Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
GRAPPLING WITH COMPLEXITY:
FINDING THE CORE PROBLEMS BEHIND
AIRCRAFT ACCIDENTS

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Aviation

at Massey University, Palmerston North, New Zealand

Dmitri Victorovitch Zotov

2006
Abstract

The purpose of accident investigation is the discovery of causal factors, so that they may be remedied, in order to avert the recurrence of accidents (ICAO, 1994). However, experience has shown that the present intuitive methods of analysis do not always achieve this aim. Investigation failure may come about because of failure to discover causal factors, or to devise effective remedies, or to persuade those in a position to act of the need to do so.

Each of these types of failure can be made less likely by the use of formal analytical methods which can show whether information gathering has been incomplete, and point to the sources of additional information that may be needed. A formal analysis can be examined by formal logical tests. Also, the use of formal change mechanisms can not only devise changes likely to be effective, but can present these changes in such a way that the case for them is compelling.

Formal methods currently available are concerned with what happened, and why it happened. To produce generic remedies which might avert future accidents of similar type, some formal change mechanism is needed. The Theory of Constraints has become widely adopted in business as a way of replacing undesirable effects with desired outcomes. The Theory of Constraints has not previously been used for safety investigation, and a principal object of this thesis is to see whether it can usefully be employed in this area.

It is demonstrated that the use of formal methodology can bring to light factors which were overlooked during an official accident investigation, and can ‘tell the story’ in a more coherent manner than is possible with present methods. The recommendations derived from the formal analysis are shown to be generic in nature, rather than particular to the airline involved and the accident studied, and so could have a wider effect in improving safety.
Acknowledgements

The author was greatly encouraged in his studies of formal methodology for the analysis of accidents by Ludi Benner, formerly head of the Hazardous Materials Bureau of the United States National Transportation Safety Board, and by Professor Peter Ladkin, of the University of Bielefeld. Alan Wright, of Massey University, taught the author the use of the Theory of Constraints, and assisted in the development of this methodology to adapt it to accident investigation.

The author’s colleagues at the Australian Civil Aviation Safety Authority, Michael Nendick and Melanie Todd, proofread the entire document, and made numerous suggestions relating to style and content. Finally, the authors’ gratitude goes to his Supervisor, Dr. Lynn Hunt of Massey University, for her advice and encouragement throughout the study.
Table of Contents

Abstract ii
Acknowledgements iii
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1: Introduction 1
Chapter 2: Review of the Literature 17
Chapter 3: Research Methods 108
Chapter 4: Case Study – The Ansett Dash 8 Accident 121
Chapter 5: Analysing the Dash 8 Accident with a MES Graph 125
Chapter 6: Analysing the Dash 8 Accident with a WB Graph 175
Chapter 7: Analysing the Dash 8 Accident with the Theory of Constraints 198
Chapter 8: Comparison of Methodologies 301
Chapter 9: Discussion 328
References 341
Annex A: Glossary
Annex B: The Official Report

Annex C: Author's Qualifications as Accident Investigator
List of Tables

Table 1. General Failure Types 31

Table 2. Ansett CRT: Injections and Reservations 264

Table 3. CAA CRT: Injections and Reservations 282
List of Figures

Figure 1. The Skyferry accident 3
Figure 1A. The Skyferry accident: Years before 4
Figure 1B. The Skyferry accident: Months before 5
Figure 1C. The Skyferry accident: Hours and Days before 6
Figure 1D. The Skyferry accident: Immediately before 7
Figure 2. Jet air transport departures and hull-loss accidents 12
Figure 3. Perceptions of the accident phenomenon 22
Figure 4. Helmreich's Spheres of Influence 27
Figure 5. The structure of an organisational accident 29
Figure 6. Complex interactions in the aviation industry 33
Figure 7a. Flight path diagram: first part 37
Figure 7b. Flight path diagram: second part 38
Figure 8. Events and causal factors analysis 48
Figure 9. Events and causal factors charting 50
Figure 10. Deriving root causes 51
Figure 11. Event link analysis network 53
Figure 12. Fault tree analysis 54
Figure 13. Fishbone diagram 64
Figure 14. MES matrix 67
Figure 15. MES network 68
Figure 16. Current Reality Tree 98
Figure 17. Conflict resolution diagram 99
Figure 18. Future Reality Tree 100
Figure 19. Prerequisite tree 101
Figure 20. Transition tree 102
Figure 21. TOC thinking process 104
Figure 22. Impact diagram 123
Figure 23. Events from the history of the flight 127
Figure 24. Ground proximity warning 129
Figure 25. Undercarriage malfunction 131
Figure 26. Palmerston North approach plate 133
Figure 27. Alternate undercarriage selection 135
Figure 28. Alternate undercarriage selection (modified) 136
Figure 29. Initial approach to Palmerston North 138
Figure 30. MES Graph from initial approach to impact 139
Figure 31. Impact sequence events 142
Figure 32. Impact sequence MES Graph 143
Figure 33. Fire sequence 146
Figure 34. Events in Medical Information 149
Figure 35. Injury MES Graph 151
Figure 36. Impact and fire MES Graph 156
Figure 37. MES Graph of impact sequence 156
Figure 38. Witness mark on undercarriage door 158
Figure 39. Crush lines: view from front 159
Figure 40. Crush lines: view from top rear 160
Figure 41. Port nacelle damage 161
Figure 42. Rear fuselage damage 162
Figure 43. Starboard wing damage 164
Figure 44. Starboard tailplane damage 165
Figure 45. Empennage damage 166
Figure 46. Impact sequence (revised) 170
Figure 47. WB Graph: first step 177
Figure 48. WB Graph: second step 179
Figure 49. WB Graph: elaboration of Figure 48 180
Figure 50. WB Graph further development of Figure 48 183
Figure 51. Attachment to Figure 50 185
Figure 52. Second attachment to Figure 50 186
Figure 53. Third attachment to Figure 50 187
Figure 54. Precursor events 189
Figure 55. Engineering considerations 190
Figure 56. Complete WB Graph

Figure 57. Ansett undesirable effects

Figure 58. Connections from undercarriage latch design

Figure 59. Financial stress and emergency training

Figure 60. Lack of continuation training

Figure 61. Maintenance aspects

Figure 62. Absence of a Safety Manager

Figure 63. Shortness of GPWS warning

Figure 64. Conflict between financial and safety concerns

Figure 65. Ansett Current Reality Tree

Figure 66. Undesirable effects at the Civil Aviation Authority

Figure 67. Knowledge of crew training

Figure 68. Knowledge of recurring events

Figure 69. Knowledge of risk management

Figure 70. Combination of Figures 67, 68 & 69

Figure 71. Audit policy

Figure 72. Safe performance and cost

Figure 73. Civil Aviation Authority performance

Figure 74. Lack of financial information

Figure 75. Civil Aviation Authority: Current Reality Tree

Figure 76. Crew training
Figure 77. FRT: training, Sector 1 240

Figure 78. Forming the CRD 254

Figure 79. CRD: Safety Manager position 255

Figure 80. Assumptions in the Safety Manager CRD 256

Figure 81. FRT: Safety Manager functions 259

Figure 82. FRT: Safety management system, Sector 2 261

Figure 83. FRT: Maintenance, Sector 3 263

Figure 84. FRT: Pressures, Sector 4 265

Figure 85. FRT: Distractions, Sector 5 266

Figure 86. FRT: Ground Proximity Warning System 268

Figure 87. Ansett FRT 269

Figure 88. Positive reinforcing loop 271

Figure 89. Core conflict: CAA CRT 275

Figure 90. Conflict resolution diagram: CAA CRT 276

Figure 91. Funding is not a constraint on safety oversight 279

Figure 92. Oversight: surveillance, audits and safety management 281

Figure 93. Non-viability triggers greater depth of oversight 283

Figure 94. CAA is aware of deficiencies in airline operations 285

Figure 95. CAA FRT 287

Figure 96. Negative branch: perception of CAA performance 288