Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
IRON AND VITAMIN A NUTRITION OF YOUNG AUCKLAND CHILDREN:
An Investigation into the Methods to Assess the Nutritional Status of Micro-Nutrients in 6-24 Month Olds.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Nutritional Science at Massey University

Shireen Wei Yuin Chua

1999
Abstract

This study validated a food frequency questionnaire specifically for identifying iron and vitamin A intake in thirty 6 to 24 month old children. Children were recruited using the cluster sampling technique, and stratified by ethnicity. Of the thirty children enrolled in this study, 7 (23%) were European, 6 (20%) Maori, 11 (36.7%) Pacific Island and 6 (20%) were of Other ethnic groups. From the results of this validation study, 24.19% (7 of 29) of children were iron deficient, 14% (4 of 29) had iron deficiency anaemia and 14% (4 of 29) had vitamin A deficiency.

This validation study compared a food frequency questionnaire against a four day weighed food record and the biochemical status obtained from a blood sample. The Spearman’s ranked correlation values from comparing the food frequency questionnaire administered in the first and second values ranged from 0.132 for chicken to 1 for iron supplements. The limits of agreement method by Bland and Altman tested for the reliability of the food frequency questionnaire and showed good agreement between the two administrations of the food frequency questionnaire. This method was also used to test the validity of this food frequency questionnaire by comparing the differences between the food frequency questionnaire and the four-day weighed food records.

The use of multiple regression analysis of variance was used to identify the contributing variables to iron deficiency, iron deficiency anaemia and vitamin A deficiency. The results of the regression analysis suggested a small significant contributor to the variance in predicting iron deficiency and iron deficiency
anaemia of these children was being Pacific Island and the mean daily iron intake obtained from the four-day weighed food records. The probability values ranged from 0.01 to 0.001 with the greatest level of significance found in the Pacific Island ethnic group.

These findings have important significance in future undertakings of dietary assessment in children and further developments of accurate and reliable dietary tools to assess mean nutrient intake in children.
Acknowledgements

My sincerest gratitude goes to the following people without whom this study would not be possible:

Dr. Clare Wall, for all her guidance, commitment and encouragement throughout this study.

Dr. Cameron Grant, and the Iron and Vitamin A Research group at Auckland Medical School and Starship hospital for their involvement and their support.

The care-givers and children involved in this study for their keen participation in this pilot study.

The Health Research Council for funding this study.

My parents and my brother for their faith in me.

To my family and friends who have practically supported and encouraged me throughout this study.

Finally, to my heavenly Father, for the inspiration and the passion.
Table of Contents

ABSTRACT .. II

ACKNOWLEDGEMENTS .. IV

TABLE OF CONTENTS .. V

LIST OF TABLES .. VIII

LIST OF FIGURES .. IX

LIST OF APPENDICES .. X

LIST OF ABBREVIATIONS ... XI

1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 3

2.1 Iron ... 8
 2.1.1 Biochemical Function of Iron ... 8
 2.1.2 Iron Homeostasis .. 9
 2.1.3 Sources of Iron in Food ... 11
 2.1.4 Functional Consequence of Iron deficiency ... 11

2.2 Vitamin A .. 16
 2.2.1 Biochemical Function of Vitamin A .. 16
 2.2.2 Vitamin A Homeostasis .. 20
 2.2.3 Sources of Vitamin A in Food ... 20
 2.2.4 Functional Consequences .. 21

2.3 Link between Iron and Vitamin A ... 23

2.4 Dietary Methodology .. 26
 2.4.1 Summary of Various Dietary Methodologies 26
 2.4.2 Issues of Reproducibility and Variability .. 30
 2.4.3 Dietary Assessment in Children ... 33
 2.4.5 The New Zealand Situation ... 36

2.6 Overall Conclusion and Inferences from the Review of the Literature 39
AIMS .. 40

METHODOLOGY ... 41

4.1 PARTICIPANTS AND METHODS ... 41
4.11 Subjects .. 41
4.12 Ethical Consent .. 41
4.13 Ethnicity of the Subjects .. 41
4.14 Selection Criteria ... 41

4.2 STUDY DESIGN ... 42
4.21 Recruitment Strategies .. 42
4.22 Cluster Sampling Technique ... 42
4.23 Stratification of Sample .. 43
4.24 Interview Process .. 44

4.3 MATERIALS AND METHODS .. 44
4.31 Food Frequency Questionnaire: ... 45
4.32 Weighed Food Records .. 47
4.33 Anthropometric Measurements ... 48
4.34 Blood Parameters of Iron and Vitamin A Status .. 49
4.35 General Questionnaire and Interview ... 50
4.37 Limitations and Feasibility of Study Design ... 51

4.4 STATISTICAL ANALYSIS .. 51
4.42 Determining the Availability of Dietary Iron .. 53
4.43 Regression Analysis .. 54

RESULTS .. 55

5.1 Characteristics of Subjects .. 55

5.2 Iron Status of Subjects ... 57

5.3 Vitamin A Status of Auckland Infants .. 58

5.4 Food and Nutrient Intake Estimations .. 59
5.41 Food frequency Questionnaire .. 59
5.42 Weighed Food Records .. 61
5.5 Availability of Iron ... 64
5.5 Statistical Relationships .. 66

DISCUSSION .. 75

6.1 METHODOLOGICAL ISSUES .. 76
6.11 Recruitment and Interviewing Issues .. 76

6.21 DIETARY ASPECTS .. 78
6.22 Data Analysis ... 83
6.23 Availability of Iron in Food ... 83

6.3 RESEARCH IMPLICATIONS ... 85

CONCLUSION ... 88
8. REFERENCE LIST ... 93

9. APPENDICES ... 104
| Table 1.1 | The Incidence of Iron Deficiency Anaemia in New Zealand | 4 |
| Table 5.1 | Characteristics of Subjects | 55 |
| Table 5.2 | Anthropometric Characteristics of the Study Sample | 56 |
| Table 5.3 | Biochemical Iron Status by Ethnicity | 57 |
| Table 5.4 | Incidence of Iron Deficiency and Iron Deficiency Anaemia by Ethnicity | 58 |
| Table 5.5 | Biochemical Vitamin A Status by Ethnicity | 58 |
| Table 5.6 | Incidence Vitamin A Deficiency by Ethnicity | 59 |
| Table 5.7 | The Food Frequency Patterns Per Percent Of Children | 60 |
| Table 5.8 | Mean Daily Nutrient Intake of Children | 63 |
| Table 5.9 | Mean Iron Intake and Available Iron by Ethnicity | 65 |
| Table 5.10 | Correlation Values of Some Foods from the Questionnaire | 66 |
| Table 5.11 | Multiple Regression of Haemoglobin with Mean Iron Intake and Ethnicity | 70 |
| Table 5.12 | Multiple Regression Of Haemoglobin with Log of Mean Iron Intake and Ethnicity | 71 |
| Table 5.13 | 95% Confidence Interval for the Odds Ratio for Iron Deficiency with Ethnicity and Mean Iron Intake | 72 |
| Table 5.14 | 95% Confidence Interval for Iron Deficiency Anaemia with Ethnicity and Mean Iron Intake | 74 |
List of Figures

Figure 2.1 The Prevalence and Severity of Vitamin A Deficiency as a Public Health Problem in the World ... 6
Figure 1.2 The Functions of Iron Containing Complexes and Enzymes......... 8
Figure 2.3 Changes in the Body During Infancy .. 10
Figure 2.4 Stages of Iron Deficiency .. 12
Figure 2.5 The Biochemical Pathway Involved in Vision 17
Figure 2.5 Different Stages in the Development of Xerophthalmia 9 21
Figure 4.2 Eating Patterns Section of the Food Frequency Questionnaire 46
Figure 4.3 Frequency of Foods Section of the Food Frequency Questionnaire ... 46
Figure 4.4 Quantitative Aspect of Food Frequency Questionnaire................. 47
Figure 5.1 The Percentage Energy Obtained from the 4 day Food Records .. 64
Figure 5.2 Bland-Altman Plot of the Frequency of Red Meat Consumption . 67
Figure 5.3 Bland-Altman Plot of Iron Intake and the Frequency of Red Meat Consumption ... 68
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Information Sheet</td>
</tr>
<tr>
<td>B</td>
<td>Consent Form</td>
</tr>
<tr>
<td>C</td>
<td>Four-day Weighed Food Records: Home Record Diary</td>
</tr>
<tr>
<td>D</td>
<td>Four-day Weighed Food Records: Eating Out Record Diary</td>
</tr>
<tr>
<td>E</td>
<td>Food Frequency Questionnaire</td>
</tr>
<tr>
<td>F</td>
<td>General Questionnaire and Show Cards</td>
</tr>
<tr>
<td>G</td>
<td>Anthropometric Recording Book</td>
</tr>
<tr>
<td>H</td>
<td>Training Manual</td>
</tr>
<tr>
<td>I</td>
<td>Estimation of the Bioavailability of Iron (Monsen's equation)</td>
</tr>
<tr>
<td>J</td>
<td>Bland-Altman Plots of this Validation Study</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA</td>
<td>Iron Deficiency Anaemia</td>
</tr>
<tr>
<td>VAD</td>
<td>Vitamin A Deficiency</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>RE</td>
<td>Retinol Equivalents</td>
</tr>
<tr>
<td>IU</td>
<td>International Units</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Surveys</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>WFR</td>
<td>Weighed Food Records</td>
</tr>
<tr>
<td>FFQ</td>
<td>Food Frequency Questionnaire</td>
</tr>
<tr>
<td>RDI</td>
<td>Recommended Dietary Intake</td>
</tr>
</tbody>
</table>