The effect of applications of different nitrogen types and potassium on seed quality and AR37 endophyte presence at different spikelet and floret positions of perennial ryegrass cv. Halo

A thesis presented in partial fulfilment of the requirements for the degree of Master of AgriScience in Seed Science and Technology at Massey University, Palmerston North, New Zealand

Muyu Wang

2014
Abstract

Nitrogen has been considered as an important nutrient in the terrestrial system. In the seed production of ryegrasses, one of the most popular pastures used in New Zealand and other temperate-zone areas, the application of nitrogen is responsible for improving seed yield and seed quality. Novel fungal endophytes are also now commonly used in perennial ryegrass pasture systems. The effect of different forms of nitrogen on seed quality and endophyte infection frequency and alkaloid concentration including spikelet/floret positional effects is also of interest to researchers. This study was designed to determine the effects of three nitrogen forms and potassium treatments (six in total) on the seed quality (purity, thousand seed weight (TSW), and germination) and AR37 endophyte presence in the offspring seedlings of the perennial ryegrass cv. Halo at three spikelet positions (top, middle and bottom). Also the effect of two nitrogen forms (nitrate and ammonium) at different floret positions was investigated.

The two nitrogen forms (urea and nitrate) with potassium had a poorer seed quality compared with the control and all nitrogen treatments applied without potassium. Nitrogen application (any form by itself) did not affect TSW of ‘Halo’, but a reduction was found under urea or nitrate with potassium. Also, seed germination percentages were not affected by nitrogen type when compared with the control, but urea with potassium gave a lower germination than the three nitrogen forms alone; and nitrate with potassium was lower than just the urea treatment. In the purity test, urea applied alone had a higher pure seed percentage than the control and the other nitrogen forms applied alone, but, again, the nitrogen with potassium application had the poorest performance in the test. On the other hand, none of these seed quality parameters differed among the three spikelet positions (top, middle and bottom). Both nitrogen and potassium application and different spikelet positions did not affect endophyte content in the offspring seedlings of ‘Halo’.

In the minor experiment, where seven floret positions and only two nitrogen forms (ammonium (NH_4^+) and nitrate (NO_3^-)) were compared, the individual seed weights
of Halo in florets 3, 4, and 7 under nitrate application were higher than that under ammonium. The seed weight in floret 7 was the only position lower than floret 1 and 2 when ammonium was applied. The germination percentages were not affected by the two nitrogen forms, nor were different floret positions. Further, nitrogen application also did not alter empty seed percentages (in frequency), but the basal florets produced less empty seeds. Differences in endophyte content between ammonium and nitrate applications were found only in floret position 1 where nitrate reduced endophyte. Also amongst florets under nitrate there was higher endophyte content in floret positions 2, 4 and 7.
I would firstly like to thank my supervisors, Mr Craig McGill and Mr Robert Southward, for their feedback, advice and constructive criticism throughout this study.

I would also like to thank Dr Phil Rolston and all the staff at AgResearch Lincoln, Canterbury, for kindly allowing me to use seed from their trials as my experimental material and for their much appreciated assistance.

Thanks to Dr Stuart Card and all the staff at AgResearch Grasslands, Palmerston North, for kindly guiding and allowing me to carry out a major part of the experiments (endophyte testing) on their premises and for their appreciated assistance.

I would also like to thank Mrs Kay Sinclair, Institute of Agriculture and Environment, Massey University, for her assistance with the experiments.

Finally, a special thank you to my family for their support throughout this study and thanks to Minshu Xu, my girlfriend, for her patience and assistance with the experiments.
Acknowledgements
Table of contents

Abstract ... i
Acknowledgements ... iii
Table of contents .. v
List of Figures .. xi
List of Tables .. xiii
Chapter 1. Introduction .. 1
 1.1. Research background ... 1
 1.2. Research objectives .. 2
Chapter 2. Literature review ... 3
 2.1. Ryegrass .. 3
 2.1.1. Significance of ryegrass .. 3
 2.1.2. Ryegrass species .. 4
 2.2. Perennial ryegrass .. 6
 2.2.1. Vegetative description ... 6
 2.2.2. Reproductive description .. 7
 2.2.3. Ryegrass physiology ... 8
 2.2.4. Ploidy level .. 8
 2.2.5. Cultivars .. 9
 2.2.6. Heading date .. 10
 2.3. Tall fescue .. 11
 2.4. Endophytes ... 12
 2.4.1. Importance in pasture .. 12
 2.4.2. Detection of Endophytes .. 14
 2.4.3. Commercially available novel endophytes ... 14
 2.5. Nutrients and nutrient cycle .. 16
 2.5.1. Nitrogen ... 16
 2.5.2. Potassium ... 18
 2.6. Nitrogen and its effect on endophytes .. 18
 2.7. Seed quality and floret and spikelet position ... 20
 2.7.1. Introduction .. 20
 2.7.2. Nitrogen and seed production ... 22
 2.7.3. Seed weight .. 24
 2.7.4. Germination .. 25
Chapter 3. Materials and methods .. 29
 3.1. Seed production ... 29
 3.2. Seed processing ... 30
 3.3. Effect of nitrogen forms with and without potassium and spikelet positions on seed quality .. 31
 3.3.1. Quality Assessment Protocols ... 32
 3.3.1.1. Purity ... 32
 3.3.1.2. Thousand seed weight (TSW) ... 32
 3.3.1.3. Germination .. 33
 3.4. Effect of nitrogen forms and floret positions on seed quality 35
 3.5. Effect of nitrogen forms and spikelet positions on endophyte 37
 3.5.1. Immunoblot detection of endophyte ... 37
 3.5.1.1. Growing the seedlings for the assay ... 37
 3.5.1.2. Blotting the endophyte ... 38
 3.5.1.3. Staining the endophyte ... 39
 3.6. Data analysis ... 40
Chapter 4. Results.. 43

4.1. Effect of nitrogen forms and spikelet positions on seed quality and endophyte presence .. 43

4.1.1. Thousand seed weight ... 43
4.1.2. Germination percentage ... 44
4.1.3. Purity .. 47
4.1.4. Endophyte presence .. 50

4.2. Effect of nitrogen forms and floret position on seed quality and endophyte transmission .. 50

4.2.1. Individual seed weight .. 50
4.2.2. Empty seed percentage ... 51
4.2.3. Germination percentage ... 51
4.2.4. Endophyte presence .. 52

Chapter 5. Discussion ... 53

5.1. Effect of nitrogen form and potassium and spikelet position on seed quality and endophyte presence .. 53

5.1.1. Thousand seed weight .. 53
5.1.2. Nitrogen form and potassium and spikelet position effect on germination 54
5.1.3. Nitrogen form and potassium and spikelet position effects on seed purity 55
5.1.4. Seedling endophyte levels .. 56

5.2. Effect of two nitrogen forms, NH4^+ and NO3^- and floret position on seed quality and endophyte presence ... 57

5.2.1. Individual seed weight .. 57
5.2.2. Effect of NH4^+ and NO3^- and floret position on empty seed percentage 58
5.2.3. Effect of NH4^+ and NO3^- and floret position on germination 58
5.2.4. Seedling endophyte levels .. 59

Chapter 6. Conclusion .. 61

Chapter 7. Recommendations .. 63

Chapter 8. References ... 65

Chapter 9. Appendices ... 77

9.1. Field plot number of 3 replicates in relative to 6 N treatments referred in table 4 77
9.2. Timing of the spikelet germination experiment ... 77
9.3. Statistical results ... 78

9.3.1. Thousand seed weight (TSW) test: Tukey's Studentized Range (HSD) Test for different nitrogen and potassium treatments ... 78
9.3.2. Thousand seed weight (TSW) test: Goodness-of-Fit tests for Normal Distribution for different nitrogen and potassium treatments .. 78
9.3.3. Thousand seed weight test: Bonferroni (Dunn) t Tests for rankweight for top, middle, and bottom spikelet positions ... 78
9.3.4. Germination test (transformed): Tukey's Studentized Range (HSD) Test for different nitrogen and potassium treatments ... 79
9.3.5. Germination test (transformed): Goodness-of-Fit tests for Normal Distribution for different nitrogen and potassium treatments .. 79
9.3.6. Germination test (transformed): Tukey's Studentized Range (HSD) Test for top, middle, and bottom spikelet positions ... 79
9.3.7. Germination test (transformed): Goodness-of-Fit tests for Normal Distribution for top, middle, and bottom spikelet positions .. 80
9.3.8. Germination test (transformed) (Dead seed): Tukey's Studentized Range (HSD) Test for different nitrogen and potassium treatments .. 80
9.3.9. Germination test (transformed) (Dead seed): Goodness-of-Fit tests for Normal Distribution for different nitrogen and potassium treatments 81
9.3.10. Germination test (transformed) (Dead seed): Tukey's Studentized Range (HSD) Test for top, middle, and bottom spikelet positions 81
9.3.11. Germination test (transformed) (Dead seed): Goodness-of-Fit tests for Normal Distribution for top, middle, and bottom spikelet positions 81
9.3.12. Germination test (transformed) (Abnormal seedling): Tukey's Studentized Range (HSD) Test for different nitrogen and potassium treatments 82
9.3.13. Germination test (transformed) (Abnormal seedling): Goodness-of-Fit tests for Normal Distribution for different nitrogen and potassium treatments 82
9.3.14. Germination test (transformed) (Abnormal seedling): Tukey's Studentized Range (HSD) Test for top, middle, and bottom spikelet positions 82
9.3.15. Germination test (transformed) (Abnormal seedling): Goodness-of-Fit tests for Normal Distribution for top, middle, and bottom spikelet positions 82
9.3.16. Purity test (transformed) (pure seed): Tukey's Studentized Range (HSD) Test for different nitrogen and potassium treatments 83
9.3.17. Purity test (transformed) (pure seed): Goodness-of-Fit tests for Normal Distribution for different nitrogen and potassium treatments 83
9.3.18. Purity test (transformed) (pure seed): Bonferroni (Dunn) t Tests for top, middle, and bottom spikelet positions .. 84
9.3.19. Purity test (transformed) (empty seed): Tukey's Studentized Range (HSD) Test for different nitrogen and potassium treatments 84
9.3.20. Purity test (transformed) (empty seed): Goodness-of-Fit tests for Normal Distribution for different nitrogen and potassium treatments 85
9.3.21. Purity test (transformed) (empty seed): Bonferroni (Dunn) t Tests for top, middle, and bottom spikelet positions .. 85
9.3.22. Purity test (transformed) (ergot): Tukey's Studentized Range (HSD) Test for different nitrogen and potassium treatments ... 86
9.3.23. Purity test (transformed) (ergot): Goodness-of-Fit tests for Normal Distribution for different nitrogen and potassium treatments 87
9.3.24. Purity test (transformed) (ergot): Bonferroni (Dunn) t Tests for top, middle, and bottom spikelet positions .. 87
9.3.25. Endophyte presence test: Tukey's Studentized Range (HSD) Test for different nitrogen and potassium treatments ... 88
9.3.26. Endophyte presence (transformed) test: Goodness-of-Fit tests for Normal Distribution for different nitrogen and potassium treatments 88
9.3.27. Endophyte presence (transformed) test: Bonferroni (Dunn) t Tests for top, middle, and bottom spikelet positions .. 88
9.3.28. Individual seed weight test: Tukey's Studentized Range (HSD) Test for floret 1 .. 89
9.3.29. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for floret 1 .. 89
9.3.30. Individual seed weight test: Tukey's Studentized Range (HSD) Test for floret 2 .. 89
9.3.31. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for floret 2 .. 90
9.3.32. Individual seed weight test: Tukey's Studentized Range (HSD) Test for floret 3 .. 90
9.3.33. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for floret 3 .. 90
9.3.34. Individual seed weight test: Tukey's Studentized Range (HSD) Test for floret 4 .. 90
9.3.35. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for floret 4 .. 91
9.3.36. Individual seed weight test: Tukey's Studentized Range (HSD) Test for floret 5 .. 91
9.3.37. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for floret 5 ... 91
9.3.38. Individual seed weight test: Tukey's Studentized Range (HSD) Test for floret 6 .. 92
9.3.39. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for floret 6 ... 92
9.3.40. Individual seed weight test: Tukey's Studentized Range (HSD) Test for floret 7 .. 92
9.3.41. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for floret 7 ... 93
9.3.42. Individual seed weight test: Tukey's Studentized Range (HSD) Test for different floret positions under NO₃ application 93
9.3.43. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for different floret positions under NO₃ application 94
9.3.44. Individual seed weight test: Tukey's Studentized Range (HSD) Test for different floret positions under NH₄⁺ application 94
9.3.45. Individual seed weight test: Goodness-of-Fit tests for Normal Distribution for different floret positions under NH₄⁺ application 94
9.3.46. Empty seed test: Chi-square test: two-way frequency table for NH₄⁺ vs NO₃ application for each floret position .. 96
9.3.47. Empty seed test: Chi-square test: two-way frequency table for different floret positions under NH₄⁺ application .. 96
9.3.48. Empty seed test: Chi-square test: two-way frequency table for different floret positions under NO₃ application .. 97
9.3.49. Empty seed test: Chi-square test: two-way frequency table for floret 2 and 4 under NO₃ application .. 97
9.3.50. Empty seed test: Chi-square test: two-way frequency table for floret 2 and 5 under NO₃ application .. 98
9.3.51. Empty seed test: Chi-square test: two-way frequency table for floret 2 and 6 under NO₃ application .. 99
9.3.52. Empty seed test: Chi-square test: two-way frequency table for floret 2 and 7 under NO₃ application .. 100
9.3.53. Empty seed test: Chi-square test: two-way frequency table for floret 3 and 6 under NO₃ application .. 101
9.3.54. Germination test (normal seeding): Chi-square test: two-way frequency table for NH₄⁺ vs NO₃ application for each floret position 101
9.3.55. Germination test (dead seed): Chi-square test: two-way frequency table for NH₄⁺ vs NO₃ application for each floret position 102
9.3.56. Germination test (abnormal seeding): Chi-square test: two-way frequency table for NH₄⁺ vs NO₃ application for each floret position 102
9.3.57. Germination test (normal seeding): Chi-square test: two-way frequency table for different floret positions under NH₄⁺ application 102
9.3.58. Germination test (normal seeding): Chi-square test: two-way frequency table for different floret positions under NO₃ application 103
9.3.59. Germination test (dead seed): Chi-square test: two-way frequency table for different floret positions under NH₄⁺ application 104
9.3.60. Germination test (dead seed): Chi-square test: two-way frequency table for different floret positions under NO₃ application 104
9.3.61. Germination test (abnormal seeding): Chi-square test: two-way frequency table for different floret positions under NH₄⁺ application 104
9.3.62. Germination test (abnormal seeding): Chi-square test: two-way frequency table for different floret positions under NO₃ application 105
9.3.63. Endophyte presence test: Chi-square test: two-way frequency table for NH₄⁺ vs NO₃ for each floret position .. 105
9.3.64. Endophyte presence test: Chi-square test: two-way frequency table for NH$_4^+$ and NO$_3^-$ in floret 1 .. 105
9.3.65. Endophyte presence test: Chi-square test: two-way frequency table for different floret positions under NH$_4^+$ application .. 106
9.3.66. Endophyte presence test: Chi-square test: two-way frequency table for different floret positions under NO$_3^-$ application ... 106
9.3.67. Endophyte presence test: Chi-square test: two-way frequency table for floret 1 and 2 under NO$_3^-$ application .. 107
9.3.68. Endophyte presence test: Chi-square test: two-way frequency table for floret 1 and 4 under NO$_3^-$ application .. 108
9.3.69. Endophyte presence test: Chi-square test: two-way frequency table for floret 1 and 7 under NO$_3^-$ application .. 109
9.3.70. Endophyte presence test: Chi-square test: two-way frequency table for floret 3 and 4 under NO$_3^-$ application ... 110
List of Figures

Figure 1. Components of a perennial ryegrass (Stewart et al., 2014) .. 6
Figure 2. The inflorescence (a), spikelet and floret (b) and seed (c) of perennial ryegrass (Hannaway et al., 1999) ... 7
Figure 3. Life cycle of Epichloë endophyte from Schardl et al. (2009) 12
Figure 4. The utilization of nitrogen fertilizer and the soil nitrogen cycle (Robertson & Groffman, 2007) .. 17
Figure 5. Perennial ryegrass ‘Grasslands Samson’ seed yield responses to applied irrigation (Chynoweth et al., 2012) .. 22
Figure 6. Effect of seed position on seed dry weight of Lolium perenne from Warringa et al. (1998b) where ◊ and ♦ represent a cultivar of L. perenne Magella while ◊ and ○ represent a cultivar Barlet; ◊, O, 100% light; ♦, ●, 25% light .. 25
Figure 7. Germination percentages of seed of Eremopyrum distans from three floret positions (groups 1, 2 and 3) germinated under a range of light and temperature regimes and after different lengths of seed storage. Germination percentages with the same letter are not significantly different (Wang et al., 2010) .. 26
Figure 8. Floret/seed position in a spikelet (Wang et al., 2010) .. 27
Figure 9. (a) Hand rubbing; (b) Metal sieves; (c) South Dakota blower 31
Figure 10. Examples of normal and abnormal seedlings of L. perenne (from Don, 2009). Note: Normal seedlings (left in (a), (b), (c), and (d)), abnormal seedlings (middle and right in (a), (b), (c), and (d)) .. 34
Figure 11. Germination blotter marked up to show floret number (2) and spikelet numbers (1-25) ... 36
Figure 12. Combined germination blotter and grid to prevent seeds moving from their labelled grid position on the blotter; the grid was held in place by two rubber bands .. 36
Figure 13. Proportional components of potting medium. Note: 4 kg/2000 litres 3-4 month Osmocote fertiliser was also included in the mix .. 38
Figure 14. Top and bottom views of a stamp with 96 stations, used to sow seeds or seedlings into seedling trays for later immunoblot analysis ... 38
Figure 15. Lolium plants kept outside the glasshouse at AgResearch Grasslands, Palmerston North in case needed for endophyte reassessment ... 40
Figure 16. Mean thousand seed weight for six nitrogen and potassium treatments with the standard error (bar) for each treatment mean. Note: T1 = nil, T2 = urea, T3 = urea with K, T4 = NH4+, T5 = NO3, T6 = NO3- with K 43
Figure 17. Mean of germination for six nitrogen and potassium treatments with the standard error (bar) for each treatment mean. Note: T1 = nil, T2 = urea, T3 = urea with K, T4 = NH4+, T5 = NO3, T6 = NO3- with K ... 44
Figure 18. Mean of dead seed percentage for six nitrogen and potassium treatments with the standard error (bar) for each treatment mean. Note: T1 = nil, T2 = urea, T3 = urea with K, T4 = NH4+, T5 = NO3, T6 = NO3- with K 45
Figure 19. Mean pure seed percentage for six nitrogen and potassium treatments with the standard error (bar) for each treatment mean. Note: T1 = nil, T2 = urea, T3 = urea with K, T4 = NH4+, T5 = NO3, T6 = NO3- with K 47
Figure 20. Mean of empty seed percentage for six nitrogen and potassium treatments with the standard error (bar) for each treatment mean. Note: T1 = nil, T2 = urea, T3 = urea with K, T4 = NH4+, T5 = NO3, T6 = NO3- with K 48
Figure 21. Mean of ergot percentage for six nitrogen and potassium treatments with the standard error (bar) for each treatment mean. Note: T1 = nil, T2 = urea, T3 = urea with K, T4 = NH4+, T5 = NO3, T6 = NO3- with K 49
Figure 22. Mean individual seed weight of Halo under NH4⁺ and NO3⁻ application in seven different floret positions with standard error (bar) for each treatment mean and floret position ... 51
List of Tables

Table 1. Alkaloid profile of endophytes available in ryegrass cultivars sold in New Zealand.. 15
Table 2. Effect of nitrogen applied on endophyte infection and alkaloid concentration in seed (Stewart, 1986).. 19
Table 3. Average seed dry weight of perennial ryegrass seed from different locations (proximal, central and distal floret position) within a spikelet (Warringa et al., 1998a) .. 24
Table 4. Nitrogen and potassium treatments applied to a 2012-2013 season AR37 endophyte infected perennial ryegrass cv. Halo seed crop at Lincoln, Canterbury..... 29
Table 5. The acceptable defects of normal seedlings of Lolium spp. (Don, 2009).............. 35