Dietary titanium dioxide particles and intestinal health

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Nutritional Science

at Massey University, Manawatū,
New Zealand.

Sebastian Riedle

2014
Abstract

The purpose of this dissertation was to investigate the relationship between food-grade titanium dioxide particles and intestinal health, in particular the development of Crohn’s disease after uptake of titanium dioxide particles in intestinal lymphoid tissues.

Crohn’s disease is a common form of inflammatory bowel disease. It is characterised by chronic inflammation of the gastrointestinal tract and affects approximately 1 in 1,000 people. The aetiology of Crohn’s disease is unclear, but both genetic and environmental factors are involved in the development of the disease.

The gene that is most commonly associated with Crohn’s disease is the nucleotide-binding oligomerisation domain (NOD) 2 gene. The diet is one of the most likely environmental factors that have been proposed to play a role in Crohn’s disease. It has been hypothesised that uptake of titanium dioxide particles, which are used as a whitening agent in processed foods, toothpaste, and pharmaceuticals, by macrophages in intestinal lymphoid tissues negatively affects intestinal health and contributes to the development of Crohn’s disease.

To investigate this hypothesis, immune cell-stimulating properties of titanium dioxide were first assessed in vitro with macrophages derived from wild-type mice and mice with a Crohn’s disease-like Nod2 gene variant. These mouse models were also used to determine particle uptake in intestinal lymphoid tissues in vivo after exposure to titanium dioxide with the diet and effects of this dietary exposure on intestinal health and urine metabolites.

The results from the in vitro studies showed that titanium dioxide induced the release of the pro-inflammatory cytokine interleukin-1β. For the first time, it has been shown that accumulation of particles in intestinal lymphoid tissues was a consequence of titanium dioxide intake with the diet. However, this had no negative effects on growth performance and intestinal health of both wild-type mice and mice with a Crohn’s disease-like Nod2 gene variant. Nevertheless, differences in urine metabolite profiles between wild-type mice exposed to titanium dioxide and unexposed wild-type mice indicated that consumption of a titanium dioxide-containing diet affected the metabolism.

This dissertation forms the foundation for future studies with animal models about the relationship between titanium dioxide and intestinal health.
Acknowledgements

Firstly, I owe my deepest gratitude to my supervisor Dist. Prof. Harjinder Singh (Riddet Institute, Massey University, Palmerston North, NZ) for taking on the responsibilities that come with supervising a PhD project and for his guidance and advice throughout the years.

Furthermore, I am most grateful for the support, guidance, and advice that I received from my co-supervisors Dr Nicole Roy and Dr Don Otter (both AgResearch, Palmerston North, NZ). Their support throughout the years was invaluable. Without their constant encouragement, openness to pursue new ideas, and valuable feedback this dissertation would not have been what it is now.

In addition, I am very thankful for the support offered by my co-supervisors Dr Laetitia Pele and Dr Jonathan Powell (both Medical Research Council Human Nutrition Research, Cambridge, UK) who laid the foundations for this PhD project through their extensive previous research in the field of dietary particles. Their knowledge, enthusiasm for the project, and advice through many e-mails and telephone conference calls was much appreciated. It was a great pleasure to meet Dr Pele and Dr Powell in person several times throughout this project to discuss the progress face-to-face and to carry out laboratory work at their institute.

Moreover, I would like to thank the people who kindly assisted me during this PhD project including Ms Kelly Armstrong, Dr Matthew Barnett, Dr Mark McCann, Mr Jason Peters, and Ms Leigh Ryan (all AgResearch, Palmerston North, NZ) for training in laboratory work, discussions, and/or help with sample collection during the animal studies; Ms Genevieve Baildon and Mr Ric Broadhurst (both AgResearch, Hamilton, NZ) for providing the animals for the studies and training in sample collection; Dr Jianyu Chen, Mr Douglas Hopcroft, and Ms Jordan Taylor (all Manawatū Microscopy and Imaging Centre, Massey University, Palmerston North, NZ) for help with and training in various microscopy techniques; Dr Nuno Faria and Ms Carolin Haas (both Medical Research Council Human Nutrition Research, Cambridge, UK) for assistance with laboratory work; Dr John Koolaard and Ms Catherine Lloyd-West (both AgResearch, Palmerston North, NZ) for advice on statistical analyses and R; Ms Denise Martin (AgResearch, Palmerston North, NZ) for administrative support; Ms Heike Schwendel (AgResearch, Palmerston North, NZ) for help during sample analysis with mass spectrometry; Mr Paul Smale (AgResearch, Mosgiel, NZ) for providing a
custom-made image analysis program; and Dr Wayne Young (AgResearch, Palmerston North, NZ) for advice on R and providing the R code for metabolomics data analysis.

Many thanks go to my colleagues and other students from the Food Nutrition & Health and the Rumen Microbiology teams at AgResearch (Palmerston North, NZ) for their friendship, help, and support throughout the years.

I would also like to thank the staff and students from the Biomineral Research team at the Medical Research Council Human Nutrition Research institute (Cambridge, UK) who always made me feel very welcome during my visits.

Last but not least, I thank my wife Sabine for her love, support, understanding and encouragement when I most needed it.

Finally, I would like to acknowledge the financial support for this project granted by the Riddet Institute, AgResearch, Nutrigenomics New Zealand, and the Medical Research Council, UK. Personally I was supported with a doctoral scholarship from Massey University and a stipend from AgResearch, for which I am very grateful.

All animal experiments that were carried out during the course of this project were in compliance with the New Zealand Animal Welfare Act 1999 and were approved by the Grasslands Ethics Committee (Palmerston North, NZ).
Table of contents

Abstract ... iii
Acknowledgements .. v
Table of contents .. ix
List of figures ... xvii
List of tables ... xxiii
List of appendices ... xxvii
List of abbreviations ... xxix
Introduction ... 1

Chapter 1 Literature review .. 5

1.1 The gastrointestinal tract and Crohn’s disease .. 6
 1.1.1 Structure and function of the mammalian gastrointestinal tract 6
 1.1.2 Crohn’s disease as a form of inflammatory bowel disease 11
1.2 The role of the microbial pattern recognition receptor NOD2 in Crohn’s disease 14
 1.2.1 Genetic susceptibility to Crohn’s disease ... 14
 1.2.2 Structure and function of NOD2 ... 16
 1.2.3 Mouse models with Nod2 gene modifications .. 17
1.3 Dietary particles in the gastrointestinal tract .. 19
 1.3.1 Endogenous dietary particles ... 19
 1.3.2 Exogenous dietary particles ... 21
 1.3.3 Particle uptake across the intestinal epithelium ... 28
1.4 Effects of titanium dioxide on cultured cells, animal models, and humans 30
 1.4.1 Effects of titanium dioxide on intestinal and macrophage-like cell lines 31
 1.4.2 Effects of titanium dioxide on animal models after gastrointestinal exposure ... 41
 1.4.3 Effects of titanium dioxide and bacterial lipopolysaccharide co-stimulation on cultured human cells ... 47
 1.4.4 Effects of titanium dioxide on humans .. 52
1.5 Concluding remarks... 54
 1.5.1 Hypotheses concerning dietary particles ... 54
 1.5.2 Hypothesis, aims, and structure of this dissertation .. 56

Chapter 2 Exposure of cultured immune cells to titanium dioxide with or
without co-stimulation with bacterial antigens ... 61
 2.1 Introduction.. 62
 2.2 Hypothesis and aims... 63
 2.3 Materials and methods ... 64
 2.3.1 Titanium dioxide particles... 64
 2.3.2 Animals... 65
 2.3.3 Culture of murine bone marrow-derived macrophages 66
 2.3.4 Exposure of bone marrow-derived macrophages to titanium dioxide with or
 without bacterial antigens .. 67
 2.3.5 Metabolic activity analysis .. 67
 2.3.6 Flow cytometry analysis .. 68
 2.3.7 Exposure of human peripheral blood mononuclear cells to titanium dioxide
 with or without bacterial antigens ... 72
 2.3.8 Cytokine detection in cell culture supernatants .. 73
 2.3.9 Statistical analysis ... 74
 2.4 Results... 75
 2.4.1 Characterisation of food-grade titanium dioxide particles 75
 2.4.2 Cytotoxicity of titanium dioxide ... 75
 2.4.3 Phenotype and morphology of bone marrow-derived macrophages after
 exposure to titanium dioxide .. 79
 2.4.4 Activation of bone marrow-derived macrophages after exposure to titanium
 dioxide ... 86
 2.4.5 Cytokine secretion by bone marrow-derived macrophages after exposure to
 titanium dioxide .. 92
2.4.6 Cytokine secretion by human peripheral blood mononuclear cells after exposure to titanium dioxide

2.5 Discussion

2.5.1 Reassessment of the hypothesis

2.5.2 Suitability of bone marrow-derived macrophages as a model for intestinal macrophages

2.5.3 Cytotoxicity of titanium dioxide

2.5.4 Uptake of titanium dioxide by cultured cells

2.5.5 Activation marker expression after exposure to titanium dioxide

2.5.6 Pro-inflammatory cytokine secretion after exposure to titanium dioxide

2.5.7 Conclusion

Chapter 3 Exposure of wild-type mice to dietary titanium dioxide

3.1 Introduction

3.2 Hypothesis and aims

3.3 Materials and methods

3.3.1 Study considerations

3.3.2 Preparation of titanium dioxide-containing mouse diets

3.3.3 Animals and experimental design

3.3.4 Tissue collection

3.3.5 Flow cytometry analysis

3.3.6 Sample preparation for microscopy

3.3.7 Dark field microscopy

3.3.8 Haematoxylin and eosin staining and bright field microscopy

3.3.9 Reflectance confocal microscopy and image analysis

3.3.10 Immunofluorescence staining and confocal microscopy

3.3.11 Statistical analysis

3.4 Results

3.4.1 Detection of titanium dioxide particles in the diet
3.4.2 Performance and titanium dioxide intake.. 132
3.4.3 Effects of dietary titanium dioxide exposure on immune cell populations of intestinal lymphoid tissues... 136
3.4.4 Observation of titanium dioxide particle uptake in intestinal lymphoid tissues with dark field microscopy ... 150
3.4.5 Observation of titanium dioxide particle uptake in Peyer’s patches with bright field microscopy ... 150
3.4.6 Assessment of titanium dioxide particle uptake in Peyer’s patches with reflectance confocal microscopy .. 150
3.4.7 Titanium dioxide particle uptake by Peyer’s patch dendritic cells 156
3.5 Discussion.. 156
 3.5.1 Reassessment of the hypothesis... 156
 3.5.2 Titanium dioxide incorporation into the diet.. 162
 3.5.3 Effects of oral exposure to titanium dioxide on body weights 162
 3.5.4 Daily titanium dioxide intake in this study .. 163
 3.5.5 Immune cell populations of murine Peyer’s patches 164
 3.5.6 Titanium dioxide particle uptake in Peyer’s patches 165
 3.5.7 Conclusion.. 167

Chapter 4 Exposure of wild-type mice and mice with a Crohn’s disease-like Nod2 gene variant to dietary titanium dioxide ... 171
 4.1 Introduction... 172
 4.2 Hypothesis and aims... 173
 4.3 Materials and methods ... 173
 4.3.1 Study considerations... 173
 4.3.2 Experimental design, diets, and animals .. 173
 4.3.3 Tissue collection and sample preparation .. 175
 4.3.4 Histology of ileum and colon.. 175
 4.3.5 Dark field and reflectance confocal microscopy 176
Chapter 4 Effects of dietary titanium dioxide on body weight and intestinal characteristics of wild-type mice and mice with a Crohn’s disease-like Nod2 gene variant on a standard diet

4.3.6 Flow cytometry analysis

4.3.7 Statistical analysis

4.4 Results

4.4.1 Body weight and intestinal characteristics of wild-type mice and mice with a Crohn’s disease-like Nod2 gene variant on a standard diet

4.4.2 Performance and titanium dioxide intake

4.4.3 Bright-field microscopy and histology of ileum and colon cross-sections

4.4.4 Assessment of titanium dioxide particle uptake in Peyer’s patches and the ileal mucosa

4.4.5 Monocyte populations of Peyer’s patches from wild-type mice and mice with a Crohn’s disease-like Nod2 gene variant on a standard diet

4.5 Discussion

4.5.1 Reassessment of the hypothesis

4.5.2 Considerations about the performance of mice with a Crohn’s disease-like Nod2 gene variant

4.5.3 Titanium dioxide particle uptake in Peyer’s patches of mice with a Crohn’s disease-like Nod2 gene variant

4.5.4 Titanium dioxide particle uptake across the intestinal epithelium

4.5.5 Conclusion

Chapter 5 Effects of dietary titanium dioxide on urine metabolite profiles of wild-type mice and mice with a Crohn’s disease-like Nod2 gene variant

5.1 Introduction

5.2 Hypothesis and aims

5.3 Materials and methods

5.3.1 Metabolomics analysis workflow

5.3.2 Animals and urine collection

5.3.3 Sample preparation

5.3.4 Liquid chromatography mass spectrometry analysis

5.3.5 Data analysis
List of figures

Figure 1.1 Schematic overview of the structure of the gastrointestinal tract. 7
Figure 1.2 Schematic overview of the small intestine including lymphoid tissues. 10
Figure 1.3 Overview of the structure of this dissertation. ... 59
Figure 2.1 Gating strategy for flow cytometry analysis of TiO$_2$-exposed BMDMs. 71
Figure 2.2 TiO$_2$ particle characterisation .. 76
Figure 2.3 Metabolic activity of BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. .. 77
Figure 2.4 Viability of BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. ... 81
Figure 2.5 F4/80 expression of BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. .. 82
Figure 2.6 FSC versus SSC dot plots of TiO$_2$-exposed BMDMs .. 83
Figure 2.7 FSC intensity of BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. ... 85
Figure 2.8 SSC intensity of BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. ... 87
Figure 2.9 Relative SSC increase of TiO$_2$-exposed BMDMs compared to unstimulated controls with or without MDP/PGN co-stimulation. .. 88
Figure 2.10 CD80 expression of BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. .. 90
Figure 2.11 CD86 expression of BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. .. 91
Figure 2.12 TNF-α secretion by BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. .. 94
Figure 2.13 IL-1β secretion by BMDMs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. .. 95
Figure 2.14 IL-1β secretion by PBMCs after TiO$_2$ exposure with or without MDP/PGN co-stimulation. .. 97
Figure 2.15 IL-17 secretion by PBMCs after TiO$_2$ exposure with or without MDP/PGN co-stimulation.

Figure 3.1 Gating strategy to identify lymphocyte subsets in PPs and MLNs with flow cytometry.

Figure 3.2 Gating strategy to identify monocyte subsets and DC subpopulations in PPs and MLNs with flow cytometry.

Figure 3.3 TiO$_2$ particles in AIN-76A diet containing 625 mg TiO$_2$/kg.

Figure 3.4 Body weights of WT mice fed a diet with or without TiO$_2$ for 6 weeks.

Figure 3.5 Body weights of WT mice fed a diet with or without TiO$_2$ for 12 weeks.

Figure 3.6 Body weights of WT mice fed a diet with or without TiO$_2$ for 18 weeks.

Figure 3.7 Frequencies of lymphocytes and monocytes in PPs and MLNs from WT mice fed a diet with or without TiO$_2$.

Figure 3.8 Frequencies of lymphocyte populations in PPs and MLNs from WT mice fed a diet with or without TiO$_2$.

Figure 3.9 Frequencies of monocyte populations in PPs and MLNs from WT mice fed a diet with or without TiO$_2$.

Figure 3.10 Frequencies of DC subsets in PPs and MLNs from WT mice fed a diet with or without TiO$_2$.

Figure 3.11 Dark field microscopy images of PP cross-sections from WT mice fed a diet with or without TiO$_2$.

Figure 3.12 Dark field microscopy images of MLN cross-sections from WT mice fed a diet with or without TiO$_2$.

Figure 3.13 Bright field microscopy images of PP cross-sections from WT mice fed a diet with or without TiO$_2$.

Figure 3.14 Reflectance confocal microscopy images of PP cross-sections from WT mice fed a diet with or without TiO$_2$.

Figure 3.15 Reflectance confocal microscopy images of the SED area from a WT mouse fed a diet with TiO$_2$.

Figure 3.16 TiO$_2$ particle uptake in SED areas from WT mice fed a diet with or without TiO$_2$.
Figure 3.17 Sizes of SED areas used for TiO$_2$ particle uptake assessment from WT mice fed a diet with or without TiO$_2$. ... 159

Figure 3.18 Immunofluorescence confocal microscopy image of a PP cross-section from a WT mouse fed a diet with TiO$_2$. ... 160

Figure 3.19 Immunofluorescence confocal microscopy image of the SED area from a mouse fed a diet with TiO$_2$. ... 161

Figure 4.1 Body weights and numbers of PPs of WT and $Nod2^{m/m}$ mice fed a standard rodent diet. ... 179

Figure 4.2 Small intestine and colon lengths of WT and $Nod2^{m/m}$ mice fed a standard rodent diet. ... 180

Figure 4.3 Body weights and weight changes relative to initial body weight of WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. ... 183

Figure 4.4 Numbers of PPs and small intestine and colon lengths of WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. ... 186

Figure 4.5 Bright field microscopy images of ileum cross-sections from WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. ... 188

Figure 4.6 Bright field microscopy images of colon cross-sections from WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. ... 189

Figure 4.7 Ileum and colon histology scores of WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. .. 190

Figure 4.8 Lengths of crypts and villi in the ileum from WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. .. 191

Figure 4.9 Lengths of crypts in the colon from WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. .. 192

Figure 4.10 Dark field microscopy images of PP cross-sections from WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. ... 193

Figure 4.11 TiO$_2$ particle uptake in SED areas from WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. .. 194

Figure 4.12 Sizes of SED areas used for TiO$_2$ particle uptake assessment from WT and $Nod2^{m/m}$ mice fed a diet with or without TiO$_2$ for 18 weeks. ... 195
Figure 4.13 Dark field microscopy images of ileum cross-sections from WT and Nod2^{m/m} mice fed a diet with or without TiO₂ for 18 weeks... 196

Figure 4.14 Frequencies of monocytes and monocyte populations in PPs from WT and Nod2^{m/m} mice on a standard rodent diet. .. 198

Figure 4.15 Frequencies of DC subsets in PPs from WT and Nod2^{m/m} mice on a standard rodent diet.. 199

Figure 5.1 Overview of the workflow for metabolomics studies.............................. 211

Figure 5.2 PLS-DA plots of negative and positive ion profiles detected in urine samples from WT mice fed a diet with or without TiO₂ analysed according to sex. 219

Figure 5.3 PLS-DA plots of negative and positive ion profiles detected in urine samples from female WT mice fed a diet with or without TiO₂ analysed according to urine collection time point.. 220

Figure 5.4 PLS-DA plots of negative and positive ion profiles detected in urine samples from WT and Nod2^{m/m} mice fed a diet with or without TiO₂ analysed according to Nod2 genotype.. 223

Figure 5.5 PLS-DA plots of negative and positive ion profiles detected in urine samples from WT and Nod2^{m/m} mice fed a diet with or without TiO₂ analysed according to urine collection time point.. 224

Figure 5.6 PLS-DA plot of positive ion profiles detected in urine samples from WT and Nod2^{m/m} mice fed a diet with or without TiO₂ analysed according to diet. 225

Figure 5.7 PLS-DA plots of negative and positive ion profiles detected in urine samples from WT and Nod2^{m/m} mice fed a diet with or without TiO₂ for 18 weeks analysed according to Nod2 genotype and diet. .. 226

Figure 5.8 Overview of selected tryptophan catabolism pathways.......................... 233

Figure 5.9 Comparisons of the levels for the negative ion m/z 204.0662 and the positive ion m/z 206.0811 detected in urine samples from WT and Nod2^{m/m} mice fed a diet with or without TiO₂.. 235

Figure 5.10 Comparisons of the levels for the negative ion m/z 174.0554 and the positive ion m/z 176.0705 detected in urine samples from WT and Nod2^{m/m} mice fed a diet with or without TiO₂.. 236
Figure 5.11 Comparisons of the levels for the negative ions m/\tilde{z} 204.0297 and m/\tilde{z} 160.0408 and the positive ion m/\tilde{z} 206.0447 detected in urine samples from WT and Nod2$^{+/+}$ mice fed a diet with or without TiO$_2$. ..238
List of tables

Table 1.1 Confectionery and other foodstuffs with TiO$_2$ available in New Zealand supermarkets. ... 24
Table 1.2 Mayonnaises and white dressings with (highlighted in red) or without TiO$_2$ available in New Zealand supermarkets. ... 25
Table 1.3 Toothpastes with (highlighted in red) or without TiO$_2$ available in New Zealand supermarkets. ... 27
Table 1.4 Summary of studies that investigated effects of TiO$_2$ particles on cultured human cell lines. ... 32
Table 1.5 Summary of studies that investigated effects of TiO$_2$ particles on cultured murine cell lines. ... 35
Table 1.6 Studies that investigated TiO$_2$ particle exposure on intestinal and phagocytic cell lines and their reported effects. ... 40
Table 1.7 Summary of studies that investigated effects of TiO$_2$ particles on animals. 42
Table 1.8 Summary of studies that investigated effects of TiO$_2$ particles with LPS co-stimulation on cultured human cells. ... 48
Table 2.1 Two-way ANOVA results for metabolic activity comparison of murine BMDMs exposed to TiO$_2$ with or without MDP/PGN co-stimulation. ... 78
Table 2.2 Two-way ANOVA results for viability and F4/80 expression comparison of murine BMDMs exposed to TiO$_2$ with or without MDP/PGN co-stimulation. 80
Table 2.3 Two-way ANOVA results for FSC and SSC intensities and relative SSC increase comparison of murine BMDMs exposed to TiO$_2$ with or without MDP/PGN co-stimulation. ... 84
Table 2.4 Two-way ANOVA results for CD80 and CD86 expression comparison of murine BMDMs exposed to TiO$_2$ with or without MDP/PGN co-stimulation. 89
Table 2.5 Two-way ANOVA results for IL-1β and TNF-α secretion comparison of murine BMDMs exposed to TiO$_2$ with or without MDP/PGN co-stimulation. 93
Table 3.1 Diet compositions according to the manufacturer. ... 120
Table 3.2 Means (\pm SD) for age, initial and final body weights, daily weight gain, and daily food intake of female WT mice fed a diet with or without TiO$_2$. .. 134
Table 3.3 Means (± SD) for age, initial and final body weight, daily weight gain, and daily food intake of male WT mice fed a diet with or without TiO$_2$. .. 135

Table 3.4 Means (± SD) for daily TiO$_2$ intake and daily TiO$_2$ dose of female WT mice fed a diet with TiO$_2$. ... 140

Table 3.5 Means (± SD) for daily TiO$_2$ intake and daily TiO$_2$ dose of male WT mice fed a diet with TiO$_2$. ... 141

Table 3.6 Two-way ANOVA results for comparisons of immune cell population frequencies in PPs and MLNs of WT mice fed a diet with or without TiO$_2$. 142

Table 3.7 Mean (± SD) frequencies of lymphocytes and lymphocyte populations in PPs and MLNs from WT mice according to sampling time point. ... 144

Table 3.8 Mean (± SD) frequencies of monocytes, monocyte populations, and DC subsets in PPs from WT mice according to sampling time point. ... 145

Table 3.9 P-value results for pairwise group mean comparisons of the number of TiO$_2$ particles in SED areas with Tukey’s HSD test. ... 158

Table 4.1 Means (± SD) for age, initial and final body weight, body weight change, daily weight gain, and daily food intake of female WT and $Nod^{2/–}$ mice fed a diet with or without TiO$_2$. ... 182

Table 4.2 Means (± SD) for daily TiO$_2$ intake and daily TiO$_2$ dose of female WT and $Nod^{2/–}$ mice fed a diet with 625 mg TiO$_2$/kg. ... 184

Table 4.3 Two-way ANOVA results for comparisons of intestinal parameters of female WT and $Nod^{2/–}$ mice fed a diet with or without TiO$_2$. ... 185

Table 5.1 Number of urine samples per respective group collected from mice for metabolomics studies at different time points. ... 217

Table 5.2 MANOVA results for comparisons of urine metabolite profiles from WT mice fed a diet with or without TiO$_2$. ... 218

Table 5.3 MANOVA results for comparisons of urine metabolite profiles from female WT and $Nod^{2/–}$ mice fed a diet with or without TiO$_2$. ... 222

Table 5.4 Significantly different negative discriminant ions in urine samples from female WT and $Nod^{2/–}$ mice fed a diet with or without TiO$_2$ for 18 weeks and pairwise group comparisons. ... 228
Table 5.5 Significantly different positive discriminant ions in urine samples from female WT and Nod2^{−/−} mice fed a diet with or without TiO₂ for 18 weeks and pairwise group comparisons. ...229

Table 5.6 Results of the METLIN database queries for potential metabolites of negative discriminant ions. ...230

Table 5.7 Results of the METLIN database queries for potential metabolites of positive discriminant ions. ...231

Table 5.8 Significantly different metabolites identified in studies comparing urine samples from CD patients and healthy controls, Il10^{−/−} mice with intestinal inflammation and healthy WT control mice, or rats orally exposed to TiO₂ and unexposed rats. ...232
List of appendices

Appendix A
Normality and variance equality analysis *Chapter 2* ... 301

Appendix B
Average number of bone marrow cells per mouse ... 305

Appendix C
Normality and variance equality analysis *Chapter 3* ... 307

Appendix D
Normality and variance equality analysis *Chapter 4* ... 313

Appendix E
R code for metabolomics data analysis ... 315

Appendix F
R code for statistical analysis of metabolomics data .. 317
List of abbreviations

[M+H]⁺ Positive molecular ion
[M-H]⁻ Negative molecular ion
1,007fs Frameshift mutation at amino acid position 1,007
A5 Annexin-V
AIN American Institute of Nutrition
ANOVA Analysis of variance
APC Antigen presenting cell
ASC Apoptosis-associated speck-like protein containing a CARD
ATG16L1 Autophagy-related 16-like 1 gene
B cell Bursa-derived cell
BMDC Bone marrow-derived DC
BMDM Bone marrow-derived macrophage
CARD Caspase recruitment domain
CCL CC chemokine ligand
CD Crohn’s disease
CD[number] Cluster of differentiation [number]
CX₃CR CX₃C chemokine receptor
DAPI 4',6-Diamidino-2-phenylindole
DC Dendritic cell
DNA Deoxyribonucleic acid
DSS Dextran sodium sulphate
EDS Energy-dispersive X-ray spectroscopy
ELISA Enzyme-linked immunosorbent assay
FACS Fluorescence-activated cell sorting
FAE Follicle-associated epithelium
FBS Foetal bovine serum
FDR False discovery rate
FSC Forward scatter
GALT Gut-associated lymphoid tissue
GC-MS Gas chromatography mass spectrometry
H&E Haematoxylin and eosin
HSD Honest significant difference
IBD Inflammatory bowel disease
IFN Interferon
IFR Interfollicular region
Ig Immunoglobulin
IL Interleukin
I10−/− I10 gene-deficient
IL12B IL-12 p40 subunit-encoding gene
IL-1Ra IL-1 receptor antagonist
ILF Isolated lymphoid follicle
IzB Inhibitor of NF-κB
LC-MS Liquid chromatography mass spectrometry
LP Lamina propria
LPMC LP mononuclear cell
LPS Lipopolysaccharide
M cell Microfold cell
m/z Mass-to-charge
MANOVA Multivariate ANOVA
MCP Monocyte chemotactic protein
MDP Muramyl dipeptide
MFI Median fluorescence intensity
MIP Macrophage inflammatory protein
MLN Mesenteric lymph node
mRNA Messenger ribonucleic acid
NF Nuclear factor
NLR NOD-like receptor
NLRP NOD, leucine-rich repeats domain, and pyrin domain
NMR Nuclear magnetic resonance spectroscopy
NOD Nucleotide-binding oligomerisation domain
NOD2 NOD2 gene (human)
NOD2 protein (human)
Nod2 Nod2 gene (mouse)
Nod2 protein (mouse)
Nod2−/− Nod2 gene-deficient
Nod2+/− Nod2 gene mutation
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTA</td>
<td>Nanoparticle tracking analysis</td>
</tr>
<tr>
<td>p</td>
<td>Probability</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>PGN</td>
<td>Peptidoglycan</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>PLS-DA</td>
<td>Partial least squares discriminant analysis</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier tube</td>
</tr>
<tr>
<td>PP</td>
<td>Peyer's patch</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>RIP</td>
<td>Receptor-interacting protein</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SED</td>
<td>Subepithelial dome</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>SSC</td>
<td>Side scatter</td>
</tr>
<tr>
<td>T cell</td>
<td>Thymus-derived cell</td>
</tr>
<tr>
<td>TCM</td>
<td>Tissue culture medium</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>Th</td>
<td>T helper</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>Titanium dioxide</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNBS</td>
<td>2,4,6-Trinitrobenzenesulfonic acid</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>UC</td>
<td>Ulcerative colitis</td>
</tr>
<tr>
<td>WST</td>
<td>Water-soluble tetrazolium salt</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
</tbody>
</table>