Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Biosensors for fertility and pregnancy in cattle

A thesis presented
in partial fulfilment of the requirements
for the degree of
Doctor of Philosophy in Chemistry
at Massey University, Palmerston North,
New Zealand

Yu-ting Hsu

2013
Acknowledgements

First and foremost I would like to thank my supervisors Associate Professor Eric Ainscough and Associate Professor Ashton Partridge who were friendly and supportive throughout my study. Additionally, I would like to thank Professor Bernd Rehm and the Polybatics group for providing the polyhydroxyalkanoate granules and valuable information and advice towards the research and development of a surface plasmon resonance sensor.

I would like to acknowledge the MacDiarmid Institute for providing financial support.

I wish to thank Dr Wayne Campbell and Dr Krishanthi Jayasundera for the synthesised progesterone ligands. I would like to thank Associate Professor Len Blackwell and Dr Jenness Guthrie for advice and information on the lateral flow immunoassay development.

Finally, I wish to thank my family and Ross for supporting my efforts to pursue a PhD.
Abstract

This project is focused on progesterone sensing, using both surface plasmon resonance (SPR) and lateral flow immunoassay (LFIA) methods with a new progesterone (P4) sensing material to develop cost effective assays for progesterone sensing in bovine serum and milk samples.

P4-PEG-OVA was synthesised, characterised and used for P4 detection. The P4-PEG-OVA sensor surface showed an improvement in surface response compared with two shorter ligand 4TP-P4-OVA and 4TPH-P4-OVA in SPR studies.

An analysis method has been developed and modified for bovine serum and milk analyses. The results indicated the P4-PEG-OVA ligand allowed sensitive P4 detection in SPR sensing and allowed bovine P4 cycle profiling. The SPR analysed data was compatible with the ECLIA and ELISA independent analyses and the P4 cycle of each of the three bovine milk samples showed a very similar trend and the extraction level was also consistent.

The P4-PEG-OVA ligand was used to develop a LFIA sensor strip, and the inhibition assay for bovine serum and milk analyses established. The results indicated that, after appropriate sample pre-treatment, the bovine estrous cycle profile could be detected. The LFIA method can be a potentially quick, easy and cost effective semi-quantitative P4 analysis for serum and milk samples.

A new material, polyhydroxyalkanoate (PHA) granules has been investigated for the possibility of developing a new surface biosensor. From the surface studies, the results indicated that the 3GNZZPhaC beads have the potential to become an alternative binding material for SPR sensing due to its unique gold binding property. A flow cell was designed, constructed, and tested on 3GNZZPhaC beads prior the preliminary SPR investigations.

The ZZPhaC beads also showed the gold binding property and ZZPhaC beads were used for SPR studies. The results suggested a possible application for them as a new SPR binding material for antibody detection.
Contents

Chapter 1: Introduction

1.1 Dairy farming in New Zealand ... 1
1.2 Mammalian/bovine progesterone (P4) cycle ... 1
1.3 Biosensors .. 3
1.4 Surface Plasmon Resonance (SPR) .. 5
 1.4.1 SPR-based applications .. 7
 1.4.2 The Biacore X100 system ... 8
 1.4.2.1 The microfluidic system ... 9
 1.4.2.2 Biacore sensing chips ... 10
 1.4.2.3 Surface immobilisation .. 11
1.5 The Lateral Flow Immunoassay (LFIA) .. 13
 1.5.1 Structure of a lateral flow immunoassay strip 16
 1.5.1.1 Backing card .. 17
 1.5.1.2 Membrane materials ... 17
 1.5.1.3 Sample pad .. 18
 1.5.1.4 Absorbing pad ... 18
 1.5.1.5 Conjugate pad ... 19
 1.5.1.6 Labelling material ... 19
 1.5.2 Capillary flow rate .. 19
1.6 Immunoassay .. 20
 1.6.1 Immunoassay of steroids .. 20
 1.6.2 Progesterone sensing .. 21
1.7 Progesterone sensing and the present study .. 23

References .. 24

Chapter 2: SPR based biosensors ... 27

2.1 Introduction ... 27
 2.1.1 The evanescent wave ... 29
2.2 Development of SPR assays ... 30
2.3 Progesterone (P4) derivatives ... 33
 2.3.1 Synthesis of P4-PEG-OVA ... 34
 2.3.1.1 A brief overview of the synthesis of P4-PEG-COOH 34
 2.3.1.2 Conjugation of P4(CH$_2$)$_n$PEG-COOH to ovalbumin (OVA) to give P4-PEG-OVA ... 35
 2.3.1.3 Immobilisation of ligands onto the CM5 chip 36
 2.3.2 Binding performance with monoclonal rat Anti-progesterone (Sigma P1922) ... 39
 2.3.2.1 4TP-P4-OVA .. 40
 2.3.2.2 4TPH-P4-OVA .. 41
 2.3.2.3 P4-PEG-OVA .. 42
 2.3.2.4 Comparison of binding performance between P4-linkers 43
 2.3.3 Binding performance with monoclonal mouse Anti-P4 (Serotech) 44
 2.3.3.1 Binding performance stability on the 4TP-P4-OVA sensor 44
 2.3.3.2 Comments about mouse and rat Anti-P4 binding to a 4TP-P4-OVA surface ... 46
 2.3.3.3 Comments about mouse and rat Anti-P4 binding to a 4TPH-P4-OVA surface ... 47
 2.3.3.4 Comments about mouse and rat Anti-P4 binding to a P4-PEG-OVA surface ... 48
 2.3.3.5 Comparison of binding performance between P4 linkers 49
 2.3.4 Inhibition assay development with mouse Anti-P4 (Serotech) 50
 2.3.4.1 Assay development with 4TP-P4-OVA ... 51
 2.3.4.2 Assay development with 4TPH-P4-OVA 52
 2.3.4.3 Assay development with P4-PEG-OVA 53
 2.4 Determination of P4 in bovine serum samples 56
 2.4.1 Non-specific binding of P4 to corticosteroid binding globulin 56
 2.4.2 Free P4 analysis .. 58
Chapter 4: Toward an alternative sensing material for SPR sensing:

Polyhydroxyalkanoate granules ... 119

4.1 Introduction to polyhydroxyalkanoates ... 119

4.2 Polyhydroxyalkanoate granules .. 120
 4.2.1 Formation of polyester granules .. 122
 4.2.2 Multifunctional inorganic binding beads ... 123

4.3 Applications of PHA granules ... 126

4.4 Surface applications ... 127
 4.4.1 Dip coating .. 127
 4.4.2 Spin coating ... 128

4.5 Flow cell system ... 129

4.6 Microscopy studies .. 134
 4.6.1 Scanning electron microscopy studies ... 134
 4.6.1.1 3GNZZPhaC immobilisation on the Au surface 134
 4.6.1.2 SEM of ZZPhaC immobilisation on the Au surface 136
 4.6.2 Preliminary atomic force microscopy (AFM) studies 138

4.7 The selection of ZZPhaC beads as an alternative SPR sensing material 141
 4.7.1 Preliminary binding test .. 142
 4.7.1.1 Outside immobilisation of ZZPhaC beads 142
 4.7.1.2 Binding test using rat Anti-P4 on a ZZPhaC surface 143
 4.7.1.3 ZZPhaC immobilisation (in Biacore X100) 150
 4.7.1.4 Binding performance testing with rat Anti-P4 on the Au-ZZPhaC surface .. 153

4.8 Preliminary LFIA testing .. 158

List of figures, tables and reaction schemes

Chapter 1

Figure 1.1 A bovine estrous cycle can be monitored by measuring the P4 concentration in both serum and milk samples. The duration of a typical bovine estrous cycle is approximately 21 days.

Figure 1.2 A typical biosensor comprises a capture agent unit which consists of a biological element such as an enzyme, immunoagents, or microorganisms.

Figure 1.3 A modern SPR sensing system based on the Kretschmann configuration.

Figure 1.4 Sensorgram showing the steps of an analysis cycle. The progesterone standard was injected at 30 μL/min for 120 s and this was followed by a regeneration step of injection of NaOH solution (10 mM) for 30 s which regenerates the surface. The analyte flows through flow cell one (FC1) and flow cell two (FC2) sequentially; the response was measured by subtracting the reference response of FC1 from the binding response of FC2.

Figure 1.5 The Biacore X100 system. To study the interaction between the capture agent and the analyte, the sensor chip requires surface immobilization with the capture agent which is then inserted into the sensor chip holder. The continuous flow micro-fluid channel enables analyte flow at the chosen condition and enables real time observation of the capture agent and the analyte.

Figure 1.6 The microfluidic system and flow cell of a Biacore X100. Two flow cells, FC1 and FC2 are formed over one sensor surface when the sensor chip is docked in the instrument, and the flow cells can be used in series or individually. The automatic in-line reference substation was done by using FC2 minus FC1 from same sample injection.

Figure 1.7 Each sensor chip consists of a gold coated surface with a different matrix. The CM5 chip is the most versatile and this has a carboxymethylated dextran matrix as a coupling layer.
Figure 1.8 The sandwich format also known as positive assay. The assay usually consists of nanoparticles such as gold in either a sample solution or conjugate pad to give signals when it binds to the test and control lines. The sandwich assay gives a signal in the presence of sample/analyte, and the signal is increased as the concentration of target sample/analyte is increased.

Figure 1.9 The competitive format also known as negative assay. The analyte specific antibody is usually conjugated with nanoparticles to give signals when it binds to the test line. Anti-analyte antibody or analyte-protein conjugate is commonly used as the test line. As the concentration of the target sample/analyte increases, the analyte binds to the test line. This results in the occupancy of the binding sites of the test line decreases. Hence, the competitive assay gives decreasing signals as the concentration of the target sample/analyte increased. Further details are given in section 1.3.1.

Figure 1.10 Schematic diagram of a lateral flow immunoassay strip. The strip consists of a sample pad, conjugate release pad, a membrane where the test and control lines are sprayed and a absorbent pad.

Figure 1.11 Microtiter plate for assay development

Figure 1.12 Strip tests using a series of standard solutions, gold nanoparticles are commonly used as a indicator and are pink coloured. The image was obtained using a photoscanner then subjected to quantitative analysis. The intensity of the test line is inverse proportional to the concentration of the target analyte.

Figure 1.13 Structure of nitrocellulose ester and protein dipoles. Nitrocellulose membranes bind to protein electrostatically through interaction between the dipole of the nitro ester and the dipole of the peptide bonds of the protein.

Table 1.1 To study an interaction, it is important to select the most suitable sensor chip for individual studies. There is a range of sensor chips available commercially for specific requirements.
Chapter 2

Figure 2.1 Under total internal reflection, all the incoming light is reflected within the prism.

28

Figure 2.2 Schematic of a boundary-value problem to describe the propagation of a surface plasmon polariton.

28

Figure 2.3 Evanescent wave generated under TIR.

29

Figure 2.4 At θ_{SPR}, the reflected light intensity decreases, and this difference is measured in SPR. As the molecule interacts with the immobilised molecule on the surface, the change in refractive index results in a shift in θ_{SPR}.

30

Figure 2.5 The activation steps of the carboxylic acid group of CM5 with EDC and NHS.

32

Figure 2.6 4TP-P4-OVA

33

Figure 2.7 4TPH-P4-OVA

33

Figure 2.8 P4-PEG-OVA

33

Figure 2.9 Buffer conditions for a successful immobilisation of ligands onto a CM5 sensor surface. The pH of the buffer has to be higher than the pK of the dextran layer to generate a negatively charged surface for the positively charged ligand to bind to the surface.

36

Figure 2.10 Sensorgram of flow cell two (FC2) showing the process of activation of the CM5 sensor surface, immobilisation of the P4-PEG-OVA onto a CM5 surface and the deactivation/cleaning of the sensor surface. The P4-PEG-OVA solution was injected after the surface was activated by the EDS/NHS solution. The sensor surface was regenerated/deactivated after the injection of ethanolamine-HCl solution.

38
Figure 2.11 Sensorgram of flow cell one (FC1) showing the process of activation of the CM5 sensor surface, immobilisation of the OVA ligand on the CM5 and the deactivation/cleaning of the sensor surface. The OVA solution was injected in short pulses after the CM5 surface was activated by the EDS/NHS solution and this was followed by an injection of ethanolamine-HCl to regenerate the surface.

Figure 2.12 Binding curve of 4TP-P4-OVA with rat monoclonal Anti-P4.

Figure 2.13 Binding curve of 4TPH-P4-OVA with rat monoclonal Anti-P4.

Figure 2.14 Binding curve of Anti-P4 on a P4-PEG-OVA sensor chip.

Figure 2.15 Comparison of binding curves for P4 derivatives.

Figure 2.16 Mouse Anti-P4 surface performance varied on two different days (Batch 1 and Batch 2) with the same sensor surface (4TP-P4-OVA), but it is a significantly more sensitive antibody compared with rat Anti-P4.

Figure 2.17 Binding performance of mouse Anti-P4 with Run 1 and Run 2 performed 6 months apart. The surface response varied over time, but still gave a relative linear response.

Figure 2.18 Binding curve of 4TP-P4-OVA with mouse Anti-P4.

Figure 2.19 Binding curve of 4TPH-P4-OVA with mouse Anti-P4.

Figure 2.20 Binding curve of P4-PEG-OVA with mouse Anti-P4.

Figure 2.21 Mouse Anti-P4 binding curves of 4TP-P4-OVA, 4TPH-P4-OVA, P4-PEG-OVA conjugates.
Figure 2.22 4TP-P4-OVA standard curve for P4 concentration extrapolation has a working range of 0.27-2.38 ng/mL.

Figure 2.23 The 4TPH-P4-OVA standard curve for P4. The working range has been calculated to be 0.384-0.742 ng/mL.

Figure 2.24 A P4 standard curve scouting on a P4-PEG-OVA sensor surface.

Figure 2.25 A P4-PEG-OVA standard curve for P4 concentration extrapolation has a working range of 0.294 to 1.942 ng/mL.

Figure 2.26 Mouse Anti-P4 standard curves of 4TP-P4-OVA, 4TPH-P4-OVA, and P4-PEG-OVA conjugates.

Figure 2.27 Bovine serum binding curve on a P4-PEG-OVA sensor surface.

Figure 2.28 The SPR analysed P4 concentration in serum (free P4) and the ECLIA analysed P4 concentrations in serum samples were overlapped to monitor the P4 concentrations over 2 cycles.

Figure 2.29 The surface responses of blank extraction, hexane extraction and ethyl acetate extraction of serum samples. The surface response is inverse proportional to the concentration of P4 in the sample. Hence, the ethyl acetate extracted sample presented the highest response compared with the blank (buffer) and hexane extracted samples.

Figure 2.30 Surface response for a hexane extracted serum sample and a THF extracted serum sample.

Figure 2.31 The P4 concentration of top (black) and bottom (red) fraction of the extracted and filtered serum samples.

Figure 2.32 The combined P4 concentration from extracted serum samples.
The independent analysis results overlapped with the SPR analysis results. The plot indicated that the SPR P4 level and the independent analysed P4 level have the same trend.

Figure 2.34 [P4] in bovine milk 1 analysed by SPR.

Figure 2.35 Overlapped spectra of SPR analysed milk 1 [P4] and ELISA analysed milk 1 [P4].

Figure 2.36 [P4] in bovine milk 2 analysed by SPR.

Figure 2.37 Spectra of SPR analysed milk 2 [P4] and ELISA analysed milk 2 [P4].

Figure 2.38 [P4] in bovine milk 3 analysed by SPR.

Figure 2.39 Spectra of SPR analysed milk 3 [P4] and ELISA analysed milk 3 [P4].

Table 2.1 The synthesis of the P4-PEG derivative (6) was carried out following the scheme above.

Scheme 2.1 Steps for the conjugation of P4-PEG-COOH to OVA to form P4-PEG-OVA.

Chapter 3

Figure 3.1 Development of a one step assay with Anti-P4-Au conjugates. P4-PEG-OVA and rat anti IgG served as test and control lines.

Figure 3.2 The image of the strips were obtained by using a photoscanner. The intensity of control and test lines on the test strips were read and quantified using the strip reader system.
Figure 3.3 A typical shape of a dose-response curve where the response depends on the dose of the drug (drug concentration).

Figure 3.4 UV/visible spectra of an antibody titration, where the λ_{max} of the blank Au solution was at 523.5 nm.

Figure 3.5 P4-PEG-OVA strips with varied Anti-P4-Au concentrations (strips 1 to 12, 0.1 μg/mL to 1.2 μg/mL). As the concentration of Anti-P4-Au increased from A1 to A12 the intensity of both test and control lines increased.

Figure 3.6 A P4-PEG-OVA binding curve indicated 0.1~0.3 μg/mL of Anti-P4-Au should be sufficient for assay development.

Figure 3.7 A P4 standard curve scouting to establish the concentrations for P4 standard solutions.

Figure 3.8 The P4 standard curve obtained from the P4-PEG-OVA test strips. The standard curve was calibrated with triplicate measurements. The error bars represented the standard deviation of the measurements.

Figure 3.9 Intensity of control serum samples after protein separation using a centrifugal filter. The results indicated the concentrations of the free P4 present in serum samples may be too low for the sensing strip to detect.

Figure 3.10 P4 concentrations of cow 3 in spun down serum samples.

Figure 3.11 The serum samples from cow 3 were tested and the results compared with the ECLIA analysis.

Figure 3.12 P4 standard curves to test the matrix effect from the serum sample as well as the sensitivity of the assay by using different sets of P4 standards.

Figure 3.13 Serum with no standards fitted within the working range of the P4 standard curve.
Figure 3.14 Comparison between a normalized P4 standard curve and a normalized P4 standard curve with spiked low [P4] serum sample.

Figure 3.15 P4 standards were spiked with a serum sample which contained a low concentration of P4.

Figure 3.16 LFIA analysis of serum 1, which showed a distinct P4 cycle.

Figure 3.17 ECLIA analysis of serum from cow 1, which was used as a standard to validate the assays. The serum samples showed one complete P4 cycle with the two ends of the plot having high P4 concentration and low P4 concentrations in between, and this followed the normal trend for a bovine P4 cycle.

Figure 3.18 Overlapped plots of ECLIA analysis and LFIA analysis of serum 1.

Figure 3.19 Serum samples from cow 1 repeated for P4 concentration 6 months later. The pro-estrus and metestrus profile from LFIA analysis matched the profile from ECLIA analysis.

Figure 3.20 Overlapped LFIA P4 cycle and ECLIA P4 cycle for Serum 2.

Figure 3.21 The assay using milk samples (the strips were numbered from 1 to 12 according to their sample collection date) without treatment/preparation resulted in coagulation of the milk fat/protein with the Anti-P4-Au at the bottom of the strip. The bottom of samples 6 to 11 showed the fat and protein deposits.

Figure 3.22 Comparison of [P4] from two batches of LFIA analysis using diluted milk samples from cow 1. The two batches analysed from the same assay were not consistent. Therefore the milk samples required further treatment.

Figure 3.23 NZVP milk and serum samples of cow 1 did not have the same P4 cycle profile.
Figure 3.24 Standard curve spiked with a milk sample.

Figure 3.25 The sensor strips (the strips were numbered from 1 to 12 according to their sample collection date) from fat-removed, diluted milk samples.

Figure 3.26 The P4 standard curve was used to calculate the P4 in milk samples from cow 1.

Figure 3.27 The sensor strips (the strips were numbered from 13 to 34 according to their sample collection date) were allowed to develop in the solution well which contained the analysed solution for 20 min. The strips were scanned and analysed using the strip reader. The variation in colour intensity of the sample strips suggested a difference in [P4] in the milk samples from cow 1.

Figure 3.28 The P4 cycle from cow 1 analysed from LIFA, the samples showed only a partial estrous cycle which resembled a typical bovine estrous cycle.

Figure 3.29 The LFIA analysed P4 cycle was overlapped with the ELISA analysed P4 cycle of cow 1.

Figure 3.30 LFIA analysed milk sample (after removal of fat and protein) showed a full P4 cycle of cow 1.

Figure 3.31 Overlapped ELISA and LFIA P4 cycles of cow 1. The profiles of the P4 cycles matched but with an overestimation of the P4 concentration from LFIA.

Figure 3.32 LFIA analysis of milk samples from cow 2 after protein and fat removal.

Figure 3.33 Overlap of the LFIA P4 cycle and the ELISA P4 cycle. The general trend of the P4 cycle was demonstrated by using the LFIA method for milk sample analysis on cow 2.
Figure 3.34 A repeat of the P4 cycle of cow 2 analysed by LFIA with newly conjugated Anti-P4-Au.

Figure 3.35 Overlap of the repeat LFIA analysed P4 cycle and ELISA analysed P4 cycle for cow 2.

Table 3.1 Antibody titration concentrations

Table 3.2 Absorbance and λ_{max} obtained from antibody titration

Chapter 4

Figure 4.1 A) Proposed structure of a polyester granule. The small water insoluble inclusions are formed with a amorphous polyester core with polyester synthase covalently attached to the surface. B) Electron microscopy image of *Pseudomonas aeruginosa* accumulating polyester granules.

Figure 4.2 Model of polyester granule formation. A) Micelle model, and B) Budding model.

Figure 4.3 Genetically fused 3R-GBP-1, bead formation enzyme (polyester synthases) and extra binding domain protein (IgG) enable the formation of polyester inclusion within the bacterial cell.

Figure 4.4 TEM images of PHA beads after incubation with colloidal gold, with PHA beads A displaying the ZZ(-)PhaC protein at the surface and PHA beads B containing the engineered protein 3xGN-G5-ZZ(-)PhaC on the surface with gold nanoparticles. Figure A shows no gold attached but Figure B does.

Figure 4.5 Scheme of the surface of a bifunctional gold/antibody binding PHA bead.

Figure 4.6 There are many possible applications for GEPI, including biosensing studies.
Figure 4.7 Binding affinity of a ZZPhaC polyesters for various antibodies, where (----) represents weak binding affinity, and (++++) represents strong binding affinity.

Figure 4.8 The dip coating set up for 3GNZZPhaC beads. The Au coated mylar chip was dip coated with 3GNZZPhaC beads followed by washing of the surface with Milli-Q H2O. To reduce aggregation of the 3GNZZPhaC beads, the bead solution was under continuous stirring while the Au chip underwent the dip coating process.

Figure 4.9 Flow cell with an inlet and an outlet and a single channel.

Figure 4.10 Glass surfaces coated with gold acting as a sensor chip for the SPR sensing system.

Figure 4.11 Reference glass slide with double-sided tape.

Figure 4.12 The flow cell channel was sealed with the reference glass slide and with inlet and outlet tubes attached to the flow cell system.

Figure 4.13 The flow cell channel was sealed with the Au coated glass slide and with inlet and outlet tubes attached to the flow cell system.

Figure 4.14 Flow cell system setup. The single flow cell system with reference glass slide was attached to syringe pump from the inlet tube and injected with a 3GNZZPhaC bead solution at 2 mL/hr. The residue solution flowed through the flow cell channel and exited from the outlet tube.

Figure 4.15 The cores of 3GNZZPhaC beads were stained with Nile red dye then immobilised onto the gold surface. The fluorescence image (40x magnification) of 3GNZZPhaC beads after immobilisation showed they were still present after the washing process.
Figure 4.16 A SEM image (8,000x magnification) of 3GNZZPhaC beads after surface immobilisation. The larger 3GNZZPhaC beads were embedded within the solvent residues/ contaminants.

Figure 4.17 Aerial view of an SEM image (13,000x magnification) of 3GNZZPhaC beads after surface immobilisation. There were single layer beads scattered on the surface after cleaning. However, there were residues/ contaminants that still remained.

Figure 4.18 Close up (tilted 90°) SEM image (30,000x magnification) of 3GNZZPhaC beads after surface immobilisation. It’s quite clear that the beads are attached to the surface with the residues/ contaminants “sticking” to it.

Figure 4.19 Aerial view of an SEM image (13,000x magnification) of ZZPhaC beads after surface immobilisation. The ZZPhaC beads are coagulated on the Au surface.

Figure 4.20 SEM image (13,000x magnification) of ZZPhaC beads after surface immobilisation. Some of the beads scattered on the surface with no aggregation.

Figure 4.21 Close up (tilted 90°) of an SEM image (25,000x magnification) of ZZPhaC beads after surface immobilisation. The scattered single beads were attached to the Au surface with no solvent residues after cleaning the surface (residues showed in a 3GNZZPhaC sample).

Figure 4.22 The Asylum Research MFP-3D model was used for surface profiling.

Figure 4.23 Surface profiling of the 3GNZZPhaC beads.

Figure 4.24 Surface profiling of 3GNZZPhaC beads on a Au coated surface.

Figure 4.25 Schematic diagram of a SPR sensor with immobilised PHA beads. The multifunctional PHA beads are able to bind to the gold surface as well as the analyte.
Figure 4.26 Sensorgram of rat Anti-P4 binding to the Au-ZZPhaC surface in FC1.

Figure 4.27 Sensorgram of rat Anti-P4 binding to the Au-ZZPhaC surface in FC2.

Figure 4.28 The rat Anti-P4 was tested on a ZZPhaC surface with a flow rate of 5 μL/min.

Figure 4.29 The rat Anti-P4 was tested on a ZZPhaC surface with a flow rate of 10 μL/min.

Figure 4.30 Binding performance of rat Anti-P4 on a ZZPhaC sensor surface with a flow rate of 5 μL/min. The sensor surface was immobilised outside of the SPR instrument, hence the FC1 and FC2 surface response units should be relatively similar.

Figure 4.31 The ZZPhaC beads immobilised on the commercially available Au sensor surface. The surface appeared to have a large amount of salt present which was from the buffer residues (40x magnification). FC1 and FC2 are visibly coated with salt residues and ZZPhaC beads.

Figure 4.32 The sensor surface with ZZPhaC beads immobilised outside of the SPR instrument. The beads were scattered along the gold surface with aggregation (500x magnification).

Figure 4.33 Outside surface immobilisation of ZZPhaC beads; a significant amount of aggregation occurred (15,000 magnification) and this would hinder the binding response of the Anti-P4.

Figure 4.34 After the first injection of ZZPhaC beads (1 ng/mL) at 5 μL/min for 24 s on FC2, there appeared to be no binding on the Au surface.

Figure 4.35 The short pulse injections of ZZPhaC (1 ng/mL) at 5 μL/min showed a very low surface response.

Figure 4.36 The immobilisation concentration of the ZZPhaC beads was increased to 10 ng/mL. The immobilisation step began with a short pulse of injection
followed by a long pulse injection. The surface loading was checked by several short pulse injections. The final immobilisation level was 522.7 RU.

Figure 4.37 Surface response of ZZPhaC bead immobilised FC2 and bare gold FC1. The binding performance of rat Anti-P4 on both channels was very similar; with a higher concentration of rat Anti-P4 the surface response was lower than the bare gold surface.

Figure 4.38 The Au-ZZPhaC sensor chip was used to repeat the binding curve of rat anti progesterone, where FC1 contained only bare gold and FC2 was immobilised with ZZPhaC beads.

Figure 4.39 The SEM image (40x magnification) of the SPR sensor chip with ZZPhaC beads. FC2 was immobilised with ZZPhaC beads and FC1 was the reference cell without a binding layer (bare gold).

Figure 4.40 The SPR immobilisation method reduced the aggregation (4,000x magnification) of the ZZPhaC beads and allowed rat Anti-P4 binding to occur.

Figure 4.41 A preliminary assay using 3GNZZPhaC beads and ZZPhaC beads as binding material.

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4TP-P4</td>
<td>3-(pregn-4-ene-3,20-dione-4-yl)thiopropanoic acid</td>
</tr>
<tr>
<td>4TPH-P4</td>
<td>6-[3-[(pregn-4-ene-3,20-dione-4-yl)thiopropano-yl] amino]hexanoic acid</td>
</tr>
<tr>
<td>AFM</td>
<td>atomic force microscopy</td>
</tr>
<tr>
<td>Anti-P4</td>
<td>progesterone antibody</td>
</tr>
<tr>
<td>AuNPs</td>
<td>gold nanoparticles</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>C</td>
<td>control line</td>
</tr>
<tr>
<td>CBG</td>
<td>corticosteroid binding globulin</td>
</tr>
<tr>
<td>CM5</td>
<td>carboxymethylate dextran</td>
</tr>
<tr>
<td>CL</td>
<td>corpus luteum</td>
</tr>
<tr>
<td>DCC</td>
<td>1,3-dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dpm</td>
<td>disintegration per minute</td>
</tr>
<tr>
<td>EC20</td>
<td>the lowest concentration that can be distinguished from the background noise</td>
</tr>
<tr>
<td>EC50</td>
<td>the half maximal effect concentration</td>
</tr>
<tr>
<td>EC80</td>
<td>the highest concentration that can be distinguished from the background noise</td>
</tr>
<tr>
<td>ECLIA</td>
<td>electrochemiluminescence immunoassay</td>
</tr>
<tr>
<td>EDC</td>
<td>1-ethyl-3(-3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EIAs</td>
<td>enzyme immunoassays</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FC1</td>
<td>flow cell one</td>
</tr>
</tbody>
</table>
FC2 flow cell two
FSH follicular stimulating hormone
GC-MS gas chromatography–mass spectrometry
GEPIs genetically engineered polypeptides for inorganics
HBS-EP+ SPR buffer contained 0.1 M HEPES, 1.5 M NaCl, 30 mM EDTA and 0.5% v/v Surfactant P20
hCG gonadotropin
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HPLC high performance liquid chromatography
IFC integrated micro fluidic cartridge
IgG immunoglobulin G
kDa kilodalton
LC-MS liquid chromatography–mass spectrometry
LFDs lateral flow devices
LFIA lateral flow immunoassay
LH luteinising hormones
LOD limit of detection
NHS N-hydroxysuccinimide
NZVP New Zealand Veterinary Pathology Limited
P4 progesterone
P4-PEG N-(13-(carbonylamino)-4,7,10-trioxatridecanyl)- 3-(pregn-4-ene-3,20-dione-4-yl)thiopropanamide
PHA polyhydroxyalkanoate
PHB polyhydroxybutyrate
PHBA poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
pI isoelectric point
pK disassociate constant
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVA</td>
<td>ovalbumin</td>
</tr>
<tr>
<td>RIAs</td>
<td>radioimmunoassays</td>
</tr>
<tr>
<td>RU</td>
<td>response unit</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>SPR</td>
<td>surface plasmon resonance</td>
</tr>
<tr>
<td>SPRI</td>
<td>surface plasmon resonance imaging</td>
</tr>
<tr>
<td>T</td>
<td>test line</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIR</td>
<td>total internal reflection</td>
</tr>
<tr>
<td>ZZ domain</td>
<td>antibody binding domain of protein A</td>
</tr>
<tr>
<td>θ_{SPR}</td>
<td>surface plasmon resonance angle</td>
</tr>
<tr>
<td>λ_{max}</td>
<td>lambda(max)</td>
</tr>
</tbody>
</table>