What is the effect of suctioning and frequency on oxygenation and bradycardias in infants ≤30 weeks gestation requiring Bubble Continuous Positive Airway Pressure (CPAP)?

A thesis presented in partial fulfilment of the requirements for the degree of

Masters in Philosophy

In

Nursing

at Massey University, Albany,

New Zealand.

Susan Elizabeth Greensill

2014
Abstract

Background: Previous research around suctioning premature infants has focused on endotracheal suctioning. Continuous positive airway pressure (CPAP) has become a major mode of respiratory support. Consequently, there is a need for research that is relevant to this mode of respiratory support.

Aim: To determine the effect suctioning and suctioning frequency has on oxygen saturation levels and bradycardias in infants ≤30 weeks gestation on “bubble” CPAP.

Method: The research comprised of two parts:

- An observational study to determine the effect of suctioning on oxygen saturation, desaturations, and bradycardias.
- A randomised crossover study to determine the effect of frequency of suctioning on oxygen saturation, desaturations, and bradycardias.

Results: Part One: Analysis demonstrated that increased suctioning frequency significantly decreased oxygen saturation levels and resulted in more desaturations. However, one more desaturation per hour required 5.3 and 7 more suctioning episodes each day for desaturations of ≥10 seconds and ≥60 seconds respectively. Of note was the increased likelihood of desaturations when the suctioning interval was longer. An increase interval of 1 hour 40 minutes between suctioning times led to one more desaturation ≥10 seconds per hour, with one more desaturation ≥60 seconds with 3½ hours increase in interval. Bradycardias were also significantly increased by one per hour, when suctioning frequency increased by 15 intervals per day. Conversely, the odds of a bradycardia occurring if the suctioning interval increased one hour was 1.9.

Part Two: Analysis demonstrated that overall there were less desaturations and bradycardias with 2 hourly suctioning compared to 4 hourly. However, numbers were too small to determine statistical significance. Data from the effect of suctioning, for
both parts, demonstrated prolonged periods of recovery for infants, with minimal or no change in supplemental oxygen, which may have affected results.

Conclusion: Significance was demonstrated in relation to more desaturations and bradycardias with increased frequency of suctioning in Part One, though the prolonged recovery time may have influenced these outcomes. Of more significance were the findings that demonstrated increased desaturations and bradycardias with longer intervals between suctioning. Results from Part Two were inconclusive due to small numbers of participants. This study provides a baseline for evidence on suctioning premature infants on CPAP, guideline development and a foundation for future research.
Acknowledgements

I would like to thank the wonderful team of the study NNU, for their aid, support and guidance in helping me to complete this study. Especially I would like to thank Niccy Brougham, Mike Meyer, and Lindsay Mildenhall, for their on-going support in developing and managing my research. I would also like to thank my colleagues in my current position, for their support, encouragement, and aid in completing my thesis. In addition, I would like to acknowledge and thank the families whose infants were fundamental in developing this study. Thank you for allowing your precious little ones to participate in my research.

I extend my thanks to my supervisor, Dr Stephen Neville, for all his guidance, patience, and support in writing my thesis and reviewing my work. Also, Mary Lynch for her support in determining my thesis topic. No quantitative research study is complete without statistical analysis and I would like to acknowledge the guidance, patience, and support of Irene Zeng, who contributed to the process and development of the data analysis for the study and the analysis of the results. My thanks to the CCRep team for the research grant to support my research. Fisher & Paykel Healthcare and Promed Technologies supplied the monitors for data recording, and I appreciate their support for my research. I would like to acknowledge and thank Jess Donnelly and Chris Beaumont for all their support in setting up the recording and downloading programmes for the data loggers. Special thanks go to Jess for his role in combining the data from both monitors into one format to aid analysis. This was a huge task and I really appreciate the effort given to complete the task. Many thanks to Jan Smeath for providing support in managing data recording and the recorded data from the Masimo monitors.
Most of all I would like to thank and acknowledge the never-ending support and belief from my husband, David, and daughters, Eva and Diana. Without their constant understanding, patience, and encouragement, I would have not been able to complete my thesis. Thank you, normal life will now resume.

Lastly, I would like to dedicate my thesis to my mother, Nancy Strachan, who passed away as I started this study. Thank you for making me the person I am and encouraging me to strive to do better and be the best I can be. I am sorry that you are not here to see me complete the process.

Su Greensill
Table of Contents

Abstract i

Acknowledgements iii

Table of Contents v

Index of Tables x

Index of Figures xiv

Chapter One: Introduction to the study 1

Introduction 1

Context of Study 2

Background 3

Statement of Problem 13

Study Aims 14

Research Question 14

Aim 14

Preface of Chapters 14

Conclusion 16

Chapter Two: Literature Review 17

Introduction 17

Search Strategy 18

Search Results 19

Suctioning non-intubated infants 20
Suctioning intubated infants 24
Frequency of suctioning 28
Intracranial pressure related to suctioning 29
Reducing the effect of suctioning for premature infants 33

Conclusion 35

Chapter Three: Research Design 36
Introduction 36
Research Process 36
Research Question 38
Aim 38
Methodology 38

Part One: Observational study 39
Part Two: Randomised cross-over pilot study 40

Study Population 43

Part One: Observational study 43
Part Two: Randomised cross-over pilot study 44

Data Collection 46

Part One: Observational study 46
Part Two: Randomised cross-over pilot study 47

Data Recorded 47

Statistical Analysis 48
Reliability and Validity 52
Variables 54
Ethical Considerations 60
Confidentiality 63
Cultural Considerations 63
Limitations 65
Conclusion 65
Chapter Four: Results
Introduction

Part One

- Data collected
- Participant demographics
- Respiratory support
- Data recorded
- Frequency of suctioning
- Oxygen saturation
- Desaturations
- Supplemental oxygen
- Time in oxygen saturation target zone (SaO₂ 88–92%)
- Bradycardias
- Effect of suctioning
- Associations of the covariates

Part Two

- Sample size calculation
- Data collected
- Participant demographics
- Respiratory support
- Frequency of suctioning randomisation
- Oxygen saturation
- Desaturations
- Supplemental oxygen
- Time in oxygen saturation target zone (SaO₂ 88-92%)
- Bradycardias
- Effect of suctioning
- Demographics of all infants <30 weeks gestation admitted during the study period

Conclusion
Chapter Five: Discussion

Introduction

Part One

Demographics 129
Respiratory support 132
Frequency of suctioning 134
Oxygen Saturation 134
Desaturations 137
Supplemental oxygen 140
Time in oxygen saturation target zone (SaO₂ 88–92%) 142
Effect of suctioning 145

Part Two

Demographics 145
Respiratory support 146
Frequency of suctioning 147
Saturations 148
Desaturations 148
Supplemental oxygen 149
Time in oxygen saturation target zone (SaO₂ 88–92%) 150
Bradycardias 151
Effect of suctioning 152
Overall comparison of study group and all infants admitted during study period 153

Limitations

Implications for Practice

Recommendations

Concluding Statement

References
<table>
<thead>
<tr>
<th>Appendices</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A: Literature Review Tables</td>
<td>187</td>
</tr>
<tr>
<td>Appendix B: Key Concepts and Definitions</td>
<td>201</td>
</tr>
<tr>
<td>Appendix C: Ethical Approval</td>
<td>206</td>
</tr>
<tr>
<td>Appendix D: Consent Forms</td>
<td>213</td>
</tr>
</tbody>
</table>
Index of Tables

Table 1. Randomisation Table Part Two-Female 44
Table 2. Randomisation Table Part Two-Male 45
Table 3. Variables Analysed within Part One 70
Table 4. Participants Demographics and Characteristics Part One 71
Table 5. Outcome Measures Summary Statistics within Suctioning Intervals, Part One 72
Table 6. Individual Infants’ Oxygen Saturation Means, Part One 74
Table 7. Adjusted Estimates of Average Oxygen Saturations, Part One 74
Table 8. Estimates for PROM, Part One 76
Table 9. Desaturations of ≥10 seconds per Infant, Part One 77
Table 10. Desaturations of ≥60 seconds per Infant, Part One 79
Table 11. Estimates Predicting Number Desaturation ≥10 seconds/hour within Suctioning Interval, (Desaturation count >0), Part One 81
Table 12. Estimates Predicting Having No Desaturation ≥10 seconds (Desaturation =0), Part One 82
Table 13. Estimates Predicting Number of Desaturation ≥60 Seconds/Hour (Full Model, Desaturation Count >0), Part One 82
Table 14. Estimates Predicting Having Desaturation ≥60 Seconds/Hour (Full Model, Desaturation Count =0), Part One 82
Table 15. Unadjusted Estimates of Average Bihourly Desaturation Frequency, All Infants Part One and Two 83
Table 16. Unadjusted Estimates of Average Bihourly Desaturation Frequency, Full Model, All Infants Part One and Two
Table 17. Supplemental Oxygen percentage, per Infant Part One
Table 18. Adjusted Estimates of Average Supplementary Oxygen, Reduced Model, All Infants Part One and Two
Table 19. Percentage of Time in Oxygen Saturation Target Zone per Infant, Part One
Table 20. Unadjusted Estimates of Percentage of Time in Oxygen Saturation Target Saturation Zone, Part One
Table 21. Adjusted Estimates of Percentage of Time in Oxygen Saturation Target Zone, Full Model, Part One
Table 22. Bradycardias Adjusted for Hourly Frequency per Infant, Part One
Table 23. Estimates of Bradycardias/Hour Predicting the Number of Bradycardias frequency/Hour (Full Model, Bradycardia >0), Part One
Table 24. Estimates of Bradycardias/Hour Predicting Bradycardias/Hour (Full Model, Bradycardias counts =0), Part One
Table 25. Recovery to Previous Suctioning Episode Means, Part One
Table 26. Differences between previous suction interval means and suctioning episode, Part One
Table 27. Episodes of Prolonged Desaturation with Time to Recover to ≥88% SaO2, Part One
Table 28. Outcome Measures Bihoury, Part Two
Table 29. Participants Demographics and Characteristics Part Two
Table 30.	Variables Analysed within Part Two	103
Table 31.	Infant ID Identifying Gender and Suctioning Regime Part Two	103
Table 32.	Estimate of Saturations for Each Infant, for Each Frequency of Suctioning, Part Two	106
Table 33.	Desaturations ≥10 seconds/hour Estimate Comparing 4 hourly to 2 hourly Suctioning for all Infants, Fixed Effect, Part Two	108
Table 34.	Estimate and Prediction of Desaturations ≥10 seconds/hourly Period Comparing 4 hourly to 2 hourly Suctioning for each Infant, Part Two	109
Table 35.	Estimate and Prediction of Desaturations ≥60 seconds/hourly Period Comparing 4 hourly to 2 hourly Suctioning for each Infant, Part Two	111
Table 36.	Estimate of Desaturations ≥60 seconds/hourly Period Comparing 4 hourly to 2 hourly, Suctioning for all Infants, Part Two	112
Table 37.	Mean Levels of Supplemental Oxygen per Infant Part Two	112
Table 38.	Fixed Effect, Predicted Random Effect and Predicted Level for Supplemental Oxygen for each Infant, for each Suctioning Frequency per Infant Part Two	114
Table 39.	Fixed Effect, Predicted Random Effect and Predicted Percentages for Percentage of Time in Oxygen Saturation Target Zone for each Infant, Part Two	116
Table 40.	Estimate of Predicted Hourly Bradycardias for 4 and 2 hourly Suctioning Part Two	117
Table 41.	Estimate of and Predicted Bradycardias per Hourly Period Comparing 4 hourly to 2 hourly Suctioning for each Infant, Part Two	119
Table 42. Time to Recover to Previous Suctioning Episode Means, Part Two 121

Table 43. Differences Between Previous Suction Interval Means and Suctioning Episode Part Two 122

Table 44. Episodes of Prolonged Desaturation with Time to Return to ≥88% SaO2, Part Two 124

Table 45. Participants Demographics and Characteristics, All Admission, Study Period 126

Table 46. Variables for all Infants Admitted During Study Period 127

Table 47. Variables for Infants Admitted During Study Period, Not in the Study 128

Table B1. Definition of BPD 202
Index of Figures

Figure 1. Search results 20

Figure 2. Distribution of Oxygen Saturation Mean, Suctioning Interval per Infant (SpO2=SaO2) Part One 75

Figure 3. Desaturations of ≥10 seconds per hour for each infant, Part One 80

Figure 4. Desaturations of ≥60 seconds per hour for each infant, Part One 81

Figure 5. Distribution of Supplemental Oxygen Means by Infant 86

Figure 6. Percentage of Time in Oxygen Saturation Target Zone per Infant Part One 86

Figure 7. Distribution of Median Number of Bradycardias within Suctioning Interval per Infant Part One 89

Figure 8. Distribution of Median Number of Bradycardias Adjusted by Interval to Hourly per Infant Part One 90

Figure 9. Distribution of Oxygen Saturation Mean for Suctioning Interval per Infant Part Two 105

Figure 10. Distribution of Desaturations ≥10 seconds/hour for each Infant, Part Two 107

Figure 11. Distribution of Desaturations ≥60 seconds/hour for each Infant, Part Two 108

Figure 12. Distribution of Desaturation ≥10 seconds/hour for all Infants According to Suctioning Regime Part Two 110

Figure 13. Distribution of Desaturation ≥60 seconds/hour for all Infants According to Suctioning Regime Part Two 110
Figure 14. Distribution of Percentage of Time in Supplemental Oxygen Bihourly per Infant Part Two

Figure 15. Distribution of Percentage of Time in Oxygen Saturation Zone for Bihourly Interval per Infant Part Two

Figure 16. Distribution of Bradycardias/hour per Infant Part Two

Figure 17. Distribution of Bradycardias for all Infants According to Suctioning Regime Part Two

Figure B1. Bubble CPAP