Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A systems analysis of quadbike loss of control events on New Zealand farms

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Management Systems and Ergonomics at Massey University, Palmerston North

David John Moore

2007
A systems analysis of quadbike Loss of Control Events (LCE) on New Zealand farms

The Department of Labour (OSH) have identified the 70,000 quadbikes in use in New Zealand as their single greatest area of concern in farm safety; each year there are on average seven deaths and in excess of NZ$3.6 million was paid out by ACC for quadbike-related injuries in 2003-4.

The aims of this research were to: establish the context, scale and cost of LCE involving quadbikes on New Zealand farms, develop a methodology for off-road investigations, identify risk factors and their interactions, and generate potential interventions.

The methodology employed a systems approach, using: a modified event sequence chart drawn from the ergonomics, forensic psychology and aviation fields, plus environmental context-dependent cues and scale models to assist recall. An interactive quadbike LCE model was also developed for analysis.

Interventions were identified relating to: farm management, work organisation, regulation, vehicle design, and rider awareness; which it is anticipated will reduce injuries in the future.

Dave Moore
Abstract

A systems analysis of quadbike Loss of Control Events (LCE) on New Zealand farms

There are an estimated 70,000 quadbikes (also called All-Terrain Vehicles, four-wheelers or ATV) in use within the farming community in New Zealand, and these have been linked to approximately seven deaths per year since 1997. ACC paid compensation in excess of $3.6 million on new and on-going quadbike-related claims in 2003-4, and the Department of Labour (OSH) have identified quadbike use as their single greatest area of concern in farm safety.

The main aims of this series of studies were to: establish the scale and cost of LCE involving quadbikes as well as their context of use on New Zealand farms, develop an investigative methodology suitable for off-road application, identify risk factors for LCE and their interactions, and generate potential interventions.

The research comprised a literature review and three studies. The first was an epidemiological analysis of ACC claims data for serious quadbike-related injuries in the year to July 2001, identified individually through the free narrative text in the ACC database. The second study explored the context of farm quadbike use through data gathering with multiple industry sources including users at the 55 farms visited for the third study. This final phase consisted of investigations at the scenes of 156 LCE. Data on the event sequences and contributory factors were captured and analysed using a modified event sequence chart developed from established methods in the ergonomics, forensics psychology and aviation literature. Environmental context-dependent cues and scale models of quadbikes and implements were used to assist the subjects recall event details. An interactive quadbike LCE model incorporating information processing features was developed as a further analysis tool.

Potential interventions were identified acting at various system levels. These included changes in: farm management, work organisation, regulation, vehicle conceptualisation, detailed quadbike design and modification, rider awareness and training.
Acknowledgements

The research reported in this thesis was funded from a number of sources: ACC, Foundation for Research Science and Technology, and SCION (previously known as the Forest Research Institute of New Zealand). Support of other kinds was provided by a large number of individuals and organisations in the industry, and via the Agricultural Health and Safety Council which comprises members from fourteen separate key bodies: Accident Compensation Corporation (ACC), Agriculture Training Organisation (Ag ITO), Central Amalgamated Workers Union, Deer Farmers, Farm Forestry, Federated Farmers, FarmSafe, Land Transport, Ruralwomen, Department of Labour, Police and Young Farmers Clubs.

My thanks to the many people working on farms and elsewhere in the agricultural industry who gave their time and ideas so generously, in particular Kevin Richards from the Waikato and Roger Barton from Federated Farmers. Thanks also to my excellent academic supervisors at Massey University, Professor Antonios Vitalis of the Department of Management Systems, and Dr Timothy Bentley of the Department of Management and International Business.

This PhD would not have been started without the inspiration provided by Tony Vitalis and Professor Byron Mikellides (Oxford School of Architecture), ΣοφήSplash και τον δόο πολύ ouzo; and the thesis would not have been finished without the help of my family and friends nor the support, enlightened collusion and relentless encouragement of colleagues Richard Parker, David Tappin, Liz Ashby, Marion Edwin and Sophie Hide at the Centre for Human Factors and Ergonomics.

Finally, to my children Scott, Logan and Kate; thanks for putting up with your old man - the ice creams are on me.
Table of contents

List of tables .. xii
List of figures .. xiv
Glossary of acronyms ... xvii

Chapter One. Introduction

1.1 Introduction ... 2
1.2 Problem statement ... 4
1.3 Safe Family Fun: a short history of quadbikes ... 5
 1.3.1 Usage ... 8
 1.3.2 Concerns with quadbikes ... 9
1.4 Approach of the research ... 13
 1.4.1 Systems approach .. 13
 1.4.2 Participatory methods .. 13
 1.4.3 Intervention development ... 14
1.5 Aims of the research .. 15
1.6 Structure of the thesis .. 16
1.7 Ethical considerations .. 18
 1.7.1 Working with ACC claims data .. 18
 1.7.2 Interviewing ACC claimants ... 19
 1.7.3 Conducting site visits and interview .. 19
Chapter Two. Literature review

2.1 Introduction ... 22
 2.1.1 Overview ... 22
 2.1.2 Review methods ... 25
 2.1.2.1 Process ... 25
 2.1.2.2 Search strategy .. 25
 2.1.2.3 Inclusion – exclusion criteria 27
 2.1.2.4 Potential sources of bias 27
 2.1.2.5 Sifting for relevant material 28

2.2 Quadbike LCE on New Zealand farms 30
 2.2.1 The scale of the problem in New Zealand 30
 2.2.1.1 Contradictions in perceptions and acceptance of risk ... 32
 2.2.2 Costs ... 34

2.3 The context and nature of quadbike LCE overseas 51

2.4 Interventions .. 57
 2.4.1 Interventions in New Zealand 58
 2.4.1.1 Intervention approaches 60
 2.4.2 Interventions for farm quadbike LCE overseas 62
 2.4.2.1 Intervention approaches 65

2.5 Discussion ... 67
 2.5.1 Scale ... 67
 2.5.2 The context and nature of LCE in New Zealand 67
 2.5.3 The context and nature of LCE overseas 69
 2.5.4 Interventions .. 70

2.6 Conclusions ... 72
Chapter Three. Epidemiological study

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>75</td>
</tr>
<tr>
<td>3.2 Methodology</td>
<td>76</td>
</tr>
<tr>
<td>3.2.1 General approach</td>
<td>76</td>
</tr>
<tr>
<td>3.2.2 ACC data</td>
<td>77</td>
</tr>
<tr>
<td>3.3 Findings</td>
<td>80</td>
</tr>
<tr>
<td>3.3.1 Employment status</td>
<td>80</td>
</tr>
<tr>
<td>3.3.2 Occupational group</td>
<td>80</td>
</tr>
<tr>
<td>3.3.3 Scene of incident</td>
<td>80</td>
</tr>
<tr>
<td>3.3.4 Region</td>
<td>81</td>
</tr>
<tr>
<td>3.3.5 Month of incident</td>
<td>82</td>
</tr>
<tr>
<td>3.3.6 Age and gender distribution</td>
<td>83</td>
</tr>
<tr>
<td>3.3.7 Diagnosis and body region injured</td>
<td>84</td>
</tr>
<tr>
<td>3.3.8 Activity immediately preceding the incident</td>
<td>84</td>
</tr>
<tr>
<td>3.3.9 Incident event sequences for major activity categories</td>
<td>85</td>
</tr>
<tr>
<td>3.3.10 Injury agency</td>
<td>88</td>
</tr>
<tr>
<td>3.3.11 Use of implements</td>
<td>88</td>
</tr>
<tr>
<td>3.4 Discussion</td>
<td>89</td>
</tr>
<tr>
<td>3.4.1 Limitations</td>
<td>93</td>
</tr>
<tr>
<td>3.5 Conclusions</td>
<td>94</td>
</tr>
</tbody>
</table>

Chapter Four. Context study

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>96</td>
</tr>
<tr>
<td>4.2 Methodology</td>
<td>98</td>
</tr>
<tr>
<td>4.2.1 Industry consultation</td>
<td>98</td>
</tr>
<tr>
<td>4.2.2 Data collection on farms where LCE have taken place</td>
<td>105</td>
</tr>
<tr>
<td>4.2.2.1 Design</td>
<td>105</td>
</tr>
<tr>
<td>4.2.2.2 Sample</td>
<td>106</td>
</tr>
<tr>
<td>4.2.2.3 Procedure</td>
<td>106</td>
</tr>
<tr>
<td>4.2.2.4 Quadbike assessment</td>
<td>108</td>
</tr>
<tr>
<td>4.2.3 Participatory methods</td>
<td>109</td>
</tr>
<tr>
<td>4.3 Findings</td>
<td>112</td>
</tr>
<tr>
<td>4.3.1 Tasks</td>
<td>113</td>
</tr>
<tr>
<td>4.3.1.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>4.3.1.2 Primary usage</td>
<td>113</td>
</tr>
<tr>
<td>4.3.1.2.1 Mustering, moving or checking stock</td>
<td>115</td>
</tr>
<tr>
<td>4.3.1.2.2 Fencing</td>
<td>118</td>
</tr>
<tr>
<td>4.3.1.2.3 Collecting cows for milking</td>
<td>120</td>
</tr>
<tr>
<td>4.3.1.2.4 Commuting and dog transport</td>
<td>123</td>
</tr>
<tr>
<td>4.3.1.2.5 Spraying chemicals</td>
<td>125</td>
</tr>
<tr>
<td>4.3.1.2.6 Maintenance tasks</td>
<td>129</td>
</tr>
<tr>
<td>4.3.1.2.7 Feeding out [dry matter]</td>
<td>131</td>
</tr>
<tr>
<td>4.3.1.2.8 Moving firewood with trailer</td>
<td>132</td>
</tr>
<tr>
<td>4.3.1.2.9 Checking irrigation systems</td>
<td>133</td>
</tr>
<tr>
<td>4.3.1.2.10 Calf feeding [wet] using 'calfeteria'</td>
<td>133</td>
</tr>
<tr>
<td>4.3.1.2.11 Spreading</td>
<td>133</td>
</tr>
<tr>
<td>4.3.1.2.12 Hunting and pest control</td>
<td>134</td>
</tr>
<tr>
<td>4.3.1.3 Designfortheratask</td>
<td>135</td>
</tr>
<tr>
<td>4.3.1.4 The economic importance of quadbikes to farmers</td>
<td>138</td>
</tr>
</tbody>
</table>
Chapter Four (4.3 Findings) continued

4.3.2 Quadbike users
- Introduction .. 141
- User population on the 53 farms 141
- National population and trends 141
- Employment status and gender 143
- Exposure ... 146
- Age and experience of users 147
- Training ... 148
- Adherence to manufacturers’ guidelines 149
- New rider induction .. 151
- Personal Protective Equipment 153

4.3.3 The quadbikes
- Introduction .. 155
- Age of quadbikes ... 155
- State of repair .. 157
- Modifications ... 161
- Trailers and other implements used with quadbikes ... 163
- Rollover protective structures 165

4.3.3.6 Trailers and other implements used with quadbikes 163

4.4 Discussion .. 168

4.5 Conclusions .. 174

Chapter Five

Loss of Control Event (LCE) investigations

5.1 Introduction .. 176

5.2 Background and theoretical approach 178

5.2.1 Causation theories 179
 5.2.1.1 The Domino Theory 179
 5.2.1.1.1 International Loss Control Institute (ILCI) Model ... 181
 5.2.1.2 Epidemiological models 181
 5.2.1.3 Human error models 183
 5.2.1.4 Interactive models 186

5.2.2 Problems with recall of events 190
 5.2.2.1 Optimising recall 192

5.3 Methodology .. 195

5.3.1 Sample design .. 195
 5.3.1.1 Recruitment 196
 5.3.1.2 Recency .. 198
 5.3.1.3 Severity .. 198

5.3.2 Site procedure .. 199
 5.3.2.1 Preliminaries 199
 5.3.2.2 Location of investigations 199
 5.3.2.3 Use of models 199
 5.3.2.4 Use of photography and sketches 202
 5.3.2.5 Use of video/audio 204
 5.3.2.6 Triangulation of data 304

5.3.3 Investigation method development 206
 5.3.3.1 Event charting 206
 5.3.3.2 Event charting and analysis design 208

5.3.4 Intervention development 212
 5.3.4.1 Intervention development approach 212
 5.3.4.2 Stepped iteration design 314
 5.3.4.3 Intervention matrix 215
 5.3.4.4 Iterative refinement 216
 5.3.4.5 Consultation on farm-specific action plans 216
Chapter Five continued...

5.4 Findings

5.4.1 Rider/individual factors

5.4.1.1 Employment status .. 219
5.4.1.2 Exposure ... 219
5.4.1.3 Gender ... 221
5.4.1.4 Age and experience .. 222
5.4.1.5 Injuries by types and body region 223
5.4.1.6 Isolation ... 224

5.4.2 Temporal and seasonal factors

5.4.2.1 Time of day ... 225
5.4.2.2 Time of year .. 226

5.4.3 Terrain/ground factors

5.4.3.1 Ground conditions ... 228
5.4.3.2 Terrain ... 229

5.4.4 Task-related factors

5.4.4.1 Activity immediately preceding the event 230
5.4.4.2 Ancillary implements attached during the LCE 233
5.4.4.3 Injury agency ... 235

5.4.5 Events

5.4.5.1 Event sequences ... 236

5.4.6 Risk factors

5.4.6.1 Risk factors in LCE involving animals 238
5.4.6.2 Risk factors in spraying 244
5.4.6.3 Risk factors in fencework 247

5.4.7 Risk factors in serious injury cases

5.4.7.1 Serious injury LCE event sequences 249
5.4.7.2 Common factors – haste and secondary visual tasking 252
5.4.7.3 Risk factor combinations and serious injury 253

5.4.8 Interventions

5.4.8.1 Introduction .. 255
5.4.8.2 Countermeasures ... 257
5.4.8.3 Pre-LCE (Primary) .. 258
5.4.8.4 During LCE (Secondary) and Post-LCE (Tertiary) 260
5.4.8.5 Task-specific interventions 261

5.5 Discussion

5.5.1 Investigation method 264
5.5.1.1 ACC records ... 266

5.5.2 Risk factors and event sequences 267
5.5.2.1 Rider/individual factors 267
5.5.2.2 Temporal and terrain/ground factors 269
5.5.2.3 Vehicle performance factors 270
5.5.2.4 Task-specific risk factors 273
5.5.2.4.1 Tasks involving interaction with animals 273
5.5.2.4.2 Spraying ... 273
5.5.2.4.3 Fencing ... 274
5.5.2.5 Serious injury LCE .. 275

5.5.3 Interventions .. 276

5.6 Conclusions .. 277
Chapter Six. Conclusions
6.1 Introduction ... 279
6.2 Review of key findings ... 281
 6.2.1 The scale and cost of the problem of loss of control events 281
 6.2.2 The context of quadbike LCE on New Zealand farms .. 283
 6.2.3 Development of the investigative methodology ... 286
 6.2.4 Risk factors for LCE and their interactions ... 289
 6.2.5 Interventions ... 295
6.3 Directions for future research ... 298
6.4 Contribution of the research ... 301
6.5 Conclusion .. 302

References .. 305
Bibliography ... 321
Appendices .. 329
I) Information and consent forms
II) Interview schedule for on-farm context study and LCE investigation chart template
III) Event Chart examples: mustering, spraying and fencing
IV) Conference and journal papers
List of Tables

Table 2.1 General inclusion and exclusion criteria. 27
Table 2.2 Comparison of the relative likelihood of death or injury from average quadbike usage and average car use. 31
Table 2.3 Incident outcomes by injury vehicle 1986-1991 (derived from data in Marshall et al. 1996). 33
Table 2.4 Total ATV-related entitlement claims by year. Source: ACC industry presentation 2004. 34
Table 2.5 Analysis of OSH investigation cases by scenario. 46
Table 2.6 Incidents reported in the New Zealand media 2001-2006. 50
Table 2.7 Comparisons of quadbike model types listed in marketing material. 52
Table 2.8 Interventions implemented for machines used in New Zealand farming. 58
Table 3.1 Activities immediately preceding the quadbike-related injury. 84
Table 4.1 Industry consultation – by system level. 99
Table 4.2 Industry consultation (by organisation, in alphabetical order). 101
Table 4.3 Modified Participatory Ergonomics Framework (PEF). 110
Table 4.4 User opinions on how to improve quadbike functionality. 136
Table 4.5 All quadbike users by gender by employment status. 144
Table 4.6 (Exposure) hours of quadbike riding per week. 146
Table 4.7 Age and experience of quadbike users. 147
Table 4.8 Quadbike training received by type. 148
Table 4.9 Induction strategies reported for new riders to the farm. 152
Table 4.10 Roll Over Protective Structures - types used. 165
Table 4.9 Summary of comments in favour of, and against, the use of ROPS. 167
Table 5.1 Basic Haddon matrix. 181
Table 5.2 Haddon 10 Countermeasures list. 182
Table 5.3 Sampling by regional groupings. 196
Table 5.4 Sources and main areas of intervention interest. 213
Table 5.5 Intervention matrix. 215
Table 5.6 Employment status of quadbike users. 219
Table 5.7 Hours of quadbike use per week. 220
Table 5.8 Gender of rider. 221
Table 5.9 Age and experience of all riders and those being seriously injured. 222
Table 5.10 Body region by injury types for all LCE (n=156). 223
Table 5.11 Serious LCE injuries by body region (n=37). 223
Table 5.12 Working in isolation and severity of injury. 224
Table 5.13 Activity immediately preceding the incident.
Table 5.14 Activity preceding LCE, in comparison to primary use of the quadbikes.
Table 5.15 Attitude of quadbike travel at time of LCE – by task.
Table 5.16 Implements in use during an LCE - by task.
Table 5.17 Direction of rollovers in serious injury cases – by terrain.
Table 5.18 Most common pairs of risk factors and severity of injury.
Table 5.19 Most common combinations of 3 factors in an LCE that appear in at least 5 LCE or 2 Serious injury cases (156 LCE in total).
Table 5.20 Findings summary - potential interventions.
Table 5.21 Haddon 10 Countermeasures list and potential interventions for farm quadbike LCE.
Table 5.22 Potential interventions that act Pre-LCE.
Table 5.23 Interventions for reducing severity of injury during and following an LCE.
Table 6.1 Directions for future research.
List of Figures

Figure 1.1 The original 1970s Honda ATV trike. 5
Figure 1.2 1976 model trike still being used for towing on the Coromandel peninsula, North Island. 5
Figure 1.3 Transtruck 6x6, still in use on a Canterbury farm. 6
Figure 1.4 Sports models such as this one are lighter and more manoeuvrable. 7
Figure 1.5 Early two-wheeled drive 250cc model – very easy to steer by comparison to heavier more recent 4WD quadbikes. 8
Figure 1.6 Late model 4WD Honda on a large South Island sheep station. 9
Figure 1.7 Diagram showing sequential progression of studies. 16

Figure 2.1 Total numbers and costs in NZ$ of new and ongoing ACC claims. 35
Figure 2.2 USA - hunting (Utility) model. 52

Figure 3.1. Regional distribution of claims and claim incidence rates by region. 81
Figure 3.2 Distribution of quadbike-related claims by month. 82
Figure 3.3 Age by sex distribution for quadbike-related claims. 83
Figure 3.4 Taxonomy of incident event sequences. 86
Figure 3.5 Taxonomies of getting on/off and manual handling injury events. 87
Figure 3.6 Cases involving trailers. 88

Figure 4.1 Primary task for which each quadbike is used. 114
Figure 4.2 Trailer modified to carry lambs in exposed hill country in Southland. Live ones in need of warmth are stowed in the cut-down plastic containers for transport back to the farmhouse. 116
Figure 4.3 Home-made containers for tools and materials. 117
Figure 4.4 Typical terrain for remote farm with previously un-ploughed grazing. East coast of Wairarapa, North Island. 117
Figure 4.5 The researcher demonstrating the system which allows the rider to place fencing support poles in the ground, without leaving the quadbike seat. 118
Figure 4.6 Home-made quadbike-mounted fencing system. 119
Figure 4.7 Quadbike that regularly crosses the public road. 122
Figure 4.8 Honda with home-made dog tray. 123
Figure 4.9 Typical small un-compartmented dog trailer. 124
Figure 4.10 CEDAX front mounted spray tank system with DIY spray hose extension using a domestic hose reel. The spray boom clips to the rear rack. 125
Figure 4.11 Promotional photo of a new boom spraying system provided by CDAX Ltd, but with fluid still located above the centre of gravity of the quadbike. 125
Figure 4.12 Promotional photo of a new boom spraying system by CDAX Ltd, with fluid weight loading onto the ground through trailer wheels.

Figure 4.13 Home-made stowage frame for the spray hose with exposed spikes that could cause very serious puncture-type injuries in a rollover.

Figure 4.14 Typical low-lying country in the North Island. The dredgings are pulled out by a digger and form the stop banks, making these ridges very unstable for riding on.

Figure 4.15 One tonne bale on a car trailer.

Figure 4.16 Taranaki quadbike with spotlight for shooting rabbits.

Figure 4.17 Number of other vehicles needed if quadbikes were unavailable.

Figure 4.18 Farm activity types in this study, in comparison to the 1999 Agricultural census findings.

Figure 4.19 Employment status.

Figure 4.20 Age distribution of all users by occupation percentage.

Figure 4.21 Personal Protective Equipment (PPE) worn.

Figure 4.22 Early model 250cc Kawasaki.

Figure 4.23 Age of working quadbikes.

Figure 4.24 Inspection of front wheel bearings for wear.

Figure 4.25 State of repair - all machines.

Figure 4.26 State of repair - machines over three years old.

Figure 4.27 Combination of modifications. Sheep and beef farm Otago.

Figure 4.28 Home-made ply sheet dog tray.

Figure 4.29 Modifications to the quadbikes.

Figure 4.30 Honda fitted with extended mudflaps. 270° bullbars and a custom-made weather cover using heavier gauge tubing than the retail versions.

Figure 4.31 The purposes of light trailers used with quadbikes.

Figure 4.32 Home-made T-Bar ROPS.

Figure 5.1 Model of Injury Causation for Forestry Work. (Redrawn from Slappendel, 1995:241.)

Figure 5.2 An information processing model for STF analysis. Redrawn from Bentley (submitted).

Figure 5.3 Key steps in Event Recall (adapted from Loftus & Ketchum, 1991).

Figure 5.4 Scale (1:32) model of Honda utility quadbike with trailer and trailed spreader hopper.

Figure 5.5 Scale (1:24) model of Yamaha quadbike with articulated rider.

Figure 5.6 Example of an LCE reconstruction using models and props, on a farm in the Auckland region.

Figure 5.7 South Island LCE site with analysis overlay sketch.

Figure 5.8 North Island LCE site with analysis overlay sketch.

Figure 5.9 Example sequence of events chart (redrawn from Haslam and Bentley, 1999).
Figure 5.10	Example events and causal factors chart (adapted from Haslam and Bentley, 1999).
Figure 5.11	Modified chart (sequence boxes only) with example data showing post-injury events.
Figure 5.12	Event and Causal Factors chart for **quadbike** LCE (example) final version.
Figure 5.13	Sequential progression of studies.
Figure 5.14	Hours of **quadbike** use (exposure) per week, by percentage.
Figure 5.15	LCE by severity and time of day.
Figure 5.16	Loss of Control Events by severity and time of year.
Figure 5.17	All LCE and those resulting in serious injuries by ground conditions.
Figure 5.18	All LCE and those resulting in serious injuries by terrain type.
Figure 5.19	LCE scenarios involving trailers (n=33).
Figure 5.20	Most common injury agencies (n=122).
Figure 5.21	Taxonomy of all events where machine was being ridden at the time of the LCE.
Figure 5.22	Taxonomy of events for LCE while doing tasks involving interaction with animals.
Figure 5.23	Interactive and information processing model of **quadbike** LCE on farms.
Figure 5.24	Interactive model showing risk factors in the 76 LCE involving animals.
Figure 5.25	Interactive model showing risk factors in the 10 spraying LCE.
Figure 5.26	Interactive model showing risk factors in the 10 fencing LCE.
Figure 5.27	Taxonomy of the 37 serious injury LCE sequences.
Figure 5.28	Key interventions (numbered) plotted on model for tasks involving interaction with animals.
Figure 5.29	Key interventions (numbered) plotted on model for spraying tasks.
Glossary of acronyms

The brief descriptions of the functions of the organisations are based on information provided on their websites as of August 2007.

ACC Accident Compensation Corporation http://www.acc.co.nz
A Crown entity that administers New Zealand's accident compensation scheme providing personal injury cover for all New Zealand citizens, residents and temporary visitors to New Zealand. In return people do not have the right to sue for personal injury, other than for exemplary damages. The ACC responsibilities include injury prevention, buying health and disability support services to treat, care for and rehabilitate injured people, and advising the New Zealand Government.

AGITO offer nationally recognised and New Zealand Qualifications Authority (NZQA) registered qualifications in industry sectors ranging from dairy, sheep and cattle to rural servicing, wool harvesting and water industry services.

A group formed as part of an ACC programme that brings together representatives and stakeholders from specific industry sectors with the aim of identifying common causes of injury and finding ways to reduce these within their sector.

ATV All Terrain Vehicle
The term 'all-terrain vehicle' is now used internationally to cover a range of open-topped motorised buggies and three-wheelers designed for off-road use. The American National Standards Institute (ANSI) defines an ATV as a single rider vehicle that travels on low pressure tyres, has a straddle seat and handlebars for steering rather than a wheel or other means. The four-wheeled versions are known as "quads" or "quadbikes" in New Zealand; "ATVs", "four-wheelers" or "quads" in Australia, the United States and English speaking Canada; and "quadrimotos", or more commonly "vehicules tout-terrain (VTT)" in French speaking countries. They are sometimes also bracketed as Off Highway Vehicles (OHV) or Off Road Vehicles (ORV).
CAA Civil Aviation Authority
 http://www.caa.govt.nz/
The New Zealand CAA establishes civil aviation safety and security standards, and monitors adherence to those standards. The CAA also carries out accident and incident investigations and collates this material to establish an industry-wide safety picture.

CPS Canadian Paediatric Society

CPSC Consumer Product Safety Commission (USA)
 http://www.cpsc.gov/
The U.S. Consumer Product Safety Commission is charged with protecting the public from unreasonable risks of serious injury or death from consumer products.

DoL Department of Labour
 New Zealand Government organisation. (See OSH below)

IEA International Ergonomics Association
 http://www.iea.cc/
A federation of ergonomics and human factors societies from around the world.

ILO International Labour Organisation
The International Labour Organization (ILO) is devoted to advancing opportunities for women and men to obtain decent and productive work in conditions of freedom, equity, security and human dignity. Its main aims are to promote rights at work, encourage decent employment opportunities, enhance social protection and strengthen dialogue in handling work-related issues.

LCE Loss of Control Event
LCE are defined for the purposes of this research as those situations where the riders on a moving vehicle find themselves unable to prevent either personal injury or damage to the machine from occurring.

LTSA Land Transport Safety Authority
 http://www.landtransport.govt.nz
LTSA is a Crown entity formed to promote land transport sustainability and safety, and allocate government funding for land transport.
MAF Ministry of Agriculture and Forestry
NZ Government Ministry

MSD Musculoskeletal disorders

NZCTU New Zealand Council of Trade Unions

NZIPS New Zealand Injury Prevention Strategy
http://www.nzips.govt.nz/
A government initiative to enhance the infrastructure that supports injury prevention activity. News, policy and injury statistics.

NZMDA New Zealand Motorcycle Distributors Association
Body representing quadbike dealers notably Honda, Kawasaki, Suzuki, and Yamaha.

NZQA New Zealand Qualifications Authority
http://www.nzqa.govt.nz/
The New Zealand Qualifications Authority quality-assures secondary and tertiary qualifications and education providers, evaluates overseas qualifications and administers the New Zealand Register of Quality Assured Qualifications and the National Qualifications Framework, including the NCEA

OSH Occupational Health and Safety
http://www.osh.govt.nz/
A section of the Department of Labour (DoL) which provides best practice information and guidance to assist New Zealand businesses with health and safety in the workplace. The Department of Labour also inspects workplaces to check on safety and health arrangements, investigates accidents at work, and makes sure employers and employees comply with health and safety legislation. We are responsible for regulating the storage and use of hazardous substances, explosives and dangerous goods, and for the safety of amusement devices.

PEF Participatory Ergonomics Framework
(Haines, Wilson, Vink & Koningsfeld, 2002: 324).

PPE Personal protective equipment
Boots, gloves, helmets, overalls, goggles etc.

ROPS Roll Over Protective Structures

TVNZ Television New Zealand

USC Unpredicted surface change
VTT Vehicules tout-terrain
French speakers version of ‘all-terrain vehicle’ (see ATV).

WOF Warrant of Fitness. Vehicle condition checks carried out by qualified mechanics to government-set standards. It is mandatory in New Zealand to hold a current warrant for road vehicles (renewed at 12 or 6 month intervals), not required for quadbikes.