Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
To my wife, Rebeccah, and
my daughter, Dorothy
Fundamental rheological properties of two types of processed cheese slices, Individually Wrapped Slices (IWS) and Slice On Slice (SOS), produced under different process conditions, were determined. Shear creep, shear stress relaxation, dynamic impulse measurements and confocal laser scanning microscopy were used to determine the rheological properties and the texture of processed cheese slices. The shear creep, the shear stress relaxation and the dynamic impulse halfsquare measurements were carried out using an Instron Universal Testing Machine. A Texture Analyser TA.HD was used for the shear stress relaxation measurements. Comparison of shear stress relaxation results between the two instruments showed agreement.

The shear creep compliance of IWS cheese show higher values than that of SOS cheese at 21°C. On the other hand, the shear stress relaxation moduli indicated lower values for IWS cheese than SOS cheese at 21°C. This indicated that IWS cheese was more liquid-like than SOS cheese though there are no significant compositional differences. Higher shear creep compliance is related to less resistance of the cheese to deformation while lower shear stress relaxation modulus indicates less resistance to deformation. These results are also in agreement.

The melting properties of the two types of slices were studied with dynamic impulse measurements. IWS cheese melted at a lower temperature (50°C) than SOS cheese (60°C). Microscopic structure indicates more protein-protein interaction in SOS cheese than IWS cheese, which had smaller fat globules evenly distributed within the protein network, thereby reducing the protein-protein interaction and making the network integrity weak, thus confirming the shear creep and shear stress relaxation findings.

The rheological and textural differences between the two cheeses were attributed to different process conditions used during the cheese manufacture. These different process conditions are the heating temperature and time combination and the cooling rate. The comparison of static measurements, the dynamic measurements using small deformations
and the microstructure to determine the properties of processed cheese is a useful tool to determine the effects of different process conditions. It might enable the choice of those desired process parameters such as temperature-time combination and cooling rate for various processed cheese types.
ACKNOWLEDGEMENTS

I wish to express my appreciation and deep sense of gratitude to my supervisors Dr. Osvaldo H. Campanella, Dr. Owen J. McCarthy and Mr. Rod Bennett for their guidance and assistance in all aspect of this work. Their patience during long discussions in the preparation of this manuscript was invaluable.

I acknowledge and thank all the members of staff and postgraduate students in the department of Food Technology who provided valuable support during the experimental work of this project and the preparation of this manuscript.

I wish to express my gratitude to Professor Peter A. Munro for his support and advice especially in the choice of this project. The constant advice he gave me whenever I confronted him even with my personal problems was very valuable.

I am grateful to Tanzania Dairies Limited and the Tanzania Government for allowing me pursue my studies.

Thanks to the New Zealand Government for providing me with study fees through the Ministry of External Relation and Trade. The New Zealand Dairy Research Institute for funding this project. Particular thanks to Mr. Anthony Fayerman, Dr. Philip Watkinson, Mr. Anthony B. McKenna and Mrs. Katherine Bryce for their coordination and support of this project. And to Dr. Paul A. Deuritz and Dr. Siew Kim Lee for the discussion on certain aspects of this work.

Finally, I feel deeply grateful and indebted to my wife, Rebecca for so much patience, understanding, endless love and encouragement. Her moral support enabled me complete this task.

Francis Melkior Faraay.
March, 1995
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Rheology 1
1.2 Natural Cheese 3
1.3 Principles of Processed Cheese Manufacture 3
 1.3.1 Classification of Processed Cheeses 5
 1.3.2 Processed Cheese Evaluation 6
1.4 Objectives 7

2 LITERATURE REVIEW

2.1 Introduction 9
2.2 The Effects of emulsifier salts on Processed Cheese Texture 9
2.3 Effects of Composition on Microstructure Rheology and Texture of Natural Cheese 11
2.4 Effects of Processing Conditions on Structure and Texture of Processed Cheese 12
2.5 Relationship Between Instrumental and Sensory (Subjective) Texture Evaluation of Cheese 15
 2.5.1 Firmness 17
 2.5.2 Springiness (Elasticity) 18
 2.5.3 Cheese Hardness 18
2.6 Test Methods in Rheological Evaluation of Cheese

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.1 Tensile Test</td>
<td>21</td>
</tr>
<tr>
<td>2.6.2 Compression Test</td>
<td>21</td>
</tr>
<tr>
<td>2.6.3 Simple Shear Test</td>
<td>21</td>
</tr>
<tr>
<td>2.6.4 Static Measurements</td>
<td>22</td>
</tr>
<tr>
<td>2.6.4.1 Creep Measurements</td>
<td>24</td>
</tr>
<tr>
<td>2.6.4.2 Stress Relaxation</td>
<td>26</td>
</tr>
<tr>
<td>2.6.5 Dynamic Measurements</td>
<td>33</td>
</tr>
<tr>
<td>2.6.5.1 Application of Dynamic Measurements in Evaluation of Rheological Properties of Cheese and Related Foods</td>
<td>35</td>
</tr>
<tr>
<td>2.7 Factors Affecting the Instrumental Evaluation of Cheese</td>
<td>39</td>
</tr>
<tr>
<td>2.7.1 Effects of Wall Slip</td>
<td>39</td>
</tr>
<tr>
<td>2.7.2 Effects of Structural Defects</td>
<td>40</td>
</tr>
<tr>
<td>2.7.3 Effects of Sampling Methods</td>
<td>41</td>
</tr>
<tr>
<td>2.7.4 Effects Related to Sample Shape and Dimensions</td>
<td>41</td>
</tr>
<tr>
<td>2.7.5 Effects of Temperature</td>
<td>43</td>
</tr>
<tr>
<td>2.7.6 Effects of Test Methods</td>
<td>44</td>
</tr>
<tr>
<td>2.8 Evaluation of Melting Properties of Cheese</td>
<td>45</td>
</tr>
<tr>
<td>2.8.1 The Oven Method</td>
<td>46</td>
</tr>
<tr>
<td>2.8.2 Dropping and Softening Points</td>
<td>47</td>
</tr>
<tr>
<td>2.8.3 Squeezing Flow Rheometry</td>
<td>48</td>
</tr>
<tr>
<td>2.8.4 Rotational Rheometry</td>
<td>51</td>
</tr>
<tr>
<td>2.8.5 Cappilary Rheometry</td>
<td>51</td>
</tr>
<tr>
<td>2.8.6 Differential Scanning Calorimetry</td>
<td>52</td>
</tr>
<tr>
<td>2.8.7 Dynamic Viscoelasticity</td>
<td>53</td>
</tr>
<tr>
<td>2.8.7.1 Gouda Cheese</td>
<td>54</td>
</tr>
<tr>
<td>2.8.7.2 Cheddar Cheese</td>
<td>55</td>
</tr>
<tr>
<td>2.8.7.3 Processed Cheese</td>
<td>56</td>
</tr>
<tr>
<td>2.8.7.4 General Discussion</td>
<td>57</td>
</tr>
<tr>
<td>2.8.8 Impulse Halfsquare Small Amplitude Deformation</td>
<td>57</td>
</tr>
</tbody>
</table>
CHAPTER

3 MATERIALS AND METHODS .. 60
3.1 Introduction .. 60
3.2 Processed Cheese Slices .. 60
 3.2.1 Slice On Slice (SOS) 60
 3.2.2 Individually Wrapped Slices (TWS) 61
 3.2.3 Other Materials .. 61
3.3 Equipment ... 62
 3.3.1 The Instron Universal Testing Machine 62
 3.3.2 The Texture Analyser TA.HD 64
 3.3.3 The Confocal Laser Scanning Microscope 66
3.4 Methods ... 68
 3.4.1 Sample Preparation 69
3.5 Experimental Procedure .. 72
 3.5.1 Shear Creep Experiments 72
 3.5.2 Shear Stress Relaxation Experiments 74
 3.5.2.1 Instron Shear Stress Relaxation Experiments 75
 3.5.2.2 TA.HD Shear Stress Relaxation Experiments 75
 3.5.3 Dynamic Impulse Halfsquare Experiments 77
 3.5.4 The Confocal Laser Scanning Microscopy 78

CHAPTER

4 EXPERIMENTAL RESULTS ... 79
4.1 Introduction .. 79
4.2 Shear Creep .. 80
4.3 Shear Stress Relaxation 84
4.4 Dynamic Impulse Halvsquare 94
4.5 The Confocal Laser Scanning Microscopy 99

CHAPTER

5 DISCUSSION ... 104
5.1 Introduction .. 104
5.2 Shear Creep ... 105
 5.2.1 Establishment of Linear Viscoelastic Region
 and the Instantaneous Speed 105
 5.2.2 The Stress-strain Relationship 106
 5.2.3 Shear Creep Compliance 106

5.3 Shear Stress Relaxation 107
 5.3.1 The Establishment of Linear Viscoelastic Region
 and the Instantaneous Speed 107
 5.3.2 Shear Stress Relaxation Modulus 108
 5.3.3 Fitted Shear Stress Relaxation Modulus 109

5.4 The Dynamic Viscoelasticity and Melting Characteristics 110
 5.4.1 The Dynamic Impulse Linear Viscoelastic Region 110
 5.4.2 Comparison of Storage and Loss Moduli of IWS and
 SOS Cheese .. 112
 5.4.3 The Dynamic Loss Tangent (δ) for IWS and SOS Cheese 112
 5.4.4 The Relationship Between the Storage and Loss Moduli
 and the Frequency of Impulse Halfsquare 113

5.5 The Confocal Laser Scanning Microscopy 114

5.6 General Discussion 115

CHAPTER

6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 118
 6.1 Conclusions .. 118
 6.2 Recommendations for Future Work 119

REFERENCES .. 120
LIST OF FIGURES

Fig. 2.1a & b. Microstructure of Hard Processed Cheese Examined by Scanning Electron Microscope 14

Fig. 2.2 The Application of Simple Shear to a Rectangular Block 22
Fig. 2.3 Maxwell Body .. 24
Fig. 2.4 Kelvin/Voigt Body ... 24

Fig. 2.5a & b Typical Creep Curves for a Viscoelastic Material 26

Fig. 2.6 Typical Stress Relaxation Curves for Different Materials 27
Fig. 2.7 Maxwell Body Connected in Parallel with a Spring 29
Fig. 2.8 Reciprocal Baseline Normalized Stress Relaxation 30

Fig. 2.9 Influence of Deformation Level on Stress Relaxation Behaviour of Galbanino Cheese ... 31

Fig. 2.10 Effect of Strain on Instantaneous Stress for Relaxation Experiments for Galbanino Cheese 32

Fig. 2.11 Shear Stress Responses of a Viscous Material Under Oscillatory Shear Stress ... 35

Fig. 2.12 Comparison of the Shear Stress Response of an Elastic Solid and Viscous Fluid Under an Oscillatory Shear Strain 36

Fig. 2.13 Schematic View of the Geometry of Lubricated Squeezing Flow, Only on the Absence of Friction will the Flow Front be Flat (plug flow) otherwise the Flow Front will be Parabolic and the Forces Much Higher 49

Fig. 2.14 Elongation Viscosity v's Strain Rate of Processed American Cheese at Various Temperatures 50

Fig. 2.15 Apparent Viscosity v's Shear Rate of Mozzarella Cheese at Various Temperatures .. 52

Fig. 2.16a, b & c. The Effect of Maturation Time on Dynamic Storage Modulus, Loss Modulus and Loss Tangent of Gouda Cheese 54

Fig. 2.17a, b & c. The Effect of Maturation Period on Dynamic Storage Modulus, Loss Modulus and Loss
Tangent of Cheddar Cheese ... 55

Fig 2.18a, b & c. The Effect of Temperature on Dynamic
Storage Modulus, Loss Modulus and Loss Tangent of
Soft and Hard Processed Cheese 56

Fig. 2.19a Sample Dimensions 58

Fig. 2.19b Typical Displacement/Force v's Time Responses 58

Fig. 3.1a Table Mounted Frame Showing Components 62

Fig.3.1b Microprocessor and the Control Console 63

Fig. 3.2a Texture Analyser TA.HD Showing Components 65

Fig. 3.2b The Control Console Showing Available Commands 65

Fig. 3.3a The Principles of Confocal Laser Scanning Microscope 66

Fig. 3.3b The CLSM System Setup 67

Fig. 3.4 A Thin Piano Wire Cutter 69

Fig. 3.5a A Sketch Diagram of the Instron Sample Holding Cell 70

Fig. 3.5b A Photograph of TA.HD Sample Holding Cell 70

Fig. 3.6 A Double Sandwich Sample/Platen Interface 72

Fig. 4.1a Shear Creep Responses Showing Displacement v's Time
for IWS Measured at Different Initial Applied Force 80

Fig. 4.1b Shear Creep Responses Showing Displacement v's Time
for SOS at Different Initial Applied Force 81

Fig. 4.2a Shear Creep Compliance of IWS v's Time Measured at
Different Initial Applied Force 81

Fig.4.2b Shear Creep Compliance of SOS v's Time Measured at
Different Initial Applied Force 82

Fig. 4.3a Comparison of Shear Creep for IWS and SOS
at the Same Applied Force ... 82

Fig. 4.3b Curve Fitted Shear Creep Compliance v's Time
for IWS at Various Applied Force 83

Fig. 4.3c Curve Fitted Shear Creep Compliance v's Time
for SOS at Various Applied Force 83

Fig. 4.4a Shear Stress Relaxation Curves Showing Forces
v’s Time for IWS at Different Initial Strain Using the Instron 85
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.4b</td>
<td>Shear Stress Relaxation Curves Showing Forces v's Time for IWS at Different Initial Strain Using TA.HD</td>
<td>85</td>
</tr>
<tr>
<td>Fig. 4.4c</td>
<td>Shear Stress Relaxation Curves Showing Forces v's Time for SOS Measured at Different Initial Strain using the Instron</td>
<td>86</td>
</tr>
<tr>
<td>Fig. 4.4d</td>
<td>Shear Stress Relaxation Curves Showing Forces v's Time for SOS Measured at Different Initial Strain Using TA.HD</td>
<td>86</td>
</tr>
<tr>
<td>Fig. 4.5a</td>
<td>Shear Stress Relaxation Modulus v's Time for IWS Measured at Different Initial Strain Using the Instron</td>
<td>87</td>
</tr>
<tr>
<td>Fig. 4.5b</td>
<td>Shear Stress Relaxation Modulus v's Time for SOS Measured at Different Initial Strain Using TA.HD</td>
<td>87</td>
</tr>
<tr>
<td>Fig. 4.5c</td>
<td>Shear Stress Relaxation Modulus v's Time for IWS Measured at Different Initial Strain Using the Instron</td>
<td>88</td>
</tr>
<tr>
<td>Fig. 4.5d</td>
<td>Shear Stress Relaxation Modulus v's Time for SOS Measured at Different Initial Strain Using TA.HD</td>
<td>88</td>
</tr>
<tr>
<td>Fig 4.6</td>
<td>Comparison of Shear Stress Relaxation Moduli of IWS and SOS Measured at Similar Strain Using the Instron and the TA.HD</td>
<td>89</td>
</tr>
<tr>
<td>Fig. 4.7a</td>
<td>Fitted Shear Relaxation Modulus for IWS Measured at Different Initial Strain Using the Instron</td>
<td>90</td>
</tr>
<tr>
<td>Fig. 4.7b</td>
<td>Fitted Shear Relaxation Modulus for IWS Measured at Different Initial Strain Using the TA.HD</td>
<td>90</td>
</tr>
<tr>
<td>Fig. 4.7c</td>
<td>Fitted Shear Relaxation Modulus for SOS Measured at Different Initial Strain Using the Instron</td>
<td>91</td>
</tr>
<tr>
<td>Fig. 4.7d</td>
<td>Fitted Shear Relaxation Modulus for SOS Measured at Different Initial Strain Using the TA.HD</td>
<td>91</td>
</tr>
<tr>
<td>Fig. 4.8</td>
<td>Comparison of Fitted Shear Relaxation Moduli for IWS and SOS Measured at Similar Strain Using the Instron and the TA.HD</td>
<td>92</td>
</tr>
<tr>
<td>Fig. 4.9a</td>
<td>The Dynamic Storage Modulus and Loss Modulus of IWS v's Shear Strain</td>
<td>94</td>
</tr>
<tr>
<td>Fig. 4.9b</td>
<td>The Dynamic Storage Modulus and Loss Modulus of SOS v's Shear Strain</td>
<td>95</td>
</tr>
<tr>
<td>Fig. 4.10a</td>
<td>The Effect of Temperature on Dynamic Storage and Loss Moduli of IWS</td>
<td>95</td>
</tr>
</tbody>
</table>
Fig. 4.10b The Effect of Temperature on Dynamic
Storage and Loss Moduli of SOS 96
Fig. 4.11a Comparison of Dynamic Storage Moduli of IWS
and SOS as Shear Strain is Varied 96
Fig. 4.11b Comparison of Dynamic Loss Moduli of IWS
and SOS as Shear Strain is Varied 97
Fig. 4.12a The Effect of Temperature on Dynamic Loss
Tangent for IWS at Different Strain 97
Fig. 4.12b The Effect of Temperature on Dynamic Loss
Tangent for SOS at Different Strain 98
Fig. 4.13 Comparison of Temperature Effects on Dynamic Loss
Tangent Measured at two Similar Strain for IWS and SOS 98
Fig. 4.14 Dynamic Storage and Loss Moduli for IWS
and SOS v’s Frequency Sweep 99
Fig. 4.15 A Confocal Laser Scanning Micrograph for IWS Showing
Fat as Dark areas and Protein as Light areas 100
Fig. 4.16a A Confocal Laser Scanning Micrograph for SOS
Showing Fat as Dark areas and Protein as Light Mass 100
Fig. 4.16b A Confocal Laser Scanning Micrograph for SOS
Showing Fat as Lighter areas and Protein as Dark Mass 101
Fig. 4.17a A Confocal Laser Scanning Micrograph for IWS Showing
Fat Crystals at about 15 µm Below the Sample Surface 101
Fig. 4.17b A Confocal Laser Scanning Micrograph of IWS Showing Fat
Crystals at about 120 µm Below the Sample Surface 102
Fig. 4.17c A Confocal Laser Scanning Micrograph for SOS Showing Fat
Crystals at about 15 µm Below the Sample Surface 102
Fig. 4.18 A Three Dimensional Micrograph of SOS Showing Fat
Globules as Spherical Structures 103
LIST OF TABLES

Table 2.1 Values of Complex Viscosity of Cheese at Various Ages 38
Table 2.2 Shear Moduli of Natural and Imitation Mozzarella at 20°C 38
Table 3.1 The Chemical Composition of Processed Cheese Slices 61
Table 4.1 Calculated Instantaneous Compliance J_0, Retardation
 Time (τ_{rel}) and the correlation Coefficient (r^2) 84
Table 4.2 Calculated λ_{rel}, G_1, G_0 for IWS and SOS at Different
 Initial Strain Using the Instron and the TA.HD 93