Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The effect of grazing intensity and frequency during spring and early summer on the sward characteristics of a ryegrass-white clover pasture

A thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science in Plant Science at Massey University, Palmerston North, New Zealand.

BARRY MICHAEL BUTLER

1986
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>1</td>
</tr>
<tr>
<td>List of figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of plates</td>
<td>xi</td>
</tr>
<tr>
<td>List of appendices</td>
<td>xii</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 2 Literature Review</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Effect of defoliation on herbage accumulation</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Total herbage accumulation</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Components of net herbage accumulation</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3 Factors influencing the growth, death and decay of herbage</td>
<td>18</td>
</tr>
<tr>
<td>2.2.3.1 Lamina growth</td>
<td>18</td>
</tr>
<tr>
<td>2.2.3.1.1 Photosynthesis</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3.1.2 Leaf appearance and extension</td>
<td>21</td>
</tr>
<tr>
<td>2.2.3.1.3 Tiller populations</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3.2 Lamina senescence</td>
<td>26</td>
</tr>
<tr>
<td>2.2.3.3 Tissue disappearance</td>
<td>28</td>
</tr>
<tr>
<td>2.3 Effect of defoliation on herbage mass components</td>
<td>29</td>
</tr>
<tr>
<td>2.4 Effect of defoliation on tiller development and population density</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1 Tiller appearance and death</td>
<td>36</td>
</tr>
<tr>
<td>2.4.2 Tiller populations and management</td>
<td>39</td>
</tr>
<tr>
<td>2.4.3 Ryegrass reproductive development</td>
<td>41</td>
</tr>
</tbody>
</table>
Chapter 3 Materials and Method

3.1 Experimental site

3.2 Experimental treatments and post-treatments

3.2.1 Introduction

3.2.2 Treatment period

3.2.3 Post-treatment period

3.3 Measurements

3.3.1 Introduction

3.3.2 Herbage mass

3.3.3 Herbage dissections

3.3.4 Sward height

3.3.5 Population density

3.3.6 Emerged inflorescence density

3.3.7 Light interception

3.3.8 Leaf area index

3.3.9 Canopy structure

3.3.10 OM digestibility

3.4 Further calculations

3.5 Data handling

3.6 Statistical analysis

Chapter 4 Results

4.1 Herbage mass

4.1.1 Total

4.1.2 Green

4.1.3 Lamina

4.1.3.1 Ryegrass

4.1.3.2 White clover and other grasses

4.1.3.3 Proportion of lamina in herbage mass
4.1.4 Stubble
4.1.5 Dead

4.2 Tiller (stolon) populations
4.2.1 Ryegrass
 4.2.1.1 Vegetative tillers
 4.2.1.2 Reproductive tillers
4.2.2 White clover and other grasses

4.3 Sward structure
 4.3.1 Canopy structure
 4.3.2 Sward height
 4.3.3 Herbage bulk density
 4.3.4 Light interception
 4.3.5 Leaf area index

4.4 Organic matter digestibility

4.5 Herbage accumulation
 4.5.1 Total
 4.5.2 Green
 4.5.3 Lamina
 4.5.3.1 Ryegrass
 4.5.3.2 White clover and other grasses
 4.5.4 Stubble
 4.5.5 Dead

Chapter 5 Discussion
5.1 Introduction
5.2 Treatments and pasture 'control'
5.3 Effect of grazing management on herbage mass
 5.3.1 Ryegrass reproductive stubble mass
5.3.2 Determinants of ryegrass reproductive stubble mass 143
5.3.3 Lamina mass 150
5.4 Effect of grazing management on sward structure 151
 5.4.1 Leaf:Stem ratio 151
 5.4.2 Canopy structure and sward height 153
 5.4.3 Bulk density 155
5.5 Effect of grazing management on herbage accumulation 157
 5.5.1 Total and green 157
 5.5.2 Lamina and stubble 159
 5.5.3 Lamina growth 163
 5.5.4 Lamina death 169
5.6 Effect of grazing management on subsequent pasture performance 170
5.7 Effect of grazing management on digestibility and dead herbage content 172
5.8 Effect of grazing management on botanical composition 173
5.9 Implications for animal performance 177
 5.9.1 Importance of leaf lamina 177
 5.9.2 Modelling grazing systems 183
5.10 Implications for spring management 186
 5.10.1 Grazing criteria 186
 5.10.2 Practical spring management 187
5.11 Suggestions for further research 190
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6 Conclusions</td>
<td>193</td>
</tr>
<tr>
<td>Appendices</td>
<td>195</td>
</tr>
<tr>
<td>References</td>
<td>245</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to acknowledge the assistance given to me by the following:

Dr. A.C.P. Chu, my supervisor, for his guidance, patience and constructive criticism throughout this study.

Dr. C.J. Korte and Mr. P.N.P. Matthews, my co-supervisors, for their advice and discussion, and the former especially for the computer programmes enabling rapid data processing.

Dr. J. Hodgson, for help with the experimental design and for discussion and support.

Mr. T. Lynch and staff, Wendy Evans, Bromwyn Goggin and Mr. D. Sollitt, Agronomy Department, M.U., for their technical and organisational assistance.

Dr. I. Brookes, Massey Univ., for arranging digestibility analysis.
Mr. J. McCrone, A.S.D., M.A.F, for assistance with fencing and for providing the small cage herbage accumulation data.

Mr. M.A. Richardson and Mr. C.C. Bell, for providing unpublished data included in this Thesis.

Consultants, Operators and Key Operators of the Computer Centre, Massey Univ., for assistance with computing.

Fellow post graduate students, members of the Agronomy Department (Massey Univ.) and staff of the Research and Advisory Services Divisions (M.A.F., Batchelor House), for their discussion and comments.

Drs. G. Sheath, J. Bircham and D. McCall, Whatawhata Hill Country Research Station, M.A.F., for helpful discussion.

Shirley-ann, my wife, for her forbearance and encouragement throughout this study.

This work was done while the author was on study leave with the Ministry of Agriculture and Fisheries, New Zealand. Their financial assistance is gratefully acknowledged.
LIST OF FIGURES

3.1 Trial Layout

3.2 Herbage dissection components

4.1 Effect of grazing frequency and intensity on herbage mass components (kgDM/ha)

4.2 Proportion of ryegrass, white clover and other grasses lamina in total lamina mass

4.3 Pre- and post-grazing Leaf:Stem (L:S) ratio on days 27/28, 55/56, 83/85, 119/120 and 168

4.4 Leaf:Stem (L:S) ratio on vegetative and reproductive tillers on days 27, 55 and 83

4.5 Leaf:Non-leaf ratio on days 83, 119 and 168

4.6 Percentage ryegrass reproductive stubble mass in total ryegrass, green and total herbage masses on days 27, 55
and 83

4.7 Percentage dead herbage mass in total pregrazing herbage mass

4.8 Ryegrass vegetative tiller density (tillers/m2)

4.9 Individual ryegrass vegetative tiller mass (mg/tiller)

4.10 Mean pre- and post-grazing lamina mass of a) vegetative and b) reproductive tillers over the treatment period (kgDM/ha)

4.11 Ryegrass undefoliated reproductive tiller density (tillers/m2)

4.12 Emerged inflorescence density (tillers/m2)

4.13 Individual ryegrass undefoliated reproductive tiller mass (mg/tiller)

4.14a Canopy structure immediately before the start of the trial on day 0
4.14b Canopy structure and horizon OMD and lamina bulk density of H14 on day 83

4.14c Canopy structure and horizon OMD and lamina bulk density of M7 on day 83

4.14d Canopy structure and horizon OMD and lamina bulk density of M14 on day 83

4.14e Canopy structure and horizon OMD and lamina bulk density of L14 on day 83

4.14f Canopy structure and horizon OMD and lamina bulk density of M21 on day 83

4.14g Canopy structure and horizon OMD and lamina bulk density of M28 on day 83

4.15a Pregrazing sward height (cm)

4.15b Post-grazing sward height (cm)

4.16 Pregrazing light interception (%) during
4.17 Mean pre- and post-grazing leaf area index over the treatment period

4.18 Total, green and dead herbage accumulation (kgDM/ha)

4.19 Total lamina accumulation over the treatment and post-treatment periods (kgDM/ha)

4.20 Proportion of ryegrass, white clover and other grass lamina in total lamina accumulation

4.21 Ryegrass reproductive stubble accumulation over the treatment and post-treatment periods (kgDM/ha)

4.22 Dead 'stem' accumulation over the treatment and post-treatment periods (kgDM/ha)

5.1 Relationship of leaf area index (LAI) with lamina mass throughout the trial
5.2 Relationship between the logarithms of individual ryegrass vegetative tiller mass and ryegrass vegetative tiller density on days 27, 55, 83, 119 and 168.

5.3 Relationship between lamb liveweight gains in early summer and leaf lamina (Ryegrass leaf plus total clover) allowance (from unpublished data of M.A. Richardson and C.C. Bell).
LIST OF TABLES

3.1 Grazing treatments 56

3.2 Grazing schedule 56

4.1 Pregrazing herbage mass components on days 27, 55, 83, 119 and 168 (kgDM/ha) 73

4.2 Selected post-grazing herbage mass components on days 28, 56, 85 and 120 (kgDM/ha) 74

4.3 Vegetative, reproductive and total pregrazing ryegrass lamina mass (kgDM/ha) on days 27, 55, 83, 119 and 168 81

4.4 White clover a) pregrazing lamina mass (kgDM/ha) and b) stolon tip density (numbers/m2) on days 83 and 168 85

4.5 Proportion of undefoliated reproductive tillers in total ryegrass tiller density on days 27, 55 and 83 103

4.6 Appearance of reproductive tillers over
the treatment period (tillers/m²)

4.7 Bulk density of a) total and b) lamina pregrazing herbage mass on days 83 and 168 (kgDM/ha/cm)

4.8 Organic matter digestibility of total pregrazing herbage and herbage components on day 83

4.9 Ryegrass a) vegetative, b) reproductive and c) total lamina accumulation (kgDM/ha)

5.1 Stepwise regression of herbage mass components

5.2 Summary of major results at day 83

5.3 Correlations between pregrazing herbage components and a) total and b) green herbage masses on days 27, 55, 83, 119 and 168

5.4 Correlations between individual ryegrass reproductive tiller mass and other sward characteristics on days 27, 55 and 83
5.5 Comparison of sward herbage mass components and sward height from stratified cut and dissection samples on day 83
LIST OF PLATES

3.1 Experimental site at Massey University 51

3.2 Device with which sward height was measured 63

4.1b Treatment H14 on day 83 .. 108

4.1c Treatment M7 on day 83 .. 109

4.1d Treatment M14 on day 83 .. 110

4.1e Treatment L14 on day 83 .. 111

4.1f Treatment M21 on day 83 .. 112

4.1g Treatment M28 on day 83 .. 113
LIST OF APPENDICES

1 Comparison of 40 year monthly rainfall and 10cm soil temperature with actual 1983/1984 monthly means (D.S.I.R., Palmerston North) 195

2 Mean weekly rainfall and 10cm soil temperature for the duration of the trial (from D.S.I.R., Palmerston North) 196

3 Tables of sward characteristics: means and relevent statistics 197

4 Tables of herbage accumulations: means and relevent statistics 206

5 Comparison of a) ryegrass and b) other grasses tiller density, and c) white clover stolon tip density derived from dissection samples or tiller cores 214

6 Comparison of herbage accumulation (kgDM/ha/day) from small cages using the trim technique and from the grazing trial 216
7 Estimation of herbage mass using the pasture probe and sward height

8 Autumn growth characteristics of ryegrass/white clover pastures following differential spring grazing management. (Follow-up work to B. Butler's M.Ag.Sc. trial). (By M.A. Richardson)

9 Publications resulting from the study
The effect of grazing intensity (to approximately 150 (H), 450 (M) and >750 (L) kg lamina DM/ha at a 14 day rotation length, i.e. H14, M14 and L14) and grazing frequency (at 7, 14, 21 and 28 day rotation lengths at the M level of intensity, i.e. M7, M14, M21 and M28) on the sward characteristics of a perennial ryegrass-white clover sward was examined over 24 weeks in spring, summer and early autumn.

The grazing treatments were imposed over a 12 week (treatment) period (mid-Sept to mid-Dec) in spring and early summer to determine a) whether or not pasture 'control' (or some intermediate state) resulted and b) why differences between managements arose. It was found that treatments H14, M7 and M14 could be considered 'controlled' but treatments L14, M21 and M28 could not. This was largely because in the latter, the proportion and mass of ryegrass reproductive stubble, green and total herbage masses, sward height and emerged inflorescence density were much greater; and Leaf:Stem ratio, tiller density and lamina accumulation were much lower, than in the former. The individual mass of reproductive tillers was the most important factor determining differences in ryegrass reproductive stubble mass, rather than reproductive tiller density.
Over the following 12 week (post-treatment) period (mid-Dec to early-Mar) subsequent pasture production on these swards was measured under a common grazing regime. It was concluded that a greater 'risk' of poor lamina accumulation was associated with lack of pasture 'control' and this was largely influenced by the recovery of tiller density. During this period ryegrass reproductive stubble died and 'uncontrolled' swards had higher herbage mass due to a greater mass of dead herbage.

The proportion of white clover in herbage mass and lamina accumulation was greater on M7 swards during the treatment period and on both M7 and H14 swards during the post-treatment period.

In practice, herbage mass and sward height probably the best criteria on which to base spring grazing decisions because both are highly correlated with individual ryegrass reproductive tiller mass. Pasture 'control' may be maintained on a ryegrass-white clover sward by grazing to a sward height of 6-9 cm (1400-1600 kg green DM/ha) from a pregrazing sward height of less than 20 cm (2700-3000 kg green DM/ha).

Key Words perennial ryegrass, white clover, grazing intensity, grazing frequency, sward characteristics, pasture 'control'