Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Ecology, epidemiology and evolution of enteric microbes in fragmented populations of the endangered takahe (*Porphyrio hochstetteri*)

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Veterinary science

at
Massey University, Manawatū,
New Zealand

Zoë Lorraine Grange

2015
Abstract

Pathogenic diseases are increasingly recognised as a challenge to the conservation of wildlife. Complex host-pathogen relationships and transmission dynamics in wild populations can limit our understanding of how pathogens contribute to the decline and endangerment of wildlife. Endangered wildlife populations maintained in reserves present a unique opportunity to investigate wildlife host-microbe relationships in a controlled semi-natural environment where diversity, abundance and the movement of species are restricted. The aim of this study was to investigate the prevalence and molecular differentiation of enteric bacteria carried by endangered takahe (*Porphyrio hochstetteri*). Through the use of network analysis and molecular epidemiology, the study explored the effects of geographic isolation and translocation on the prevalence, transmission and evolution of *Campylobacter* and *Salmonella* spp. within fragmented populations of takahe.

Translocation and conservation management has created a dynamic network of takahe populations which vary in their likelihood to maintain and transmit pathogens. My study suggests that range expansion following a significant bottleneck and intensive conservation management of takahe has had unforeseen consequences on microbial diversity. The management of takahe in different environmental settings has influenced the carriage of *Campylobacter jejuni* and *Campylobacter coli*. A newly discovered rail-associated *Campylobacter* sp. nova 1 was prevalent in all populations. However, more discriminatory whole genome analysis of isolates detected a significant biogeographic variation in *C. sp. nova 1* genotypes. Possible explanations for the observed pattern include the spatial expansion and isolation of hosts resulting in reduced gene flow of *Campylobacter* spp. and allopatric speciation, and the presence of heterogeneous environmental attributes or cross-species transmission of *Campylobacter* spp. from sympatric reservoir hosts. An assessment of vertebrate reservoirs in an island ecosystem indicated cross-species transmission of *Campylobacter* spp. was not likely to be a factor contributing to the maintenance and phylogeographical distribution of *Campylobacter* spp. in takahe.

This study was the first of its kind to explore microbial dynamics in a large proportion of a well-described but fragmented population of a wild bird. Results suggest historic and current management practices may be having unforeseen influences on enteric microbes, the consequences of which are unknown but could be detrimental to the health of translocated populations of takahe.
Acknowledgements

This project has been one of the most memorable experiences of my life. I have had the privilege of working with the unique fauna of New Zealand within locations I could have only dreamt of. I would like to thank the Department of Conservation and the Maori community for supporting my study and giving me the privilege to work with, in my opinion, with the most beautiful bird in New Zealand, the takahē. I would like to thank a few people within the Department of Conservation personally; Linda and Chris Birmingham, Kate McInnes, Phil Marsh and Glen Greeves have all had important roles in the organisation and practical aspects of this thesis.

To my primary supervisor Brett Gartrell, I hope the journey hasn’t been too tough. Thank you for propping me up when I needed it and being a sounding board when my mind was in a muddle. I couldn’t have asked for a better mentor and just because this thesis is complete, it doesn’t mean you have seen the end of me.

I certainly did not complete this thesis alone; I was fortunate enough to have a prime selection of co-supervisors to provide mentorship and who were kind enough to share their wisdom along the way. To Nigel French, even though I did go on a helicopter a few times during this project, I promise you this is not my normal mode of transport. I am forever grateful to you for providing a supportive and caring environment to work in. I thank you for giving me opportunities to shine and work at the cutting edge of science. To Patrick Biggs, you must have the patience of a saint to teach an ecologist databases and genomics. Thank you for your guidance, support and colour expertise. I dedicate the beauty of the figures contained in this thesis to you. To Nicky Nelson and Laryssa Howe, your insights have helped make this thesis what it is and I am proud to have had you on my supervisory panel.

I extend my gratitude to the collaborators I have worked with in the formation of this thesis. I was lucky enough to gain a treasured friend in Mary van Andel, and I thank her for her endless patience. Additionally, much appreciation goes to Jonathan Marshall and Marti Anderson for statistic knowledge and advice.

Moving half way across the world has been made easy due to the wonderful people I have met during this chapter of my life. There are many who have welcomed me into their lives along the way and to whom I am thankful for their support, friendship and laughter. A special mention must be for Micah Jensen and Aditi Sriram. You have seen me at my best and worst, you provided love, support and
laughter when I needed it most, and I could never have wished to meet such kind and thoughtful friends.

It is no secret that I have moved a few times during this PhD. Each and every house has been a home away from home and for this reason I thank Nicky Denning, Aditi Sriram, Dirk Steenbergen, and Graeme and Serena Finlayson for your warmth and kindness.

Completing a PhD would never be possible without fellow students to share the highs, the lows and somewhere in between. To my proof reader and kind friend, Springer Browne, you are one of the few to have or will ever read this entire thesis word for word. I am forever indebted to you for your grammatical abilities, although I feel payment in wine may be an option. Kruno Bojanic, you made me smile every day and my life is brighter with you in it. Anja Freidrich, your company has kept me entertained and motivated to continue throughout the years, especially during the final stages. To Kyle Richardson, I hereby disclose this thesis as proof that I am an ecologist, no more evidence required.

The beauty of my fieldwork was that I was able to share it with other people whom were just as passionate about wildlife and crazy enough to work from dusk to dawn. I was fortunate enough to take along friends and colleagues including Thomas Burns, Micah Jensen, Sarah Michael, Danielle Sijbranda, Pauline Nijman and Brett Gartrell. The unique memories we share of our times on Maud Island are one of the main reasons I love what I do.

Angie Reynolds, without you I am sure I would still be in the lab to this day. Your kindness and dedication to help is unmatchable. To Anne Midwinter, I am grateful for your emotional support and enduring my ‘Englishness’ for the last three years. You certainly won the bet but I was close, surely I deserve one bottle of champagne.

To the team at Wildbase, you have been my ongoing source of entertainment and support. Thank you for taking me under your wing, teaching me the veterinary aspects of wildlife health and being the source of my likeminded friends.

This thesis would never have been what it is without the financial backing of the Allan Wilson Centre. I am proud to be associated with a collaborative institute which encourages the development of scientists. Additionally, I would like to thank Massey University and the Institute of Veterinary and Biomedical sciences for financial assistance to attend conferences far and wide in order to communicate my work to a large audience and gain insight from my peers. Additionally, I am grateful to the university avian health grant for providing funds towards my research.
I would like to acknowledge the three examiners of this thesis, Daniel Thompkins, Wendi Roe and Jonas Waldenstrom for their time and patience in reading this thesis word for word and providing useful insights into my research.

Finally, I dedicate this thesis to my parents, Robin and Janey, my sisters, Laura and Kelly, and my wonderful nephews, Max and Nicholas, to whom I have been a virtual daughter, sister and auntie for the last 3 years. Without your love and support, this story would never been told, or not by me anyway.
Thesis structure and format

This thesis is presented as a series of seven chapters. Encompassed by a general introduction and discussion, five research chapters have been prepared and are presented as discrete papers for publication in peer reviewed journals.

Chapter one

General introduction introduces the concepts behind the research contained in this thesis by discussing and reviewing current literature on the principles of disease ecology and aspects of the epidemiology of infectious organisms in wildlife. The objectives of the study are summarised at the end of this chapter.

Chapter two

Network analysis of translocated takahe populations to identify disease surveillance targets has been published in the journal Conservation Biology (Grange et al. 2014).

Chapter three

Using a common commensal bacterium in endangered takahe (Porphyrio hochstetteri), as a model agent to explore pathogen dynamics in isolated wildlife populations is in press in the journal Conservation Biology.

Chapter four

Wildlife translocation and the evolution and population structure of a host associated commensal Campylobacter spp. is under review in the journal Proceedings of the National Academy of Sciences (PNAS) following publication of chapter 3.

Chapter five

Investigation of vertebrate reservoirs of Campylobacter spp. in an island ecosystem will be submitted to the Journal of Animal Ecology pending publication of chapters 3 and 4.
Chapter six

Location specific prevalence of *Salmonella* spp. in endangered takahe (*Porphyrio hochstetteri*) will be submitted to the Journal of Wildlife Disease.

Chapter seven

General discussion summarises the significant findings of this study. The relevance and implications of results are discussed and future research directions are suggested.

Chapter eight

Literature cited has been collated at the end of the thesis to reduce repetition. Literature is referred to in the format consistent with the format used for the journal Conservation Biology.

Chapter nine

Appendix contains all supplementary information organised by chapter
Table of Contents

1. General introduction ... 3
 1.1. Wildlife disease ecology ... 3
 1.1.1. Disease ecology concepts .. 3
 1.1.2. Host pathogen relationships: from individuals to ecosystems 4
 1.1.3. The host population .. 6
 1.1.4. Multi-host pathogens and reservoir dynamics ... 7
 1.2. Conservation of wildlife in the face of disease threats .. 9
 1.2.1. Disease threats posed to and from wildlife ... 9
 1.2.2. Anthropogenic management of threatened wildlife populations: translocations and sanctuaries as conservation tools .. 12
 1.3. Epidemiological tools for species conservation .. 15
 1.3.1. Risk assessments and disease surveillance ... 15
 1.3.2. Pathogen ecology and epidemiology .. 18
 1.4. Research focus .. 19
 1.4.1. New Zealand conservation management ... 19
 1.4.2. Takahe (Porphyrio hochstetteri) ... 21
 1.5. Microbes of interest to this study .. 24
 1.5.1. Campylobacter species .. 24
 1.5.2. Salmonella species ... 25
 1.6. Objectives of the study .. 26
2. Network analysis of translocated takahe populations to identify disease surveillance targets .. 29
 2.1. Abstract ... 29
 2.2. Introduction ... 30
 2.3. Methods .. 32
 2.3.1. Data set .. 32
 2.3.2. Network description and topology .. 33
2.3.3. Network dynamics ... 34

2.4. Results ... 35

2.4.1. Network description and topology ... 35

2.4.2. Network dynamics and node-level analysis.......................... 35

2.5. Discussion .. 40

2.5.1. Application of network analysis to takahe movements 40

2.5.2. Identification of hubs, sinks, and sources 41

2.5.3. Limitations .. 43

2.5.4. Conservation implications and future directions 44

2.6. Acknowledgments .. 46

2.7. Supporting Information ... 46

3. Using a common commensal bacterium in endangered takahe (Porphyrio hochstetteri), as a model to explore pathogen dynamics in isolated wildlife populations 51

3.1. Abstract .. 51

3.2. Introduction .. 52

3.3. Materials and methods ... 53

3.3.1. Study population ... 53

3.3.2. Sample collection ... 53

3.3.3. Microbiological culture and DNA extraction 54

3.3.4. Molecular confirmation and speciation 54

3.3.5. Prevalence of Campylobacter spp. in takahe 55

3.3.6. Exploratory analysis of explanatory covariates 56

3.3.7. Multiple correspondence analysis .. 58

3.3.8. Multivariate logistic regression modelling 58

3.4. Results ... 59

3.4.1. Apparent prevalence of Campylobacter spp. in takahe 59

3.4.2. Estimates of true prevalence using imperfect tests 60

3.4.3. Analysis of explanatory covariates associated with the carriage of Campylobacter spp. ... 61
4. Wildlife translocation and the evolution and population structure of a host-associated commensal Campylobacter spp. ... 71
 4.1. Abstract ... 71
 4.2. Introduction ... 72
 4.3. Methods ... 74
 4.3.1. Sample collection and culture ... 74
 4.3.2. Selection of C. sp. nova 1 for genomic sequencing 74
 4.3.3. Genomic DNA preparation and processing ... 74
 4.3.4. Genome assembly, curation and annotation .. 75
 4.3.5. Ribosomal multi locus sequence typing (rMLST) of C. sp. nova 1 75
 4.3.6. Core genome and rMLST tree construction .. 76
 4.3.7. Multivariate analysis of the relationship between location factors and genetic distance 77
 4.4. Results ... 77
 4.4.1. C. sp. nova 1 comparison to published Campylobacter spp. 77
 4.4.2. Genomic differentiation of C. sp. nova 1 isolates .. 81
 4.4.3. Multivariate analysis of C. sp. nova 1 rMLST allelic profiles 81
 4.5. Discussion ... 84
 4.6. Acknowledgements ... 88
 4.7. Supporting information .. 89

5. Investigation of vertebrate reservoirs of Campylobacter spp. in an island ecosystem.... 93
 5.1. Abstract ... 93
 5.2. Introduction ... 94
 5.3. Methods ... 95
 5.3.1. Study site.. 95
9. Appendix .. 161
9.2. Chapter 2 supplementary information ... 161
9.3. Chapter 3 supplementary information ... 167
9.4. Chapter 4 supplementary information ... 179
9.5. Chapter 5 supplementary information ... 184
List of tables and figures

Tables

Table 2-1 Takahe network measures ...36
Table 2-2 Network key locations...38
Table 3-1 Takahe sampling effort and variables......................................57
Table 3-2 Multivariate models for Campylobacter spp. carriage in takahe63
Table 4-1 Campylobacter sp. nova 1 PERMANOVA models..................82
Table 5-1 List of hosts and Campylobacter spp. prevalence on Maud island 100
Table 5-2 rMLST allelic profiles of Campylobacter spp. on Maud Island 102
Table 6-1 Apparent prevalence of Salmonella spp. in takahe populations 114
Table 6-2 True prevalence of Salmonella spp. in takahe by sample type 115

Figures

Figure 1-1 Theoretical hypotheses for the modes of speciation.................5
Figure 1-2 Pathogen transmission dynamics between native and introduced populations.....15
Figure 1-3 Takahe...21
Figure 1-4 Map of takahe distribution in New Zealand23
Figure 2-1 Takahe translocation networks ...37
Figure 2-2 Relationship between in degree and out degree network measures39
Figure 3-1 Apparent and true prevalence of Campylobacter spp. in takahe 60
Figure 3-2 Venn diagram of Campylobacter spp. carriage in takahe........61
Figure 4-1 Map of sampling locations...78
Figure 4-2 Takahe Campylobacter spp. rMLST tree.................................79
Figure 4-3 Takahe Campylobacter sp. nova 1 core and rMLST trees80
Figure 4-4 Takahe Campylobacter sp. nova 1 F_{ST} tree.........................83
Figure 4-5 Schematic of hypotheses for Campylobacter sp. nova 1 genotypes in takahe......86
Figure 5-1 Maud island Campylobacter spp. rMLST tree and distance matrix...101