
Nicholas J.D. Singers
1997

A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Science in Ecology at Massey University, Palmerston North.
Acknowledgements

This research was funded by Department of Conservation and Massey University Graduate Research Fund, and permission to work in the area was granted by the Manawatu District Council.

I would firstly like to thank the lovely Christine Bayler, who was my constant and faithful helper whenever I needed help, putting up with my grumpiness and general irritability. A huge thanks goes to Jill Rapson, for her valuable supervision and sacrificing her own valuable time to help with field work. Without her encouragement and patience this would never have been finished. Colin Ogle proposed the Masterate in the first place, and encouraged me, and sacrificed his scarce time. Thanks Mum, for everything really, but particularly for helping with my statistics; my brother Robert, “flick the little fire engine” who put out the fire lit by the Tangimoana fire-bug, when helping with field work; and all family; Alaster Robertson, for his useful ideas, contributions and supervision; the Department of Ecology, Massey University; especially Jens Jorgensen, the “village blacksmith”, for making experimental materials functional and for his valuable field assistance; and Barbara Just; Penny Aspin who enthusiastically jumped, rolled and fell down dunes... while getting sunburnt for continuous days on end; Kim McBreen, my fellow sufferer through our extended Masters experience, and fieldwork assistant. Halena Flannagan, Graeme Franklyn, Grant Blackwell, Adele Plummer, for their fieldwork assistance; Robert Burgess, for discussions on dune formation and dune ecology during his visit to the study site; Patrick Hesp, for encouragement and discussions on dune morphology; Mike Shepherd, for discussing the Manawatu dune formation; John Barkla, Don Ravine, Tom Rouse, Wayne Beggs and Shannel Courtney, all good DoC people for their help; Max Barry, for access to the study site and for “pulling me out of sand”; Sam Atkinson, for his rainfall data from Flock House after being bribed with Black Mac; Ewan Cameron
and Euan Nicol for their *Eleocharis neozelandica* herbarium records. And all my flatmates for putting up with Masters stress!

P.S. No thanks to the persons who stole one exclosure plot, damaged others, pulled out or shot off water pipes and all other general vandalism.
Contents

Thesis abstract 8

Chapter One

Introduction 10
History of the Manawatu dunes 10
The study site 14
References 19

Chapter Two

The vegetation of the proposed DoC reserve in a coastal dune system at Tangimoana, Manawatu New Zealand.

Abstract 21
Introduction 21
Methods 23
Results 26
Vegetation analysis 26
Geomorphological variables 32
Disturbance factors 33
Soil environmental variables 35
Discussion 37
References 42

Chapter Three

Eleocharis neozelandica (Cyperaceae) Kirk, an endangered sedge: habitat and cultivation.

Abstract 45
Introduction 45
Recorded history of Eleocharis neozelandica 46
Methods 49
Seed germination and propagation 49
Comparisons of Eleocharis neozelandica populations 51
Chapter Four

The planting of an unnamed, rare native daphne, *Pimelea “Turakina”* at Tangimoana, Manawatu.

Abstract

Introduction

Methods

*Planting*

Results

Discussion

References

Chapter Five

The water table dynamics of temporary dune slack wetlands at Tangimoana, Manawatu, New Zealand, with reference to vegetation change in exclosure and control permanent plots.

Abstract

Introduction

Methods

*Water table monitoring*

*Rainfall data*

*Vegetation monitoring of the rabbit exclosures*

Results

*Wetland water table shapes*

*Water table response to rainfall*

*Vegetation responses to water table and inside rabbit exclosures*

Discussion

*Water table fluctuations*

*Water table impacts on vegetation*
Vegetation change over time

Conclusion
References

Chapter Six
Dune slack wetland plant growth in response to sand burial, waterlogging and submergence.

Abstract
Introduction

Anoxia
Sand burial

Methods
Waterlogging
Sand burial
Analysis

Results
Waterlogging
Sand burial

Discussion
Waterlogging
Sand burial

Waterlogging in relation to the distribution of the four dune slack plants in situ.

References

Chapter Seven
The construction of a temporary wetland in dune hollows, for habitat creation for the endangered sand spiked sedge, *Eleocharis neozelandica*

Abstract
Introduction
Methods
Results
Thesis Abstract

Parabolic dunes are a feature of the Manawatu, New Zealand coastline. Moving inland, the dunes form temporary wetlands in deflation hollows (dune slacks) on their seaward side. One of the few remaining natural dune systems left in the Manawatu is located south of the Rangitikei River mouth at Tangimoana, the "Tangimoana dump dunes", a proposed DoC reserve. The area contains excellent examples of temporary wetlands in dune slacks, with early successional vegetation well represented. This vegetation is being eliminated by larger wetland plants and is unable to colonize new habitat, as dune stabilization prevents its formation.

The vegetation of the proposed reserve was sampled and vegetation patterns were related to environmental factors. Foredune, dune plain, slack, marram dune, shrub dune and grassland communities were identified. A low species diversity was found, which included a high proportion of exotic species in the grassland, shrub and marram dune communities. The low number of communities and species richness may be related to the area's youth and the dune's dynamic nature.

Water table fluctuations were monitored in two temporary wetlands, which contained the endangered sand spiked sedge, *Eleocharis neozelandica*, an early successional species. The water table fluctuations were directly related to rainfall and season. A high winter and spring water table in 1995 resulted in dramatic changes in the distributions of some dune slack plants. Control and exclosure plots were used to assess the effects of rabbit browse on the dune slack vegetation. These plots also provided valuable information of the vegetation change to water table heights. Species more suited to permanently wet locations increased greatly, while species suited to more temporary wet areas moved higher in elevation, to around the winter high water line.
Two endangered plants of the Manawatu dunelands, *Eleocharis neozelandica* and *Pimelea "Turakina"* were cultivated and then established at the Tangimoana dump dunes. *Pimelea "Turakina"* appears to be well adapted to the Manawatu dune lands and produced abundant seedlings at Tangimoana. Creation of deflation hollows for *E. neozelandica* habitat was undertaken. *E. neozelandica* was planted in the constructed hollows at three separate elevations, and survived winter submergence at the medium and high elevation sites, of at least seven months at the medium site, and appears to be a valuable and effective management tool for the conservation of dune slack species. The tolerance and growth of *E. neozelandica* and other dune slack species in relation to sand burial, waterlogging and submergence was studied in controlled experiments. They appear to be generally intolerant of sand burial, but all survived submergence and thrived in waterlogged conditions.

Temporary wetlands in dune slacks at the Tangimoana are incredibly dynamic in relation to the water table fluctuations, and changes in species distributions resulting from them. Management solutions need to be active and address these results in order to maintain the indigenous flora of the area.