middle param: original=3 ALTER 
se0 = strel('line', 5, 0);                     % try alter middle param: original=3 ALTER 
se45 = strel('line', 3, 45); 
se135 = strel('line', 3, 135); 
M = imdilate(L, [se0 se90 se45 se135]); 
N = imfill(M,8, 'holes'); 
P = imclearborder(N, 8); 
 %figure, imshow(P), title(' fill');%was diamond,1 
 
seD = strel('diamond',2);%original=1, 
 
Q = imerode(P,seD); 
Q = imerode(Q,seD); 
Q = imerode(Q,seD); 
    %figure, imshow(Q), title('erodex2');  
    %figure, imshow(K), title('Imdilate + Hough1');hold on 
 
 
[L,n] = bwlabel(Q,4); 
regTholdlo = 455;                   %455=>10um diameter size of smallest pollen ALTER 
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regTholdhi = 45600;                 %45600=>100um diameter size of largest pollen ALTER 
for a=1:n 
    [r,c] = find(L==a); 
    Sr = size(r,1); 
     
        LocR = max(r)-min(r)+1;%get some dimesions 
        LocC = max(c)-min(c)+1;%add 1 to avoid 0 if used as divisor 
        LocBoundArea = (LocR * LocC); 
        LocFit = Sr/LocBoundArea; 
        LocSkew = (min(LocR,LocC))/(max(LocR,LocC)); 
    if(Sr > regTholdhi) || (Sr < regTholdlo);%compare with Thold 
        for jj = 1:Sr 
        Q(r(jj),c(jj)) = 0;%remove large or small 
        end 
    elseif LocFit < 0.55 | LocSkew < 0.65;%pine set at 0.55 | 0.65 
        for jj = 1:Sr 
        Q(r(jj),c(jj)) = 0;%remove long and thin 
        end 
    else 
        eIm = zeros(size(Q)); 
        for jj = 1:Sr 
        eIm(r(jj),c(jj)) = 1; 
        end 
        [re,ce] = find(eIm==1); 
        [CH, CHa] = convhull(re,ce,[]); 
        LocHull = (Sr/CHa); 
        if LocHull < 0.92 %0.92 
            for jj = 1:Sr 
            Q(r(jj),c(jj)) = 0; 
            end 
        end %if LocHull 
    end %if Sr 
end%for a 
 
%%%find centre of all regions found 
pollLocs = []; 
[L,n] = bwlabel(Q,8); 
for a = 1:n 
    [r1,c1] = find(L==a); 
    pollLocs(a,:)=[round(((max(r1)-min(r1))/2) + min(r1)), round(((max(c1)-min(c1))/2) + min(c1))]; 
end 
%figure, imshow(Q), title('small objects removed'); 
 
%%%makle image with centre of regions marked 
% R = zeros(size(Q)); 
% for b = 1:size(pollLocs,1)  
%     R(pollLocs(b,1),pollLocs(b,2)) = 1; 
% end 
enlarge = 1.8; %2 makes a border just around object. <2 increases image size around object 
partn = 0.75;%portion of img centre to last found object 
%distance in *steps* of pollen centre to be considered the same pollen centre captured later 
samePol = 25; 
centreImg = round(imgsize./2); 
foundLoc=[]; 
if size(pollLocs)~= [0,0]; 
    %limt = round(ROI(1,3)/2);%using circle inside ROI 
    %distance from centre 
    %distns = sqrt((abs(round(imgsize(1,1)/2)-pollLocs(:,1))).^2 + (abs(round(imgsize(1,2)/2)-pollLocs(:,2))).^2 
); 
    %distance from between centre and last found object. 
    distns = sqrt((abs(round((imgsize(1,1)/2)+found(1,1)*partn)-pollLocs(:,1))).^2 + 
(abs(round((imgsize(1,2)/2)+found(1,2)*partn)-pollLocs(:,2))).^2 ); 



   11-42

    [a,b] = sort(distns); 
    %[a,b] = min(distns); %find minimum 
    for dd = 1:size(distns,2) 
        %calculate foundLoc location in steps on entire slide so multiples 
        %can be detected. Send foundLoc back to calling prog which adds to 
        %finalLoc and sends back in here to use as check for closeness to 
        %current found pollen 
        augR = round((pollLocs(b(dd),1) - (ROIplus(1,4)/2))/6.215);%6.215 is Cam1 pixels per step 
        augC = round((pollLocs(b(dd),2) - (ROIplus(1,3)/2))/6.215);%6.215 is Cam1 pixels per step 
        foundLoc = ROILoc + [augC, -augR];%Changing Y sense? then change sense of AugR !!!! 
        repPol = 0; 
        for ee = 1:size(finalLoc,1) 
            if ((finalLoc(ee,1) < (foundLoc(1,1)+samePol))&&(finalLoc(ee,1) > (foundLoc(1,1)-samePol))) && 
((finalLoc(ee,2) < (foundLoc(1,2)+samePol))&&(finalLoc(ee,2) > (foundLoc(1,2)-samePol))) 
                repPol = 1 
                dd 
                foundLoc = []; 
                imOut=[]; 
                break 
            end% if 
        end%for ee 
  
 
        if repPol == 0 
        LocOut = pollLocs(b(dd),1:2); %reference that back to polLocs to get r/c co-ordinates of region 
        [r2,c2] = find(L==b(dd)); %get list of pixels of pollen image 
        %Define smallest region around pollen and extract it as an image 
        %lastFound is location in image of last pollen as a clue to where 
        %next one is more likely, so change target from centre accordingly 
        %actually by 'partn'times distance from centre to location. used in distns above 
        lastFound = [round(((max(r2)-min(r2))/2) + min(r2)), round(((max(c2)-min(c2))/2) + min(c2))]; 
        found = [lastFound(1)-centreImg(1), lastFound(2)-centreImg(2)];%subtraction order  
        imOut = img(max(1,round(LocOut(1,1)-((max(r2)-
min(r2))/enlarge))):min(size(img,1),round(LocOut(1,1)+((max(r2)-min(r2))/enlarge))) , 
max(1,round(LocOut(1,2)-((max(c2)-min(c2))/enlarge))):min(size(img,2),round(LocOut(1,2)+((max(c2)-
min(c2))/enlarge))) ); 
        break 
        end%if repPol 
    end 
else 
    imOut = []; 
end %if size(pollLocs) 
%% END SEGIM1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% AUTO-FOCUS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    function [steps, useMax, focThold] = focus(serialPort, camera, stepNum, stepSize, ROI, algorithm, pkNum, 
bgimg)    
% function [69] = focus(serialPort, camera); 
% 
% STEPS: indices to their position in focus images,  
%   of array of max value, plus local maxima (up to pkNum)  
% SERIALPORT is a serial port for comms to steppers (Z in this cse) 
% CAMERA is an imaging device, for stageCam is cam1in or cam2in 
% STEPSIZE: number  of steps per image taken 
% STEPNUM: number of images taken 
% ROI: region for focus [Row Column RowOffset ColumnOffset] 
% ALGORITHM: see switch case options for 'algorithm' 
% pkNum: number of local maxima to return in 'steps'(after maximum value 
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% index) 
 
 
camROI = get(camera,'ROIposition'); 
set(camera,'ROIposition',ROI); 
 
imFoc = getsnapshot(camera); 
focusData = []; 
    for ii = 1:stepNum 
        imFoc=[]; 
        imFoc = getsnapshot(camera); 
        imFoc = imFoc(1:size(imFoc,1),1:size(imFoc,2)); 
        imFoc = double(imFoc); 
        if isequal(imFoc,[]) 
            fprintf('snap missed getting an image in function FOCUS\n'); 
        end 
        if ii ~= stepNum 
            fprintf(serialPort,strcat('z+',num2str(stepSize)),'async'); 
        end %if 
 
        a = ROI(1,2)+1; 
        %b=ROI(1,2) + ROI(1,4); 
        c = ROI(1,1)+1; 
        %d = ROI(1,1) + ROI(1,3); 
        bgimgIn = bgimg(a:size(bgimg,1),c:size(bgimg,2)); 
        bgimgIn = double(bgimgIn); 
        bgimgIn = bgimgIn(1:size(imFoc,1),1:size(imFoc,2)); 
        if ~isequal(bgimgIn,[]) 
            imFoc = imFoc - bgimgIn + mean2(bgimgIn); 
        end %if %bgimgIn 
             
        %imwrite(imFoc,strcat(num2str(ii),'.tif'),'tiff'); 
         
        switch algorithm 
            case 'sDev' 
                imVal = std2(imFoc); 
            case 'vars' 
                imVal = sqrt((mean(diag(cov(imFoc)))^2) + (mean(diag(cov(imFoc')))^2)); 
            case 'gradMax' 
                [gradX gradY] = gradient(imFoc); 
                imVal = sum(sum((max(gradX,gradY)).^2)); 
                clear gradX gradY; 
            case 'vollath4' 
                tempImageShiftX = imFoc(:,2:size(imFoc,2)); %X shifted image 
                tempImageShiftX2 = imFoc(:,3:size(imFoc,2)); %X shifted 2pixels 
                imageMult1 = tempImageShiftX(1:size(tempImageShiftX,1))*imFoc(:,1:size(tempImageShiftX,2)); 
                imageMult2 = tempImageShiftX2(1:size(tempImageShiftX2,1))*imFoc(:,1:size(tempImageShiftX2,2)); 
                imVal = sum(sum(imageMult1(size(imageMult2,2))))-sum(sum(imageMult2)); 
                clear tempImageShiftX tempImageShiftX2 imageMult1 imageMult2; 
            case 'vollath5' 
                tempImageShiftX = imFoc(:,2:size(imFoc,2)); %X shifted image 
                imageMult1 = tempImageShiftX(1:size(tempImageShiftX,1))*imFoc(:,1:size(tempImageShiftX,2)); 
                imVal = sum(sum(imageMult1))-(size(imageMult1,1)*size(imageMult1,2)*((mean2(imFoc))^2)); 
            case 'deriv' 
                der1X = diff(imFoc,1,1); 
                der1Y = diff(imFoc,1,2); 
                der2X = imFoc(1:size(der1X,1),:).^2.*der1X.^2; 
                der2Y = imFoc(:,1:size(der1Y,2)).^2 .* der1Y.^2; 
                imVal = sum(sum(der2X(:,1:size(der2Y,2)) + der2Y(1:size(der2X,1),:))); 
                clear der1X der1Y der2X der2Y; 
            case 'pwr' 
                meen = mean2(imFoc); 
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                thold = meen*1; %%ADJUST 
                tHoldImage = (imFoc > thold).*imFoc; 
                imVal = sqrt(sum(sum(tHoldImage.^2)))/(size(imFoc,1)*size(imFoc,2)); 
                %Fpower2 = sqrt(sum(sum(tHoldImage(:,1:size(imFoc,1))^2)))/(size(imFoc,1)*size(imFoc,2)); 
                clear tHoldImage thold meen; 
            case 'normVar' 
                meen = mean2(imFoc); 
                imVal = sum(sum((imFoc-meen).^2))/(size(imFoc,1)*size(imFoc,2)*meen); 
                clear meen; 
            case 'hGram' 
                L = hist(reshape(imFoc,1,[]),1:255); 
                L=sort(L,'descend'); 
                imVal = mean(L(1:25)); %ADJUST 
                clear L; 
            case 'entrpy' 
                L = imFoc(imFoc>150); %Thold 
                L = hist(reshape(L,1,[]),1:255); 
                imVal = -sum((L+1).*log2(L+1)); 
                clear L;             
            case 'fTrans' 
                Fr = sort(reshape(real(fft2(imFoc)),1,[]),'descend'); 
                imVal = mean(Fr(:,1:1000)); %%ADJUST 
                clear Fr; 
            otherwise  
                error('algorithm not recognised'); 
        end%switch       
        focusData = [focusData; imVal]; 
        if ii ~= stepNum 
            fscanf(serialPort);%required for fprintf, just above switch 
%             pause(0.1); 
%             pause(0.1); 
%             pause(0.1); 
%             pause(0.1); 
              pause(0.5); 
        end %if 
    end%for ii 
     
if isequal(algorithm, 'hGram') || isequal(algorithm,'entrpy') 
    focusData = max(focusData) - focusData; %inverse for these two algorithms 
end %if algorithm 
 
[maxVal, maxind] = max(focusData); 
[lmVal,pkIndx] = loclmax(focusData,pkNum); 
steps = [maxind-1,pkIndx-1]; 
steps = [steps; maxVal, lmVal]; 
 
 
if steps(1,1)== 0 || steps(1,1)==stepNum-1 
                    useMax = 0; 
                     
else  
                    useMax = 1; 
end%if 
 
tholdData = focusData(2:size(focusData)-1); 
minThold = min(tholdData); 
maxThold = max(tholdData); 
%find a level above noise floor, below which the peak is too low level to be of value 
 
    %focThold = minVal+((maxVal-minVal)/3); 
focThold = minThold+((maxThold-minThold)/3); 
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%figure, plot(1:size(focusData,1),focThold,'r-',pkIndx,focusData(pkIndx),'rx',1:size(focusData,1),focusData,'b-
'); 
 
 fprintf(serialPort,strcat('z-',num2str(stepSize*(stepNum-1))),'async');%move camera back 
 pause(0.1); 
 fscanf(serialPort); 
set(camera,'ROIposition',camROI);%set camera back 
imFoc = getsnapshot(camera); 
%% END AUTO-FOCUS %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% LOCAL MAXIMUM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    function [maxval,ndx]=loclmax(vector,points) 
%LMAX  [maxval, ndx]=loclmax(vector,points).  
%   Find local maxima in vector XX,where 
% MAXVAL is the output vector with maxima values,  
%   NDX  is the corresponding indeces,  
%   VECTOR is the input vector to in which to find local maxima 
% POINTS is the number of points (from 'highest' down) to detect 
 
x=vector; 
len_x = length(x); 
maxval=[]; ndx=[]; hght = []; 
i=2;  % start at second data point in time series 
 
    while i < len_x, 
 
 if x(i) > x(i-1) 
    if x(i) > x(i+1) % definite max 
maxval =[maxval, x(i)]; 
ndx = [ ndx i]; 
hght = [hght, (x(i)-((x(i-1) + x(i+1))/2))]; 
    elseif (i ~= len_x-1) && (x(i)==x(i+1)) && (x(i)==x(i+2)) % 'long' flat spot 
i = i + 2;    % skip 2 points 
    elseif x(i)==x(i+1) % 'short' flat spot 
i = i + 1;  % skip one point 
    end 
 end 
 i = i + 1; 
    end 
     
if nargin == 1 
    points = size(hght,2); 
end 
dd = min(points,size(hght,2)); 
if ~isempty(hght) 
    [htval indx] = sort(hght,'descend'); 
    indx = indx(1:dd);%index of peak heights in descending order 
    %indx = sort(indx);%reorder to image captured order (moving up thru focus) 
    maxval = maxval(indx);%vector input values in peak height descending order 
    ndx = ndx(indx);%index to input vector = motor steps taken to get to that point/stepSize 
end%if 
 
% uncomment for a graph of the original with found points: 
% figure, plot(ndx,vector(ndx),'rx',1:size(vector,1),vector,'b-') 
%% END LOCAL MAXIMUM  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% FEATURE EXTRACTION AND DATA NORMALISATION %%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [normFeatures, imList] = featXtract(normParams) 
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%NORMPARAMS is a set of normalisation parameters used to normalise library data and again here 
%NORMFEATURES is sets of normalised feature data named using the folder 
%name from which the images were found. 
%IMLIST is a list of images 
%  Program extracts features, normalises, and saves a mat file for each 
%  image set of features in the top folder,  
%  non-image files are filtered out and not used. 
 
 
% extract features from images in folder 
%imList=dir(topPath); 
%cd(imPath); 
ims = dir; 
ims = ims(3:size(ims,1));%first two are '.' & '..'  
features=[]; 
normFeatures=[]; 
imgCnt=0; 
for j = 1:size(ims,1); 
    if strcmp(finfo(ims(j,1).name), 'im')== 1; 
        imgCnt = imgCnt+1; 
        thisPath = ims(j,1).name; 
        features = [features; getAllFeatures(thisPath)]; 
        imList(imgCnt,1) = {ims(j,1).name}; 
    end 
end%for j = 1: 
 
if ~isequal(features,[]) & isequal(size(features,2), size(normParams,2)) 
  save('imageFeatures.mat','features');  
    
    %% Normalise using the main database parameters for transforming data to 
    %% mean=0 and stdDev = 1 (parameters in featParams) 
    for j = 1:size(features,2) 
    normFeatures(:,j) = (features(:,j)-normParams(1,j))./normParams(2,j); 
    end 
     
  save('normFeatures.mat','normFeatures','imList'); 
else 
    error('feature file is empty or wrong sized normParams'); 
end%if ~isequal 
%cd(tempPath); 
return 
%% END FEATURE EXTRACTION AND NORMALISATION %%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% TRAIN ANN FROM DATA BASE of normFeatures  %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [trainedNet, randOrderImages] = trainNN() 
%train a set of normFeature sets from data base. 
% TRAINEDNET a trained neural network representing images from the data base of 
% pollen types and a classList indicating pollen types and order of training 
% RANDORDERIMAGES is an index to the random ordering performed so original order can be determined 
 
NFset=[]; 
[netName,netPath] = uigetfile('*.*','select a set of normFeatures - nf???.mat ','nf*','MultiSelect','on'); 
for k=1:size(netName,2); 
    tempStr = load(strcat(netPath,char(netName(k)))); 
    NFset.(strrep(char(netName(1,k)),'.mat',''))= tempStr; 
end 
 
classList = fieldnames(NFset); 
numSets = size(classList,1); 
imagNumPerSet = []; 
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featureTrain = []; 
 
for i=1:numSets 
    tempNorm=NFset.(char(classList(i))).normFeatures; 
   %tempNorm = tempNorm(randperm(size(tempNorm,1)),:); 
    imagNumPerSet = vertcat(imagNumPerSet,size(tempNorm,1));%[imagNumPerSet; size(tempNorm,1)]; 
    featureTrain = [featureTrain; tempNorm]; 
end 
clear tempNorm; 
options = foptions; %defaults 
options(1) = 0; %Display parameter (Default:0). 1 displays some results. 
options(14) = 80;%round(3.78*(numSets)+11.1); %Maximum number of function evaluations. 
nHidden = size(featureTrain,2)*2+1; 
nInputs = size(featureTrain,2); 
nOutputs = numSets; 
randOrderImages = randperm(size(featureTrain,1))'; 
%featureTrain = featureTrain(randOrderImages,:); 
 
targets=[]; 
adj=0; 
%fill targets depending on number of pollen types and number 
%of images used for each pollen type 
for i = 1:nOutputs      %fill targets 
    if i == 1; else adj = adj+imagNumPerSet(i-1);end 
    for j = 1:imagNumPerSet(i); 
        targets(adj+j,i)=1; 
    end 
end 
 
%targets = targets(randOrderImages,:); 
netSoft = mlp(nInputs,nHidden,nOutputs,'softmax'); 
trainedNet = netopt(netSoft,options, featureTrain, targets,'scg'); 
classList = classList; 
save('trainedNet','trainedNet','classList'); 
tempNet.trainedNet = trainedNet; 
tempNet.classList = classList; 
trainedNet = tempNet; 
clear tempNet; 
 
%% END  TRAIN ANN FROM DATA BASE of normFeatures %%%%%%%%%%%%%%%%%%%%%% 
 
%% END MAINSTAGE CODE 

11.1.14 Feature Extraction featXtract.m 
function [normFeatures, imList] = featXtract(topPath) 
%TOPPATH is a path to folder containing images for  
%which feature extraction is required. 
%NORMFEATURES is sets of normalised feature data named using the folder 
%name from which the images were found. 
%  Program extracts features, normalises, and saves a mat file for each 
%  image set of features in the top folder,  
%  non-image files are filtered out and not used. 
 
normParams = 
[5030.134980307913,231.3034371643394,11.549145573441029,0.293437972241872,0.227959697576128,0.074001360
388508,0.000198687762285,0.000016941121767,0.000006335590846,0.000000000008587,0.00000001362427,-
0.000000000044924,0.440962893954756,0.220468737572616,0.955566969815511,6825.828280073598,117.263694951
66487,0.77756426949119,2485182.0254206937,1497.7238042250021,38.56475676785264,1101240.540736761,140219
3.7644309185,1954679.6813661144,4063279.210944027,3872055.6853244323,1537042871.0196767,1460751068.2200
918,15240603486338705000,0.008659205087587,0.005295770481277,0.004894526646877,0.004182615161962,0.0032
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47431079919,0.003328716734365,0.002790500456022,0.003369855374229,99.09191585246701,0.908084147533,96.7
5340994541313,0.618414164599578,91.66260346632902,0.392911669629661;3460.333605618244,80.9061667604875
5,2.236268994033373,0.061566809328527,0.045626694361407,0.014966302126472,0.000453335049101,0.000028902
27307,0.000008106466735,0.000000000173313,0.000000092755801,0.000000000221719,0.187331184360503,0.05791
0192164941,0.059807099483805,5224.615706898697,86.89454714842559,0.221293882750971,5284786.335172836,34
17.2158562600184,23.568266770203916,2407543.8788592117,2893574.3608193165,3784126.675981967,7594492.505
268886,7092315.602556042,3913485349.063464,3633766697.0870805,77015982694969260000,0.003071396507139,0.
00164390615226,0.001663863105227,0.001319338601508,0.000996686773119,0.001058083429597,0.0008079262294
12,0.001098144523812,0.383358513513111,0.383358513513083,1.227158269430299,0.188171754579054,2.50855563
7726779,0.096577306785522;]; 
 
%% extract features from images in folder 
imList=dir(topPath); 
imList = imList(3:size(imList,1));%first two are '.' & '..'  
features=[]; 
normFeatures=[]; 
for j = 1:size(imList,1); 
    if strcmp(finfo(strcat(imPath,'\',imList(j,1).name)), 'im')== 1; 
        thisPath = strcat(imPath,'\',imList(j,1).name); 
        features = [features; getAllFeatures(thisPath)]; 
    end 
end%for j = 3: 
 
if ~isequal(features,[]) 
  save(strcat(topPath,'\','imageFeatures.mat'),'features');  
    
    %% Normalise using the main database parameters for transforming data to 
    %% mean=0 and stdDev = 1 (parameters in featParams) 
    for j = 1:size(features,2) 
    normFeatures(:,j) = (normFeatures(:,j)-normParams(1,j))./normParams(2,j); 
    end 
     
  save(strcat(topPath,'\','normFeatures.mat'),'normFeatures'); 
else 
    error('feature file is empty. No normFeatures created'); 
end%if ~isequal 
 
return 

11.1.15 Classify a set of images – classify.m 
[out] = classify(trainedNet, featureSet, targets); 
 
%classsify takes in a trained neural net (by trainNet) and feature sets 
%saved by FXtract. The output is the sorted feature sets. 
 
 
meen=mean(featureSet); 
featureSetNorm = (featureSetNorm-ones(size(featureSetNorm,1),1)*meen); 
 
netResultSoft = mlpfwd(B,featureSetPrune); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
% Generate Expected result (as for 'target' in training) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
nOutputs=size(imagNumPerSet,1); 
targetsIm=[];%create targets 
fix=0; 
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%fill targets depending on number of pollen types and number 
%of images used for each pollen type 
 
if nargin = 3 
    for i = 1:nOutputs      %fill targets 
        if i == 1; else fix = fix+imagNumPerSet(i-1);end 
        for j = 1:imagNumPerSet(i); 
            targetsIm(fix+j,i)=1; 
        end 
    end 
 
 
    targetsPC=zeros(size(featurePC,1),pollenTypeNum); 
    for y = 1:pollenTypeNum 
        targetsPC((((y*imagPrune)-imagPrune)+1):(y*imagPrune),y)=1; 
    end 
 
 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
    % check with expected result 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
 
    %display confusion matrix in a graph 
    cmSoft = conffig( netResultSoft,targetsIm); 
 
     % confusionMatrix 'C' and performance rate 'rate' 
     %from predictions 'y' and targets 
    %  [c,rate]=confmat(netResultSoft,targets); 
end %if nargin 
 
 

11.1.16 Final classification testing – testFinal.m 
%Two image sets are previously saved, one for training and verification and one for final 
%testing.  Use this for the final classification tests.  Each set is in a different 
%subfolder 
% A file is saved with data and a results file with results of each of the 5(testrepeatNum) tests  
 
clear; 
%clc; 
close all hidden; 
 
nHidden=87;  
epochs = 100; 
testrepeatNum = 5; 
resultMat = []; 
featPrune = (1:43); 
 
loopCount=0; 
resultFile=[]; 
  
[trainFileNames,trnPath]=uigetfile('*.*','Select all training files','*','MultiSelect','on'); 
[testFileNames,tstPath]=uigetfile('*.*','Select all testing files','*','MultiSelect','on'); 
cd(tstPath); 
%trainFileNames=cellstr(trainFileNames); 
%testFileNames=cellstr(testFileNames); 
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pollenTypeNum=size(testFileNames,2); 
 
 
for ii = 1:testrepeatNum 
 
        imagNumPerTrSet=[]; 
        imagNumPerTstSet=[]; 
        featureTrain=[]; 
        featureTst=[]; 
        netSoft=[]; 
        dataMean=[]; 
loopCount=loopCount+1; 
    sort(testFileNames); 
    sort(trainFileNames); 
    namesPerm = randperm(size(testFileNames,2)); 
    trainFileNames = trainFileNames(namesPerm);  
    testFileNames = testFileNames(namesPerm);  
 
            fprintf('image order used to train NET: \n');%print image file names 
        for i = 1:size(testFileNames,2) 
            testFileNames(i) = strrep(testFileNames(i),'.mat',''); 
            fprintf('%s \n',char(testFileNames(i))); 
            fprintf('%s \n',char(trainFileNames(i))); 
        end; 
 
 
        for i=1:pollenTypeNum 
            trnData=load(char(strcat(trnPath,trainFileNames(1,i)))); 
            tstData=load(char(strcat(tstPath,testFileNames(1,i)))); 
            trnData=trnData.trnFile; 
            tstData=tstData.tstFile; 
     tstData = tstData(randperm(size(tstData,1)),:); 
     trnData = trnData(randperm(size(trnData,1)),:); 
            imagNumPerTstSet = vertcat(imagNumPerTstSet,size(tstData,1)); 
            imagNumPerTrSet = vertcat(imagNumPerTrSet,size(trnData,1)); 
            featureTst = [featureTst; tstData]; 
            featureTrain = [featureTrain; trnData]; 
        end 
 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
            % randomise images (targets follow by using the same random permutation) 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
         randOrderImages = randperm(size(featureTrain,1))'; 
         featureTrain = featureTrain(randOrderImages,:); 
         size(featureTrain) 
         featureTrain = featureTrain(:,featPrune); 
            %size(featureTrain) 
 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
            % build an MLP neural network 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
            %variables: 
            %1) inputs are number of features(columns) extracted from images(rows) 
            %2) One hidden layer node numbers to be determined empirically 
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            %3) outputs depend on number of pollen types to be identified 
                %e.g. non-airborne Vs airborne has two outputs 
 
        %         %Nothing proved well but 'appears' to do better when odd 
        %     if mod(size(featureFileNames,2)*5,2)==0 
        %         hidden = size(featureFileNames,2)+1 
        %     else 
        %         hidden = size(featureFileNames,2) 
        %     end %if mod 
 
            nInputs=size(featureTrain,2); %inputs to neuralNet same as feature number 
 
            nOutputs=pollenTypeNum;%numer of files selected indicating  
                                            %number of image types 
 
            netSoft = mlp(nInputs,nHidden,nOutputs,'softmax'); 
 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
            % train network 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
 
            options = foptions; %defaults 
            options(1) = 1; %Display parameter (Default:0). 1 displays some results. 
            options(14) = epochs; %Maximum number of function evaluations. 
                                %Vary to find best (when result is very near zero) 
                                %compromise compute time Vs nearer zero result. 
 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
            % create targets 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%                     
            targets=[]; 
            adj=0; 
            %fill targets depending on number of pollen types and number 
            %of images used for each pollen type 
            for i = 1:nOutputs      %fill targets 
                if i == 1; else adj = adj+imagNumPerTrSet(i-1);end 
                for j = 1:imagNumPerTrSet(i); 
                    targets(adj+j,i)=1; 
                end 
            end 
   targets = targets(randOrderImages,:); 
        %size(targets) 
            %pack; 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
            % train NET 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
             
             
            netSoft = netopt(netSoft,options, featureTrain, targets,'scg'); 
            %netSoft = mlptrain(netSoft, featureTrain, targets, epochs); 
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            %net.pruneFeat=pruneFeat;%save feature prune info 
 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
            % Generate Expected result (as for 'target' in training) 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
 
            targetTst=[];%create targets 
            fix=0; 
            %fill targets depending on number of pollen types and number 
            %of images used for each pollen type 
            for i = 1:nOutputs      %fill targets 
                if i == 1; else fix = fix+imagNumPerTstSet(i-1);end 
                for j = 1:imagNumPerTstSet(i); 
                    targetTst(fix+j,i)=1; 
                end 
            end 
 
            %randomise test image features and targets together 
    randOrderTst = randperm(size(featureTst,1))'; 
    featureTst = featureTst(randOrderTst,:); 
    featureTst = featureTst(:,featPrune); 
    targetTst = targetTst(randOrderTst,:); 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
            % Forward Propogation 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
            net = mlpfwd(netSoft,featureTst); 
 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
            % check with expected result 
            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
 
             %confusionMatrix 'C' and performance rate 'rate' 
             %from predictions 'y' and targets 
             %display confusion matrix in a graph  
            [c, rate] = confmatPer(net, targetTst,testFileNames); 
            confMatrx = conffigPer( net,targetTst,testFileNames);  
trNum = size(featureTrain,1)/pollenTypeNum; 
tstNum = size(featureTst,1)/pollenTypeNum; 
            hgsave(strcat(num2str(ii),'figure')); 
            save(strcat(trnPath,num2str(ii),'netTrained','-
','netSoft'),'netSoft','trNum','tstNum','trainFileNames','testFileNames','nHidden','epochs','featureTst','targetTst')
; 
resultFile(1,loopCount) = loopCount; 
resultFile(2,loopCount) = rate(1); 
 
end %for ii = 
save('resultFile','resultFile'); 
%END 
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11.1.17 Training a Neural Net – trainNet.m 
[trainedNet, targets, randOrder] = trainNet(filesPath) 
 
%Train an MLP neural net using all normFeatures (in filesPath)  
%and return trained net. 
%normFeatures is a set of files produced by featXtract. 
%featXtract produces feature files, each one of a single type of pollen. 
%FILESPATH path to normFeatures files 
%TRAINEDNET returned trained neural net 
%TARGETS key to image feature vectors derived from different(separate)files 
%RANDORDER numbers used to randomise the input vectors and targets 
 
featCat=[]; 
imNames = {}; 
imNumPerSet = []; 
pruneNum=8; %<<*****ADJUST ******<<remove images from set for later testing 
fileList=dir(strcat(filesPath,'normFeatures*.mat')); 
 
for ii = 1:size(fileList,1); 
    tempData = load(strcat(filesPath,fileList(ii).name)); 
    tempFeats = tempData.normFeatures;%remove from structure. 
    featCat = [featCat; tempFeats]; 
    imNumPerSet = [imNumPerSet; size(tempFeats,1)]; 
    %image names is derived from names of folders holding images used by featXtract 
    imNames = [imNames; strrep(strrep(fileList(ii).name,'normFeatures',''),'.mat','')]; 
    clear tempFeats tempData 
end %for ii 
 
 
featCatNorm = featCat; 
meen = mean(featCatNorm); 
featCatNorm = (featCatNorm-ones(size(featCatNorm,1),1)*meen); 
%featCat=featureCatNorm; %Switch normalise on ???? 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% build an MLP neural network 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
%variables: 
%1) inputs are number of features(columns) extracted from images(rows) 
%2) One hidden layer node numbers to be determined empirically 
%3) outputs depend on number of pollen types to be identified 
    %e.g. non-airborne Vs airborne has two outputs 
nInputs=size(featCat,2); %inputs to neuralNet same as feature number 
nHidden=22; %18  %nInputs*2+1;  %suggested in text - use for now 
nOutputs=size(imNames,1);%numer of files selected indicating  
                                %number of image types 
%netLog = mlp(nInputs,nHidden,nOutputs,'logistic'); 
netSoft = mlp(nInputs,nHidden,nOutputs,'softmax'); 
%netLin = mlp(nInputs,nHidden,nOutputs,'linear'); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% train network 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
options = foptions; %defaults 
options(1) = 1; %Display parameter (Default:0). 1 displays some results. 
options(14) = 150; %Maximum number of function evaluations. 
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                    %Vary to find best (when result is very near zero) 
                    %compromise compute time Vs nearer zero result. 
 
targets=[];%create targets 
adj=0; 
%fill targets depending on number of pollen types and number 
%of images used for each pollen type 
for i = 1:nOutputs      %fill targets 
    if i == 1; else adj = adj+imNumPerSet(i-1);end 
    for j = 1:imNumPerSet(i); 
        targets(adj+j,i)=1; 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% randomise images (targets follow change) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
randOrder = randperm(size(featCat,1))'; 
randFeatCat = featCat(randOrder,:); 
randTargets = targets(randOrder,:); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
% train NET 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
%netLog = netopt(netLog,options, randFeatureCatPrune, randTargets,'quasinew'); 
trainedNet = netopt(netSoft,options, randFeatCat, randTargets,'quasinew'); 
%netLin = netopt(netLin,options, randFeatureCatPrune, randTargets,'quasinew'); 
 
%net.pruneFeat=pruneFeat;%save feature prune info 
save(strcat(filesPath,'netTrained'),'featCat','trainedNet','pruneNum','imNames','randOrder'); 
 
%END 
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