Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Isoflavones and green kiwifruit:
A pilot study assessing the effects on bone turnover and
lipid profile in healthy postmenopausal New Zealand
women.

A Thesis presented in partial fulfilment of the requirements for the degree of

Master of Science
in
Physiology

at Massey University, Palmerston North
New Zealand.

Catherine Middlemiss
2014
Statement of contribution

Professor MC Kruger – study conception, design and funding.

Mrs CL Booth – Human studies coordinator – ethics application, recruitment, coordination and execution of the study.

Ms C Middlemiss – Support in sample collection and processing, assistance with the DPD and ucOC assays, dietary analyses, and independent data collection, statistical analyses and interpretation.

Source of funding – This research was funded by New Zealand (Ministry of Business, Innovation and Employment) and Japan (Japanese Science and Technology Agency) for the Strategic Bilateral Agreement Program on Functional Foods.
Statement of originality

“I hereby declare that this thesis is my own word and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which a substantial extent has been accepted for the qualification of any other degree or diploma of a university or other institution of higher learning, except where due acknowledgement is made”.

Signed ...

Date ...
Abstract

Background: The reduction in estrogen synthesis during menopause heightens the risk of development of osteoporosis and cardiovascular disease in postmenopausal women. Isoflavone (daidzein and genistein) interventions in postmenopausal women have reduced bone loss, and improved the serum lipid profile, which may reduce the risk of fracture and incidence of cardiovascular disease. However, skeletal benefits are inconsistent across interventions. This is partly a result of population heterogeneity in enteric bacterial daidzein metabolism – only ~30% of Caucasian women produce equol, a daidzein metabolite. Equol is more bioactive than its precursor and equol producers have more consistently shown skeletal benefits from isoflavone supplementation. Few interventions have accounted for equol production in postmenopausal study populations. Additionally, there is limited knowledge on how prebiotic foods, such as green kiwifruit, modulate daidzein-metabolising bacteria and equol production in humans. This pilot study aimed to assess bone turnover in response to isoflavone supplementation, and to determine the proportion of equol producers in postmenopausal women.

Objectives: The main objective was to measure the effect of short-term daily isoflavone supplementation alone or with the addition of green kiwifruit on biochemical markers of bone resorption, urinary deoxypyridinoline, plasma cross-linked C-terminal telopeptide of type I collagen, and plasma undercarboxylated osteocalcin in postmenopausal Caucasian women. A secondary objective was to measure the effect of isoflavones and kiwifruit on serum lipid profile. Additionally, equol production was determined in this population and assessed as a main effect.

Methods: This randomised crossover pilot study recruited 33 healthy postmenopausal Caucasian women, 1-10 years postmenopausal, and randomly allocated participants to treatment group A (n=16) or B (n=17) for a 16-week intervention. There were two consecutive 6-week treatment periods with a 2-week lead-in period at intervention commencement and a 2-week washout period between treatments. These treatments prescribed either: (1) daily isoflavone supplementation (50 mg/day aglycone daidzein
and genistein) alone or (2) with two green kiwifruit. Group A and B completed both treatments in opposite order. At treatment baseline and endpoints the following were measured (four time points): bone markers, serum lipid profile and both serum and urinary daidzein and equol. The hormones, serum follicle stimulating hormone, estradiol and thyroid-stimulating hormone, were also measured at baseline and endpoint to monitor potential adverse effects of isoflavones.

Results: Equol producers made up 30% of this study population (equol producers n=10; non-equol producers n=30). Serum equol rose significantly in equol producers. Plasma undercarboxylated osteocalcin decreased by 15.5% after the kiwifruit and isoflavone treatment and increased by 10.8% after the isoflavone only treatment. There were no changes in plasma C-terminal telopeptide of type I collagen or urinary deoxypyridinoline. In non-equol producers high-density lipoprotein cholesterol declined by an average of 4.9% with each treatment; there was no change in serum high-density lipoprotein cholesterol in equol producers following isoflavone treatment alone, and an 8.3% increase in serum high-density lipoprotein cholesterol following the combined kiwifruit and isoflavone combined. There were no other changes to the lipid parameters or hormones.

Conclusions: An aglycone isoflavone dose of 50 mg/day did not reduce bone resorption in the postmenopausal women in this study. Kiwifruit consumption decreased plasma undercarboxylated osteocalcin levels possibly due to the vitamin K content of green kiwifruit; however, alternative bioactive components in kiwifruit may have modulated this effect. The isoflavone treatment inhibited a decline in serum high-density lipoprotein cholesterol in equol producers and had synergistic effect with kiwifruit, which increasing this parameter. Equol and the carotenoid lutein from green kiwifruit may potentially modulate systemic inflammation. Kiwifruit may have a prebiotic effect in equol producers as shown by the increase in log ratio of daidzein to equol, but this requires further study. This equol producer subgroup was too small to detect a change the markers of bone resorption. Larger long-term studies are required to delineate the skeletal and cardiovascular effects of isoflavones and equol production in postmenopausal women.
Acknowledgments

I would like to sincerely thank both my chief Supervisor Professor Marlena Kruger and co-supervisor Associate Professor Jane Coad for all their expertise, patience and feedback; you both are inspiring scientists. Many thanks to Mrs. Chris Booth for her coordination of the study in the Human Nutrition Unit and to Mrs. Marie-Tine Biersteker for her excellent phlebotomy skills. I would also like to personally thank the dedicated participants who made this study possible. Thank you to Dr Shinichi Katsumata and Gabrielle Plimmer for the analysis of bone markers (DPD and ucOC), and to Felicity Jackson for the analysis of urinary creatinine in the IFNHH laboratories. Thank you to Zespri® International Ltd. (Mt Maunganui, NZ) for providing the green kiwifruit for this study.

I owe great thanks to Professor Patrick Morel for his patient help with my statistical analysis. Dr. David Simcock, your advice, encouragement, and faith in my abilities have helped me to see this thesis through to the end; I am deeply grateful for your support.

To the zoology postgrad room: thanks for the many coffee breaks and interesting conversations and debates. To my flatmates, Chelsea, Alix, Jessy, Rose and Jerramiah: you have made the completion of my masters some unforgettable years! Chelsea, thank you for always offering me perspective; your wisdom has kept me grounded.

My family, Mum, Tim, Gen and Dad, I dedicate this work to you; your absolute pride and support for me in my academic endeavours has kept me going throughout the last few years. Mum, thank you for always being so interested in my work; I am truly lucky to have you care so much for my future.
“I’d rather have a mind opened by wonder than one closed by belief”

Albert Einstein
Table of contents

Statement of contribution ... iii
Statement of originality ... v
Abstract .. vii
Acknowledgements ... ix
Table of contents .. xi
List of figures .. xvi
List of tables ... xvii
List of abbreviations .. xviii

1 Chapter One – Introduction ... 1-4
 1.1 Study background ... 1
 1.2 Purpose of study ... 3
 1.2.1 Study objectives
 1.2.1.1 Primary objective ... 3
 1.2.1.2 Secondary objective ... 4
 1.2.2 Study hypotheses ... 4
 1.3 Layout of thesis ... 4

2 Chapter Two – Literature review .. 5-55
 2.1 Bone composition ... 5
 2.2 Bone metabolism .. 6
 2.3 Osteogenic cells ... 7
 2.3.1 Osteoclastogenesis and osteoclast function 7
 2.3.2 Osteoblastogenesis and osteoblast function 10
 2.3.3 The signal triad regulating osteogenic cross-talk 12
 2.3.4 Osteocytes and mechanical loading 12
 2.4 Factors affecting bone health .. 13
 2.4.1 Physiological regulators .. 13
 2.4.1.1 Vitamin D ... 14
 2.4.1.2 Parathyroid hormone ... 16
2.7.3 Daidzein and genistein: mechanisms of bone health

modulation ... 35

2.7.3.1 in vitro studies ... 35

2.7.3.1.1 Estrogenic activity 35

2.7.3.1.2 Other mechanisms 36

2.7.3.2 Animal studies ... 37

2.7.3.3 Human studies ... 39

2.7.3.4 Discrepancies in human studies 41

2.8 The importance of equol ... 45

2.8.1 Equol benefits to bone 45

2.8.1.1 in vitro studies ... 45

2.8.1.2 Animal studies ... 45

2.8.1.3 Human studies ... 47

2.8.2 Factors influencing the equol producer phenotype in humans
... 50

2.8.2.1 Dietary factors ... 51

2.8.2.2 Green kiwifruit, equol production and bone health
... 52

2.9 Summary ... 55

3 Chapter Three – Methods ... 56-66

3.1 Intervention overview ... 56

3.2 Intervention design ... 56

3.2.1 Soy isoflavone supplement 57

3.2.2 Green kiwifruit ... 58

3.2.3 Dietary restrictions ... 58

3.3 Ethics approval and considerations 58

3.4 Participants ... 59

3.4.1 Eligibility criteria ... 59

3.4.1.1 Inclusion criteria .. 59

3.4.1.2 Exclusion criteria ... 60

3.4.2 Recruitment ... 60
3.4.3 Participants of this study ... 61
3.4.4 Sample size .. 61
3.4.5 Randomisation .. 61

3.5 Data collection .. 62
3.5.1 Anthropometric measurements .. 62
3.5.2 Measurement of bone mineral density .. 62
3.5.3 Dietary assessment .. 62
3.5.4 Blood and urine samples and biochemical analyses 63
 3.5.4.1 Sample collection requirements ... 63
 3.5.4.2 Blood sampling .. 63
 3.5.4.3 Urine sampling ... 64
3.5.5 Biochemical analyses .. 64
 3.5.5.1 Bone markers .. 64
 3.5.5.2 Lipids and hormones .. 65
 3.5.5.3 Isoflavones and vitamin D .. 65
3.6 Compliance ... 65
3.7 Statistical analysis ... 65

4 Chapter Four – Results ... 67-80
4.1 Baseline characteristics ... 67
4.2 Biochemical analyses .. 69
4.3 Bone markers .. 72
 4.3.1 Serum ucOC ... 72
 4.3.2 Serum CTx and urinary DPD .. 73
4.4 Serum lipid profile .. 74
 4.4.1 Serum HDL-c .. 74
 4.4.2 Serum TC, TAG, LCL-c and the ratio of TC to HDL-c 75
4.5 Equol production ... 76
 4.5.1 Log ratio of daidzein to equol .. 76
 4.5.2 Serum equol .. 78
4.6 Hormones: serum E2, FSH and TSH ... 79
5 Chapter Five – Discussion ... 81-98

5.1 Overall outcomes of this study ... 81
5.2 Population characteristics ... 82
5.3 Bone markers ... 85
 5.3.1 Decrease in plasma ucOC with kiwifruit and isoflavone treatment ... 85
 5.3.1.1 Kiwifruit consumption, vitamin K, and a decrease in plasma ucOC ... 85
 5.3.1.2 Increase in plasma ucOC with the isoflavone treatment ... 87
 5.3.2 No change in the rate of bone resorption: DPD and CTx did not respond isoflavone treatment 88
5.4 Lipid parameters .. 91
5.5 Equol production and green kiwifruit consumption 93
5.6 Strengths and limitations of this study 95
 5.6.1 Strengths .. 95
 5.6.2 Limitations ... 96
5.7 Implications for human health and future research 97
5.8 Conclusions .. 98

References ... 99-123
Appendices .. 124-152
List of figures

Figure 2.1 Illustration of osteoclast lineage specification. Image reproduced with permission from Crockett et al. (2011) .. 9

Figure 2.2 Illustration of osteoblast lineage specification. Image adapted and reproduced with permission from Crockett et al., (2011) 11

Figure 2.3 The molecular structures of soy isoflavones. Image reproduced with permission from Lye, Kuan, Ewe, Fung, & Liong (2009) 34

Figure 3.1 An illustration of the 16-week crossover intervention 57

Figure 4.1 Bar graph showing the mean percentage change in plasma ucOC .. 72

Figure 4.2 Bar graph showing the mean percentage change in plasma CTx .. 73

Figure 4.3 Bar graph showing the mean percentage change in urinary DPD .. 73

Figure 4.4 Bar graph showing the mean percentage change in serum HDL-c .. 75

Figure 4.5 Bar graph showing the mean change in the log ratio of urinary daidzein to equol ... 76

Figure 4.6 Bar graph showing the mean change in serum equol ... 77
List of tables

Table 2.1 A summary of some recent isoflavone interventions in post-menopausal women and the effect on BMD ... 43
Table 2.2 Green kiwifruit: selected micronutrient content and percentage contribution to RDI in NZ women (51-70 years) ... 53
Table 4.1 Baseline characteristics of groups A and B ... 68
Table 4.2 P values for the main treatment effects and interactions for the bone markers, lipid parameters, hormones and isoflavones 70
Table 4.3 The means change in bone markers, lipid parameters, hormones and isoflavones ... 71
Table 4.4 The mean percentage change in the bone markers 72
Table 4.5 The mean percentage change in serum HDL-c 74
Table 4.6 Significant three-way interactions between treatment, time and equol producer status ... 78
Table 4.7 Pearson Chi-Square table showing distribution of participants with E2 levels <37 and >37 pmol/L ... 79
Table 4.8 P values of the significant main effects ... 80
Table 5.1 Micronutrient intake of this study population and comparison national RDIs... 84
Abbreviations

1,25(OH)2D Calcitriol
24,25(OH)2D Dihydroxycholecalciferol
25(OH)D Calcidiol
AA Arachidonic acid
AI Adequate intake
B-ALP Bone alkaline phosphatase
BMC Bone mineral content
BMD Bone mineral density
BMI Body mass index
BMP Bone morphogenetic protein
BRU Bone resorptive unit
CaSR Calcium sensing receptor
COX Cyclooxygenase
CTX Cross-linked C telopeptide of type 1 collagen
DBD Vitamin D binding protein
DEXA Dual-energy X-ray absorptiometry
DPD Deoxypyridinoline
E2 Estradiol
ECM Extracellular matrix
ERα/β Estrogen receptor alpha/beta
FGF Fibroblast growth factor
FOS Fructooligosaccharide
FSD Functional secretory domain
FSH Follicle stimulating hormone
GC Glucocorticoid
HDL-c High-density lipoprotein cholesterol
HRT Hormone replacement therapy
ID Identification
IGF Insulin-like growth factor
IL Interleukin
LDL-c Low-density lipoprotein cholesterol
LRP Low density lipoprotein-related receptor
M-CSF Monocyte colony stimulating factor
MCP Monocyte chemoattractant protein
Mg Magnesium
NHANES National Health and Nutrition Examination Survey
NO Nitric oxide
O-DMA O-desmethylangolensin
OC Osteocalcin
OPG Osteoprotegerin
Ovx Ovariectomised
PA Physical activity
PBM Peak bone mass
PGE Prostaglandin
PPAR Peroxisome proliferator-activated receptor
pQCT Peripheral quantitative computed tomography
PTH Parathyroid hormone
RANK Receptor activator for nuclear factor κβ factor
RANKL Receptor activator for nuclear factor κβ factor ligand
RB Ruffled border
RCT Randomised controlled trial
RDI Recommended daily intake
SEM Standard error of the mean
SD Standard deviation
TAG Triacylglycerol
TC Total cholesterol
TC:HDL-c Ratio of total cholesterol to high-density lipoprotein cholesterol
TGFβ Transforming growth factor beta
TNF-α Tumour necrosis factor alpha
TSH Thyroid stimulating hormone
ucOC Undercarboxylated osteocalcin
Wnt Wingless type