Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Towards an Understanding of the Way Chemistry Students Relate to Teaching Software, Using Stereochemistry as the Vehicle

A thesis
submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

Slavica Pavlinic

Massey University, Palmerston North, New Zealand, 2002
ABSTRACT

The aim of the project was to identify features crucial for the effective software-based learning of chemistry. The project involved four connected studies using two methods: one developed for evaluation of student-software interaction (videotaping and stimulated recall interviewing); the other, phenomenography for investigating student conceptions related to their understanding of stereochemistry, a concept addressed by the developed tutorial.

The main insights fall into two categories: the development of chemistry educational software and teaching and learning of chemistry specifically the concepts of stereochemistry.

The original stereochemistry tutorial employed multiple representations, free navigation and model progression. Students' ideas were used to modify the tutorial. This resulted in the learning tasks covering the properties of enantiomers, using the animation and guided discovery.

The use of computers in chemistry has two advantages over the traditional educational tools. Using 3D interactive ball and stick models helped students to visualise molecules and animation assisted to visualise aspects (properties), which are impossible to observe under laboratory conditions.

Learning chemistry is strongly influenced by the way chemistry is taught. Students experienced chemistry in two worlds separated from one another - the world of body of chemistry knowledge and the world of real substances (dream world-real world concept). This insight contributes to an understanding of how learning chemistry takes place.
ACKNOWLEDGEMENTS

I wish to acknowledge the contribution of my supervisors Dr Tony Wright, Assoc. Prof Janet Davies and Assoc. Prof. Paul Buckley to the development of this project and to my own development.

I wish to thank Dr Tony Wright who initiated the project. His enthusiasm in chemistry education and particularly the software learning and teaching is an example of how the vision can become a reality; much software-based chemistry is offered to the first year undergraduates at Massey University thanks to Tony. In addition, I appreciate Tony’s contribution in the development of the method suitable to exploring software-based learning and to all the comments aimed to improve the thesis.

I am thankful to Assoc. Prof Janet Davies who raised many educational issues. Janet’s contribution in the development of my own educational-based understanding of the research was enormous (ethics, sampling, phenomenography etc.). Thank you Janet for the encouragement you gave me at the different stages of the project, and when I needed it the most.

I am especially grateful to Assoc. Prof. Paul Buckley who started to become involved in chemistry education at the same time as I did (and maybe because of me). Thank you Paul for your involvement in this project by heart, for your thoughts and the cheerful encouragement. Thank you for sharing the excitement that arose from the readings of the interview transcripts and sharing your wisdom with me. Thank you for reading the draft chapters of the thesis. Thank you for being a friend.

I wish to thank for kindness to all IFS people and particularly the members of Chemistry Department; for the support and trust I felt during my employment as a GA. Thanks to the Graduate Research Fund Committee who supported me in attending the international conferences and to the MU DRC that showed understanding for my position and delay in writing.

Also, I am grateful to all who were involved in the proof reading, particularly to Mrs Evelyn Camplin in the first and to Ms Betty Livingston in the emended version of the thesis; and to all who gave me technical and any other help on an almost daily basis. Most of all, I wish to thank all the participants who contributed in the four studies, without them this project would not be possible.
Finally, as an appreciation of the time that was taken away from them many times over the years of completing this thesis and as a small token of my love for them, I dedicate this thesis to my children Tin and Ivica.
Table of Contents

1. **Introduction** ... 21

2. **Learning and Teaching** .. 26

 2.1. **Theories of Learning and Teaching** ... 26

 2.1.1. Piagetian Model .. 27

 2.1.2. Prior Conceptions .. 28

 2.1.3. Constructivism .. 29

 (i) Constructivism - Philosophy and Psychology 30

 (ii) Forms of Constructivism ... 31

 (iii) Constructivist-Based Learning ... 35

 (a) Learning by Discovery/Scientific Discovery 35

 (b) Postmodern Semiotics Constructivism and Learning Abstract Science Concepts .. 38

 (iv) Constructivism as an Educational Method 41

 (a) The Aim of Education ... 41

 (b) Constructivism - The Role of the Teacher and Instructional Design 42

 (v) Constructivism – The Right Choice? 43

 (vi) Constructivism – Summary ... 46

 2.1.4. Phenomenography .. 47

 (i) Phenomenography-Based Research - Contribution in Understanding of Learning – Teaching Relationship .. 50

 (a) Approaches to Learning and Learning Outcomes 50

 (ii) Phenomenography – Summary ... 52

 2.1.5. Information Processing Model for Learning (Theory of Working Memory) .. 52

 (i) Dual - Processing Theory ... 54

 (ii) Information Processing Model - Summary 58

2.2. **Teaching to Facilitate Learning** ... 58

 2.2.1. Pedagogical Content Knowledge (PCK) 60

 (i) PCK – Summary .. 63

 2.2.2. Teaching Strategies .. 64

 (i) Teaching as Telling or Transmission ... 64

 (ii) Teaching as Organising Student Activity 64

 (iii) Teaching as Making Learning Possible 65

 (iv) Teaching Support Strategies ... 66

 (a) **Scaffolding** .. 66
3. TEACHING AND LEARNING CHEMISTRY

3.1. SCIENCE DISCIPLINE – CHEMISTRY

3.1.1. Chemistry - Intrinsic Nature of the Discipline
(i) Multiple Nature of Chemistry – Johnstone’s Triangle
(ii) Abstract Concepts of Electrons, Atoms and Molecules

3.1.2. Chemistry - The Scientific Language

3.1.3. Chemistry - Spatial Visualisation Requirements

3.1.4. Stereochemistry - Abstract Concepts, Spatial Requirements and Scientific Language
(i) Learning and Teaching of Stereochemistry

3.2. METHODS AND SUPPORTIVE TOOLS/STRATEGIES EFFECTIVE FOR TEACHING CHEMISTRY

3.2.1. Lectures
(i) Demonstrations

3.2.2. Tutorials

3.2.3. Chemistry Laboratories

3.2.4. Supportive Tools/Strategies Effective for Teaching Chemistry
(i) Molecular Models
(ii) Analogies
(iii) Diagrams
(iv) Socially Supported Collaborative Construction of Science Concepts
(v) Multiple Teaching Approaches

3.3. SUMMARY

4. COMPUTER SUPPORTED LEARNING AND TEACHING OF CHEMISTRY

4.1. PHILOSOPHICAL BACKGROUND OF COMPUTER SUPPORTED LEARNING AND TEACHING

4.1.1. Learning by Computers: A Constructivist-Based Approach

4.1.2. Matching the Software Development with Educational Theory
(i) Computer-Assisted Cooperation

4.2. COMPUTER SUPPORTED LEARNING AND TEACHING EVALUATION

4.3. COMPUTER USE IN CHEMISTRY

4.4. RESEARCH PROBLEM AND RESEARCH QUESTIONS

5. METHODOLOGY

5.1. RATIONALE FOR A QUALITATIVE APPROACH

5.1.1. Triangulation
(i) Triangulation – Combination of Qualitative and Quantitative Methods
5.2. RESEARCH DESIGN .. 119

5.2.1. Sample Selection .. 120

5.2.2. Techniques of Data Collection .. 122
 (i) Study One, Study Two and Study Four Data Collection ... 124
 (a) Stimulated Recall Interviews ... 124
 (b) Observation Techniques .. 127
 (c) Document Analysis .. 128
 (ii) Study Three – Phenomenographical Data Collection .. 129
 (a) Phenomenographical Interviews .. 130
 (b) Document Analysis .. 131
 (c) Observation .. 132

5.2.3. Data Analysis ... 132
 (i) Study One Data Analysis ... 133
 (ii) Study Two Data Analysis ... 135
 (iii) Study Three Data Analysis ... 135
 (iv) Study Four Data Analysis .. 137

5.3. ETHICAL ISSUES .. 138

5.3.1. Protection of the Participants Involved in the Thesis .. 139
 (i) Ethics in the Data Collection ... 141
 (ii) Ethics in the Data Analysis and Dissemination .. 142

5.3.2. Participants – Researcher Relationship: Discussion .. 143

5.4. LIMITATIONS TO THE RESEARCH DESIGN .. 146

6. STUDENT USE OF COMMERCIAL SOFTWARE IN A FIRST YEAR CHEMISTRY COURSE – STUDY ONE 149

6.1. RESEARCH QUESTIONS OF STUDY ONE .. 149

6.2. SETTING OF THE STUDY ... 150

6.2.1. Tasks .. 150

6.2.2. Students and Sampling ... 154

6.2.3. Techniques in Data Collection .. 155

6.2.4. Coding of Data ... 157

6.2.5. Data Analysis .. 157
 (i) Step-by-Step Process .. 157

6.3. RESULTS ... 174

6.3.1. Student Achievement of Intended Learning Outcomes .. 174

6.3.2. Factors that Affected Student Achievement of Intended Learning Outcomes 177
 (i) Insights into Student Characteristics that Affected Student Achievement of Intended Learning Outcomes ... 178
 (a) Prior Knowledge .. 178
 (b) Student-Student Interactions ... 181
 (c) Computer Familiarity .. 183
 (d) Satisfaction .. 183
 (ii) Insights into the Software Design that Affected Student Achievement of
Intended Learning Outcomes ... 184
(a) Feedback .. 184
(b) Navigation ... 186
(c) Guessing ... 187
(d) Type of Software Application .. 187
(e) Errors, Omissions and Implementation ... 188

6.4. DISCUSSION .. 189
6.4.1. Consequences for Software Design .. 190
 (i) Linear vs. Branching Design ... 190
 (ii) Feedback ... 193
6.4.2. Consequences for Laboratory Design ... 195
 (i) Simulations .. 195
 (ii) Software in Assisting Learning ... 199
6.4.3. Other Insights .. 200
 (i) Group Work .. 200
 (ii) Evaluation of CAI .. 200
 (a) Stimulated Recall Interviewing ... 202

6.5. CONCLUSIONS .. 202

7. STUDENT USE OF THE IN-HOUSE DEVELOPED STEROCHEMISTRY TUTORIAL - STUDY TWO 204
7.1. DEVELOPMENT OF IN-HOUSE AUTHORED STEROCHEMISTRY TUTORIAL ... 204
7.1.1. Selection of the Topic for the Tutorial ... 205
7.1.2. Designing of the Computer-Based Stereochemistry Tutorial 206
 (i) Multiple Representations ... 209
 (ii) Content Structure ... 210
 (iii) Branched Design Involving Adaptive Feedback 212
7.2. INVESTIGATION OF STUDENT USE OF THE TUTORIAL ... 214
7.2.1. Research Questions for Study Two .. 214
7.3. SETTING OF THE STUDY ... 215
7.3.1. Students and Sampling ... 215
7.3.2. Techniques in Data Collection and Data Administration 216
7.3.3. Analysis of Student Interaction with the Tutorial 217
 (i) Step 1 - Student Use of the Tutorial .. 217
 (ii) Step 2 - Student Achievement of Intended Learning Outcomes 219
 (iii) Step 3 - Factors that Affected Student Achievement of Intended Learning Outcomes ... 221
7.4. RESULTS ... 223
7.4.1. Students' Use of the Tutorial ... 223
 (i) Manipulation of On-screen Models ... 223
 (ii) Multiple Representations ... 225
 (iii) Feedback/Hints ... 228
 (iv) Use of Colour .. 230
8. STUDENTS’ CONCEPTIONS UNDERPINNING THEIR UNDERSTANDING OF STEREOCHEMISTRY — STUDY THREE

8.1. RESEARCH QUESTIONS

8.2. SETTING OF THE STUDY

8.2.1. Students and Sampling

8.2.2. Techniques in Data Collection

(i) Phenomenography

(a) Interviews

(b) Students’ Drawings

(c) Supplementary Sheets

(d) Other Instruments

8.2.3. Analysis of Data in Study Three

8.3. VISUALISATION OF MOLECULES

8.3.1. Analysis of the Ways Students Visualise Molecules

8.3.2. Visualisation of Molecules - Results

(i) Categories of Description

(ii) Student Approaches to Learning of Stereochemistry

(iii) Category Distribution Across the Sample of the Participants

(iv) Discussion

(a) Visualisation – The Use of Multiple Representations

(b) Student Visualisation – Reflection of Chemistry Instruction

(c) Student Visualisation – A Dimension of Different Approaches to Learning

(v) Conclusions

8.4. VISUALISATION VERSUS MACROSCOPIC SAMPLE OF THE SUBSTANCE

8.4.1. Analysis

8.4.2. Students Relate Their Representations of a Molecule to a Macroscopic Sample of the Substance – Results

(i) Categories of Description

(ii) Category Distribution Across the Sample of Participants

(iii) Discussion

(a) The Power of the Liquid Appearance
9.3. SETTING OF THE STUDY ... 373
 9.3.1. Students and Sampling .. 373
 9.3.2. Techniques in Data Collection ... 374
 9.3.3. Data Analysis .. 374

9.4. RESULTS .. 375
 9.4.1. Responses to Amended Tasks: Exercise One - Exercise Three 375
 (i) Discussion.. 380
 (a) Effectiveness of the Minor Amendments.............................. 380
 (b) Effectiveness of Model Progression..................................... 382
 (c) Student Achievement of Intended Learning Outcomes............ 383
 9.4.2. Responses to Exercise Four .. 384
 (i) Design of Exercise Four... 384
 (ii) Properties of Stereoisomers... 389
 (a) Properties of Cis-Trans Isomers... 393
 (iii) Discussion... 396
 (a) Different Properties of Stereoisomers - Importance in Our Life 397
 (b) Student Reasoning/Understanding Gained in Exercise Four 399

9.5. CONCLUSIONS ... 402
 9.5.1. Study Four – Outcome of the Research in Previous Studies of the Thesis 402
 9.5.2. Guided Discovery with Computer Animation 403

10. FINAL DISCUSSION ... 405
 10.1. FOUR STUDIES –THE COMPLETE PROJECT 405
 10.1.1. Contributions from Study One ... 405
 10.1.2. Contributions from Study Two ... 406
 10.1.3. Contributions from Study Three 407
 10.1.4. Contributions from Study Four ... 409
 10.2. IMPLICATIONS OF THE RESULTS IN TEACHING CHEMISTRY
 AND CHEMISTRY SOFTWARE DEVELOPMENT 410
 10.2.1. Teaching Chemistry and Stereochemistry 410
 10.2.2. Teachers Choosing or Developing Chemistry Software 413
 10.3. SUGGESTIONS FOR FUTURE RESEARCH 413

11. REFERENCES ... 416

CD ROM APPENDICES
CD ROM STEREOCHEMISTRY TUTORIAL
LIST OF FIGURES

Figure 1.1. The time sequence and the links between the studies described in this thesis. The curled arrows indicate that the findings of preceded study/ies were used as a rationale for a later study. 24

Figure 2.1. Possible learning difficulties in communicating science ideas. 55

Figure 3.1. The threefold nature of chemistry integrated by the use of language. 76

Figure 5.1. Combined video of students performing the task and the computer screen image. 126

Figure 5.2. Student talks reflectively during the stimulated recall interviewing. 126

Figure 6.1. One of the screens in Task 1, showing the apparatus for the simulated measurements of the relationship between pressure and volume and the type of controls that allowed for interaction with students. 152

Figure 6.2. One of the screens in Task 2, showing the absorbance plot for the Cu(en)$_{2}^{2+}$ ion, together with the superimposed band of colours from the visible spectrum. The type of controls that allowed for interaction by the students is also shown. 152

Figure 6.3. One of the screens in Task 3, showing the kind of questions and the type of controls that allowed for interaction with the students. 153

Figure 6.4. The capture of two screens of video clips in Task 4, left showing the unit cell of NaCl and right showing octahedral cavity in the same structure. The computer generated animations were available to students as a supplement to the laboratory session on solid-state structures. 154

Figure 6.5. Deficiencies of a linear task design. 193

Figure 7.1. The front page of the Stereochemistry tutorial. 209

Figure 7.2. A copy of the screen showing the task of exploring stereoisomers in Exercise Two. 226

Figure 7.3. The capture of the screen from Exercise Two in the tutorial showing the question which caused the participants the most difficulties. 239

Figure 8.1. The supplementary sheets with different representations of 2-butanol that were shown to the students to collect additional responses at the end of the interviewing process. 261

Figure 8.2. A change in concept of understanding chemistry based on the results of Study Three, from Johnstone's (1991) micro-symbolic-macro concept of equally treated dimensions of chemistry to the 'dream world'-'real world' concept in which the two worlds are separated from each other. 313

Figure 8.3. A copy of the supplementary sheet that was used to collect the participants'
conceptions of conformational isomers. ... 328

Figure 8.4. A copy of the supplementary sheet that was used to collect the participants' conceptions of enantiomers. ... 334

Figure 8.5. A copy of supplementary sheet that was used to collect the participants' conceptions of diastereomers. ... 338

Figure 9.1. The questions in Exercise Two exploring a) stereoisomers and b) structural isomers. ... 361

Figure 9.2. The introductory page to Exercise Three before and after the revision. 362
LIST OF TABLES

Table 5.1. The triangulation based upon multiple techniques involved in the research and across different studies. .. 119

Table 6.1. A description for the Chemistry I(b) course (Chemistry I(b), 2001) 150

Table 6.2. Student participation in the four different tasks (Study One) 155

Table 6.3. Preliminary list of items from the analysis of one set of Task 1 data 159

Table 6.4. List of items found in another set of Task 1 data 160

Table 6.5. Final list of items for different tasks .. 162

Table 6.6. The emerged themes resulted from the step of analysis in which the items of all sets of data and from all tasks were combined ... 164

Table 6.7. Formulated target objectives for different tasks 165

Table 6.8. Student achievement of task objectives ... 175

Table 6.9. Insights into student characteristics .. 178

Table 6.10. Insights into software instructional design and implementation 185

Table 6.11. The summary of the research questions and main insights given from Study One ... 189

Table 7.1. A list of the objectives stated in Part 6 of the study guide Chemistry I (a) .. 211

Table 7.2. The summary of the features employed in designing of the stereochemistry tutorial ... 214

Table 7.3. Participants volunteered in a study exploring students’ use of computer-based stereochemistry tutorial (Study Two in 1998) 216

Table 7.4. Final list of items for the student interaction with the stereochemistry tutorial 218

Table 7.5. Thinking strategies employed and the responses collected from Amy in problem solving tasks of the tutorial ... 220

Table 7.6. Preferences for the use of 2D/3D representations in understanding types of isomerism .. 233

Table 7.7. Themes in the student use of the stereochemistry tutorial 234

Table 7.8. Student achievement of intended learning outcomes (task objectives) .. 235

Table 7.9. The student/group progress through the tutorial recorded as number of attempts used to reach a correct solution per type of stereochemical concept tested .. 237
Table 7.1. The participants' use and preference for the representations in the tutorial depending on the concept and complexity of the task being investigated. 240

Table 7.11. Student use of ball and stick models and skeletal structures in the tutorial. 242

Table 7.12. Student use of the glossary and the hints in the tutorial. 242

Table 8.1. Participants in Study Three. 254

Table 8.2. Components of the interview employed in the study. 257

Table 8.3. The summary of the phenomena under investigation related to the research questions. 258

Table 8.4. The initial step of the analysis of individual data. 260

Table 8.5. The additional data that were considered in the analysis of student visualisation. 262

Table 8.6. The consistency between the initial student visualisation and student responses to the supplementary sheets for the selected participants (when Table 8.4 and Table 8.5 were combined). 263

Table 8.7. The consistency between the participants' initial visualisation and the responses collected later during the interviewing process. 271

Table 8.8. Hierarchical order of categories of description showing student approaches to visualisation/representation of molecular structure. 273

Table 8.9. The identified approaches to learning for the selected participants. 283

Table 8.10. The distribution of the categories across the sample of the participants. 284

Table 8.11. The different meanings that emerged from the participants discourse in the initial step of the analysis process. 291

Table 8.12. A summary of the step of the analysis, in which different meanings were analysed according to similarities and differences between them. 293

Table 8.13. The hierarchically ordered categories of description with the allocated meanings, showing increasing students' ability to associate the macro nature of 2-butanol (liquid) to their visualisation of the 2-butanol molecule described earlier. 295

Table 8.14. The distribution of the categories across the participants. 303

Table 8.15. The initial step of the analysis of student awareness of isomerism. 321

Table 8.16. Students' awareness of structural isomers distributed to different means of responding. 323

Table 8.17. Categories of description for structural isomers. 324
Table 8.18. The category distribution for the concept of structural isomers across the participants. ... 327

Table 8.19. Selected participants’ awareness of conformational isomers distributed to different means of responding. ... 329

Table 8.20. Categories of description for conformational isomers. ... 330

Table 8.21. The category distribution for conformational isomers across participants. ... 332

Table 8.22. Selected participants’ awareness of enantiomers distributed to different means of responding. ... 334

Table 8.23. Categories of description for the concept of enantiomers. ... 335

Table 8.24. The category distribution for enantiomers across the participants. ... 338

Table 8.25. Selected participants’ awareness of cis-trans isomers distributed to different means of responding. ... 339

Table 8.26. Categories of description for diastereomers. ... 340

Table 8.27. The category distribution for diastereomers across the participants. ... 344

Table 8.28. The summary of the students’ main responses to different types of isomerism. ... 345

Table 9.1. The summary of the minor amendments in the tutorial. ... 363

Table 9.2. Design features employed in designing Exercise Four. ... 367

Table 9.3. Profile of the participants in Study Four. ... 374

Table 9.4. The summary of the results related to the Research Question 4 a). ... 376

Table 9.5. The student/group progress through amended tutorial recorded as a number of attempts used to reach a correct solution per type of stereochemical concept tested. ... 377

Table 9.6. Student achievement of intended learning outcomes (Exercise One – Exercise Three) in Study Four. ... 379

Table 9.7. Students’ responses to the design of Exercise Four distributed to different means of responding. ... 385

Table 9.8. The identified awareness of the properties of stereoisomers distributed according to different means of responding. ... 390

Table 9.9. The identified awareness of the properties of cis-trans isomers distributed according to different means of responding. ... 394

Table 9.10. The reasoning employed in dealing with the tasks in Exercise Four and the evaluation of achievement of intended learning outcome of this exercise. 400