THE USE OF A GEOGRAPHIC INFORMATION SYSTEM TO INVESTIGATE SOIL SLIP DISTRIBUTION AND THE LAND USE CAPABILITY CLASSIFICATION IN THE EAST COAST REGION, NEW ZEALAND.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Applied Science in Soil Science at Massey University

SHERYL DENISE HENDRIKSEN

1995
ABSTRACT

The land of the North Island East Coast region has such a severe erosion problem that in some places the current land use cannot be sustained. The expansion of exotic forestry in the region will provide protection for the land, regional growth and development, and employment, but it also brings competition for good land.

The New Zealand Resource Management Act, 1991, aims to promote sustainable use of our resources and requires regulatory authorities to monitor the state of their natural resources and to follow the principles set in the RMA when developing land use policies.

Remotely sensed data provides a timely and accurate assessment of surface features. Aerial photography provides a better delineation of soil slip erosion than satellite imagery.

Geographic Information Systems facilitate the storage and display of resource information. Through manipulation of GIS data layers, relationships between the distribution of soil slip erosion following Cyclone Bola, 1988, and other physical factors are investigated. The density of soil slip increases with increasing slope angle to a maximum on slopes of 30°. The amount of soil slip depends on the underlying rock type with jointed mudstone having the highest density. Most soil slip erosion occurs on NE, N, NW, and E facing slopes, but the reason for this cannot be attributed to either slope angle or rock type.

The Land Use Capability classification is currently used by land use managers and planners to describe the land in terms of its limitation to productive uses. The detail of information in the New Zealand Land Resource Inventory LUC classification can be improved by incorporating more detailed slope angle and slope aspect information derived from digital contour data.
ACKNOWLEDGMENTS

I would like to thank Massey University and my supervisors Mr Mike Tuohy, Dr Vince Neall and Dr Alan Palmer for the opportunity to explore GIS, image analysis and the sustainability of present land uses in the East Coast.

I would also like to thank the Ministry of Research, Science and Technology for their study award that met the expenses of this project.

I am extremely grateful to Mr Trevor Freeman of the Gisborne District Council and Dr Mike Marden of Forest Research Institute, Gisborne who provided me with information and an appreciation of the uniqueness of the East Coast and its land use issues.

During the completion of this thesis I have received friendship and assistance from many more people than I can thank individually here. Among these are Mr Hoole of Emerald Hills station and Mr and Mrs Shanks of Ngamarua station who kindly allowed me to wander over their properties; the staff of Landcare, Massey; and all my fellow postgraduates who so willingly provided assistance and moral support.

Special thanks are owed to Mr Len Brown and Miss Jocelyn Young for their guidance in image analysis and GIS, and for their continued friendship, I would not have completed this thesis without them.

Once again, I thank my best friends; John, Gabrielle and Julian for sharing with me the tears and joys of this project.
CONTENTS

ABSTRACT ... ii
ACKNOWLEDGEMENTS .. iii
CONTENTS ... iv
LIST OF FIGURES .. viii
LIST OF TABLES ... x

CHAPTER I:

INTRODUCTION
1.1 INTRODUCTION ... 1
1.2 OBJECTIVES OF THIS STUDY 2

CHAPTER II:

HISTORY OF LAND USE, POLICIES AND ASSOCIATED PROBLEMS IN THE EAST COAST REGION
2.1 INTRODUCTION ... 5
2.2 SETTLEMENT AND LAND CLEARANCE 8
2.3 ACCELERATED EROSION .. 9
2.4 CONFRONTING THE EROSION 9
2.5 THE TAYLOR REPORT ... 11
2.6 THE EAST COAST PROJECT, 1970 12
2.7 THE RED REPORT .. 12
2.8 PRODUCTION FOREST DEVELOPMENT 14
2.9 CYCLONE BOLA ... 15
2.10 EROSION CONTINUES .. 18
2.11 LAND USE INCENTIVES ... 19
 2.11.1 Agricultural Incentives 19
 2.11.2 Forestry Incentives 20
2.12 EAST COAST PROJECT CONSERVATION FORESTRY
SCHEME, 1990 ... 20
CHAPTER III:
DESCRIPTION OF THE STUDY AREA

3.1 FEATURES OF THE STUDY AREA

3.2 PHYSIOGRAPHY

3.2.1 Tectonic Setting

3.2.2 Geological Structure of the Te Arai River catchment

3.2.3 Lithologies of the Te Arai River catchment

3.2.4 Tephra cover in the Te Arai River catchment

3.2.5 Soils of the Te Arai River catchment

3.3 CLIMATE

3.4 EROSION IN THE TE ARAI RIVER CATCHMENT

CHAPTER IV:
DATA COLLECTION

4.1 INTRODUCTION

4.2 EXISTING DATA SETS

4.3 FIELD SURVEYS

4.4 TOPOGRAPHIC DATA

4.5 REMOTELY SENSED INFORMATION

4.5.1 Satellite Imagery

4.5.2 Aerial Photography

4.6 SPATIAL CORRELATION OF DATA FROM VARIOUS SOURCES

CHAPTER V:
DIGITAL IMAGE ANALYSIS

5.1 INTRODUCTION

5.2 THEORY AND PREVIOUS RESEARCH

5.3 DETERMINATION OF CYCLONE BOLA SOIL SLIPS

5.3.1 Cyclone Bola soil slips derived from Satellite Imagery

5.3.2 Cyclone Bola soil slips derived from Aerial Photography
CHAPTER VI:

INVESTIGATING THE CHARACTERISTICS OF SOIL SLIP DISTRIBUTION USING A GEOGRAPHIC INFORMATION SYSTEM

6.1 INTRODUCTION

6.2 PREVIOUS WORK

6.2.1 Aspect

6.2.2 Slope Angle

6.2.3 Lithology

6.3 METHODOLOGY

6.4 RESULTS AND DISCUSSION

6.4.1 Slope Aspect

6.4.2 Slope Angle

6.4.3 Slope Angle per Aspect

6.4.4 Rock Type

6.4.5 Slope Angle per Rock Type

6.4.6 Rock Type per Slope Aspect

6.5 DISCUSSION

CHAPTER VII:

LAND USE CAPABILITY MAPPING

7.1 INTRODUCTION

7.2 LAND USE CAPABILITY MAPPING IN NEW ZEALAND

7.2.1 New Zealand Land Resource Inventory

7.2.2 Gisborne District Council Erosion Categories

7.3 THE SUITABILITY OF THE LUC CLASSIFICATION FOR DESCRIBING LAND WHICH IS PRONE TO SOIL SLIP EROSION

7.4 LUC MAPPING USING THE GIS
7.4.1 Revised LUC mapping using NZLRI lithology and erosion, and TIN generated slope angles 95
7.4.2 Updating the revised LUC units using TIN generated slope aspect information 100
7.5 DISCUSSION 105

CHAPTER VIII:
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK
8.1 CONCLUSIONS 107
8.2 SUGGESTIONS FOR FUTURE WORK 110

REFERENCES 112

APPENDIX 1 123
LIST OF FIGURES

Figure	Description	Page
1.1 | The location of this study in the East Coast Region, North Island, New Zealand | 3 |
1.2 | Emerald Hills station in the Te Arai River catchment | 4 |
2.1 | The distribution of rainfall during Cyclone Bola in the Te Arai catchment compared with the average annual rainfall | 17 |
3.1 | Geologic structure of the Te Arai River catchment, from Brown (1961). | 26 |
3.2 | The geology of Emerald Hills station mapped from field survey compared with the lithology information available on the farm plan | 28 |
3.3 | The Te Arai syncline in crushed mudstone with jointed mudstone on the right tilted up towards the east | 29 |
3.4 | To the west of the Te Arai syncline the banded mudstone and sandstone is tilted up towards the west | 29 |
3.5 | Faults are observed in bands of crushed mudstone | 30 |
3.6 | Three tephras are found on the broader ridges and shoulders. The Waiohau ash overlying Mudstone indicates that no soil parent material in the area is older than 11,200 years. The colluvium between the Waiohau and the Waimihia infers the instability of that period. | 33 |
3.7 | Areas on Emerald Hills station where all three tephras may be found | 33 |
3.8 | Earthflow erosion on Emerald Hills station | 37 |
3.9 | Gully infilling following Cyclone Bola | 37 |
3.10 | Soil slip erosion following Cyclone Bola | 38 |
4.1 | Slope angles on Emerald Hills station derived from 20m digital contour data | 42 |
4.2 | Slope aspects on Emerald Hills station derived from 20m digital contour data | 43 |
5.1 | Satellite image of Emerald Hills station, registered to NZ metric grid | 53 |
5.2(a) | A sample area from the satellite image | 54 |
5.2(b) | Satellite image (a) with areas classified as bare ground overlaid | 54 |
5.3 | Sample area from aerial photography (a), and the results of classification of the photograph scanned at 10m (b), 5m (c) and 1m (d) resolution | 57 |
5.4(a) | A sample area from aerial photograph scanned at 10m resolution | 58 |
5.4(b) | Aerial photograph(a) with areas classified as bare ground overlaid | 58 |
5.5 | A comparison of soil slip erosion derived from (a) satellite imagery and (b) aerial photography | 59 |
6.1 | Overlay ('intersection') procedures to provide soil slip per landscape feature information | 71 |
6.2 | Overlay ('Union') procedures and associated database polygon attribute tables | 71 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>The distribution of slope aspects on Emerald Hills station</td>
<td>73</td>
</tr>
<tr>
<td>6.4</td>
<td>The extent of soil slip in each slope aspect</td>
<td>73</td>
</tr>
<tr>
<td>6.5</td>
<td>The distribution of slope angles on Emerald Hills station</td>
<td>74</td>
</tr>
<tr>
<td>6.6</td>
<td>The distribution of soil slip per slope angle class</td>
<td>75</td>
</tr>
<tr>
<td>6.7</td>
<td>The distribution of slope class per slope aspect</td>
<td>76</td>
</tr>
<tr>
<td>6.8</td>
<td>The density of soil slip on Slope*Aspect class</td>
<td>77</td>
</tr>
<tr>
<td>6.9</td>
<td>The distribution of rock types on Emerald Hills station</td>
<td>78</td>
</tr>
<tr>
<td>6.10</td>
<td>The density of soil slip per rock type</td>
<td>78</td>
</tr>
<tr>
<td>6.11</td>
<td>The distribution of slope angle per rock type</td>
<td>79</td>
</tr>
<tr>
<td>6.12</td>
<td>The distribution of rock type per slope aspect</td>
<td>81</td>
</tr>
<tr>
<td>7.1</td>
<td>A comparison of LUC mapping for Emerald Hills station on the NZLRI and on the GDC farm plan</td>
<td>89</td>
</tr>
<tr>
<td>7.2</td>
<td>The distribution of soil slip per LUC unit</td>
<td>90</td>
</tr>
<tr>
<td>7.3</td>
<td>A comparison of slope information for areas mapped as Vle3</td>
<td>92</td>
</tr>
<tr>
<td>7.4</td>
<td>A comparison of the revised LUC mapping with the NZLRI</td>
<td>98</td>
</tr>
<tr>
<td>7.5</td>
<td>A comparison of the revised LUC mapping with the GDC farm plan</td>
<td>99</td>
</tr>
<tr>
<td>7.6</td>
<td>A comparison of the LUC mapping further updated by the inclusion of slope aspect information with the farm plan</td>
<td>101</td>
</tr>
<tr>
<td>7.7</td>
<td>GDC farm plan LUC units are assigned in relation to landforms whereas the GIS method assigns them according to set criteria for lithology, slope and erosion</td>
<td>102</td>
</tr>
<tr>
<td>7.8</td>
<td>The distribution of Cyclone Bola soil slip on the revised LUC map</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>History of the development and land use policies of the East Coast</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Description of Gisborne District Council Erosion Categories</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Tephra deposited in the Gisborne region, from Pullar (1973)</td>
<td>31</td>
</tr>
<tr>
<td>6.1</td>
<td>Calculation of the areal extent of each aspect which was affected by soil slip during Cyclone Bola, 1988</td>
<td>72</td>
</tr>
<tr>
<td>6.2</td>
<td>The extent of jointed, banded and massive mudstone per slope aspect</td>
<td>82</td>
</tr>
<tr>
<td>7.1</td>
<td>The Gisborne-East Coast region LUC classification description of the Units used in the revised schedule (below)</td>
<td>94</td>
</tr>
<tr>
<td>7.2</td>
<td>Revised description of LUC units used in this study</td>
<td>95</td>
</tr>
<tr>
<td>7.3</td>
<td>Description of the LUC units mapped on the GDC farm plan</td>
<td>97</td>
</tr>
</tbody>
</table>