Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Theoretical and Computational Analysis of the Two-Stage Capacitated Plant Location Problem

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Decision Science

at Massey University, Palmerston North, New Zealand.

Bronwyn Louise Wildbore
2008
Abstract

Mathematical models for plant location problems form an important class of integer and mixed-integer linear programs. The Two-Stage Capacitated Plant Location Problem (TSCPLP), the subject of this thesis, consists of a three level structure: in the first or upper-most level are the production plants, the second or central level contains the distribution depots, and the third level is the customers. The decisions to be made are: the subset of plants and depots to open; the assignment of customers to open depots, and therefore open plants; and the flow of product from the plants to the depots, to satisfy the customers’ service or demand requirements at minimum cost.

The formulation proposed for the TSCPLP is unique from previous models in the literature because customers can be served from multiple open depots (and plants) and the capacity of both the set of plants and the set of depots is restricted. Surrogate constraints are added to strengthen the bounds from relaxations of the problem. The need for more understanding of the strength of the bounds generated by this procedure for the TSCPLP is evident in the literature. Lagrangian relaxations are chosen based more on ease of solution than the knowledge that a strong bound will result. Lagrangian relaxation has been applied in heuristics and also inserted into branch-and-bound algorithms, providing stronger bounds than traditional linear programming relaxations. The current investigation provides a theoretical and computational analysis of Lagrangian relaxation bounds for the TSCPLP directly.

Results are computed through a Lagrangian heuristic and CPLEX. The test problems for the computational analysis cover a range of problem size and strength of capacity constraints. This is achieved by scaling the ratio of total depot capacity to customer demand and the ratio of total plant capacity to total depot capacity on subsets of problem instances. The analysis shows that there are several constraints in the formulation that if dualized in a Lagrangian relaxation provide strong bounds on the optimal solution to the TSCPLP. This research has applications in solution techniques for the TSCPLP and can be extended to some transformations of the TSCPLP. These include the single-source TSCPLP, and the multi-commodity TSCPLP which accommodates for multiple products or services.
Acknowledgements

I would like to acknowledge the support and efforts of those who have contributed to my PhD journey. Firstly to my supervisor Associate Professor Ramaswami Sridharan, who encouraged me to start a PhD and has provided guidance and his wealth of knowledge through the last three and a half years from many far flung corners of the world — thank goodness for email! Thank you also to Associate Professor Chin-Diew Lai for his co-supervision, and being the friendly face always bringing kind words when needed. You have made the PhD process and the isolation from Sri workable.

I would also like to thank all the staff of the Statistics department at Massey, in particular Wendy Browne for always being interested in my work and Dr Jonathan Godfrey for invaluable \LaTeX{} knowledge and general support through the PhD process. Thanks also to my fellow post-graduate students in the department for your friendship over the years.

Thank you to my friends and family for your love, support and interest in my work. To my brother for your endless supply of programming knowledge and advice, and to my parents without whom I wouldn’t have had the courage to achieve this; thank you just isn’t enough.

And finally to my husband Michael who has been beside me through the difficult completion, examination and submission stages of my thesis – your endless love and support means the world to me.
iv
Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures viii

List of Tables x

1 Introduction 1
 1.1 Preface ... 1
 1.2 Formulations ... 3
 1.3 Outline of thesis .. 7

2 Literature survey 9
 2.1 Introduction .. 9
 2.2 Plant location problems and their variations 10
 2.3 Lagrangian relaxation and subgradient optimization 15
 2.4 Heuristics for the TSCPLP 21
 2.4.1 Lagrangian heuristics 21
 2.4.2 Tabu Search and other metaheuristics 23
 2.4.3 Primal heuristics .. 24
 2.5 Exact methods for the TSCPLP 25
 2.6 The TSCPLP and the TSCPLPSS 27
 2.7 The Multi-Commodity TSCPLP 30
 2.8 The Multi-Period, Multi-Commodity TSCPLP 31
 2.9 Summary ... 32
3 Theoretical analysis of the TSCPLP - Part One 33
 3.1 Introduction ... 33
 3.2 Formulation ... 34
 3.3 Computational complexity 36
 3.4 Relaxations and bound relationships 37
 3.4.1 Trivial bounds .. 38
 3.5 Summary .. 43

4 Theoretical analysis of the TSCPLP - Part Two 44
 4.1 Introduction ... 44
 4.2 Formulation ... 45
 4.3 Relaxations and bound relationships 46
 4.3.1 Equivalent bounds 47
 4.3.2 Dominant bounds 59
 4.3.3 Other relationships 65
 4.4 Summary of relationships 68
 4.5 Conclusion .. 70

5 Computational analysis of the TSCPLP 71
 5.1 Introduction ... 71
 5.2 Solving the relaxations 75
 5.2.1 Lagrangian heuristic 76
 5.3 Test problems and experimental design 79
 5.4 Computational results 82
 5.5 Discussion of results 94
 5.6 Applications .. 106
 5.7 Summary .. 108

6 The TSCPLP with single-source constraints 109
 6.1 Introduction ... 109
 6.1.1 Computational complexity 110
 6.2 Formulation ... 110
 6.3 Computational analysis 112
 6.3.1 Solving the relaxations 113
 6.3.2 Test problems .. 117
6.3.3 Computational results .. 119
6.3.4 Discussion of results .. 128
6.4 Applications ... 135
6.5 Summary ... 136

7 Conclusions ... 138
 7.1 Introduction ... 138
 7.2 Research conclusions ... 138
 7.3 Future research directions 144

A Program source code .. 147

B Example files ... 148
 B.1 Input file ... 148
 B.2 Output file .. 151

C Data from computational results 156
 C.1 TSCPLP ... 156
 C.2 TSCPLPSS .. 175

D Accompanying CD-ROM ... 188

E References ... 193
List of Figures

1.1 Diagram illustrating a two-stage plant location structure ... 3

5.1 Ratio of upper and lower bounds to optimal solution, problem size $3 \times 5 \times 10$... 97
5.2 Duality gaps from upper to lower bounds for varying depot ratios on four relaxations ... 102
5.3 Percentage gaps from upper bounds to optimal solutions for varying depot ratios on four relaxations ... 102
5.4 Percentage gaps from lower bounds to linear programming bounds for varying depot ratios on four relaxations ... 103
5.5 Duality gaps from upper to lower bounds for varying plant ratios on four relaxations ... 104
5.6 Percentage gaps from upper bounds to optimal solutions for varying plant ratios on four relaxations ... 105
5.7 Percentage gaps from lower bounds to linear programming bounds for varying plant ratios on four relaxations ... 105

6.1 Ratio of upper and lower bounds to optimal solution, problem size $3 \times 5 \times 10$... 129
6.2 Duality gaps from upper to lower bounds for varying depot ratios on four relaxations ... 131
6.3 Percentage gaps from upper bounds to optimal solutions for varying depot ratios on four relaxations ... 132
6.4 Percentage gaps from lower bounds to linear programming bounds for varying depot ratios on four relaxations ... 133
6.5 Duality gaps from upper to lower bounds for varying plant ratios on four relaxations ... 133
6.6 Percentage gaps from upper bounds to optimal solutions for varying plant ratios on four relaxations ... 134
6.7 Percentage gaps from lower bounds to linear programming bounds for varying plant ratios on four relaxations 135
List of Tables

4.1 Summary of theoretical results .. 68

5.1 Duality gaps for upper to lower bounds on problems sized 3×5×10 84
5.2 Duality gaps for upper to lower bounds on problems sized 5×10×25 85
5.3 Gaps for upper bounds to optimal solutions and lower bounds to linear
 programming bounds on problems sized 3×5×10 86
5.4 Gaps for upper bounds to optimal solutions and lower bounds to linear
 programming bounds on problem sized 5×10×25 87
5.5 Duality gaps for upper to lower bounds on problems sized 10×33×50 88
5.6 Duality gaps for upper to lower bounds on problems sized 15×40×60 89
5.7 Duality gaps for upper to lower bounds on problems sized 20×50×75 90
5.8 Duality gaps for upper to lower bounds on problems sized 30×60×120 91
5.9 Duality gaps for upper to lower bounds on problems sized 40×80×200 92
5.10 Duality gaps for upper to lower bounds on problems sized 20×50×250 93
5.11 Average gaps for upper to lower bounds for varying depot ratios 94
5.12 Average gaps for upper bounds to optimal solutions for varying depot ratios 95
5.13 Average gaps for lower bounds to linear programming bounds for varying
 depot ratios .. 95
5.14 Average gaps for upper to lower bounds for varying plant ratios 95
5.15 Average gaps for upper bounds to optimal solutions for varying plant ratios 96
5.16 Average gaps for lower bounds to linear programming bounds for varying
 plant ratios .. 96

6.1 Duality gaps for upper to lower bounds on problems sized 3×5×10 120
6.2 Gaps for upper bounds to optimal solutions and lower bounds to linear
 programming bounds on problems sized 3×5×10 121
6.3 Duality gaps for upper to lower bounds on problems sized 10×33×50 122
6.4 Duality gaps for upper to lower bounds on problems sized 15×40×60 123
6.5 Duality gaps for upper to lower bounds on problems sized 20×50×75 124
6.6 Duality gaps for upper to lower bounds on problems sized 30×60×120 . . . 125
6.7 Average gaps for upper to lower bounds for varying depot ratios 126
6.8 Average gaps for upper bounds to optimal solutions for varying depot ratios 126
6.9 Average gaps for lower bounds to linear programming bounds for varying
 depot ratios . 126
6.10 Average gaps for upper to lower bounds for varying plant ratios 127
6.11 Average gaps for upper bounds to optimal solutions for varying plant ratios 127
6.12 Average gaps for lower bounds to linear programming bounds for varying
 plant ratios . 127
C.1 Problem 1 results, size 3×5×10 . 157
C.2 Problem 2 results, size 3×5×10 . 158
C.3 Problem 3 results, size 3×5×10 . 159
C.4 Problem 1 results, size 5×10×25 . 160
C.5 Problem 2 results, size 5×10×25 . 161
C.6 Problem 3 results, size 5×10×25 . 162
C.7 Problem 1 results, larger sizes . 163
C.8 Problem 1 results continued, larger sizes 164
C.9 Problem 2 results, larger sizes . 165
C.10 Problem 2 results continued, larger sizes 166
C.11 Problem 3 results, larger sizes . 167
C.12 Problem 3 results continued, larger sizes 168
C.13 Depot ratio results, dualizing constraint 2 169
C.14 Depot ratio results, dualizing constraint 5 170
C.15 Depot ratio results, dualizing constraints 3 and 5 171
C.16 Depot ratio results, dualizing constraints 2, 3 and 4 172
C.17 Plant ratio results, dualizing constraint 2 173
C.18 Plant ratio results, dualizing constraint 5 173
C.19 Plant ratio results, dualizing constraints 3 and 5 174
C.20 Plant ratio results, dualizing constraints 2, 3 and 4 174
C.21 Problem 1 results, size 3×5×10, single-source 175
C.22 Problem 2 results, size 3×5×10, single-source 176