AN INVESTIGATION OF UV DISINFECTION OF FARM DAIRY WASTEWATER

YONGJIAN LI

1998
AN INVESTIGATION OF UV DISINFECTION OF
FARM DAIRY WASTEWATER

A thesis
submitted in partial fulfilment of the requirement
for
THE DEGREE OF MASTER OF APPLIED SCIENCE
in
NATURAL RESOURCES ENGINEERING
at
Institute of Technology and Engineering
College of Science
Massey University
Palmerston North
New Zealand

YONGJIAN LI
1998
ABSTRACT

The development of New Zealand dairy farming industry is characterised by a trend towards more intensified farming operations (larger herd sizes). This is placing greater demand for freshwater uses and effluent discharges. To comply with the microbiological standards, wastewater from farm dairies may be disinfected. Ultraviolet irradiation provides one of the best alternatives to traditional disinfection technologies.

With the development of technology and the awareness of the hazards of disinfection by-products, UV irradiation is increasingly used successfully world-wide for both drinking and wastewater disinfection. Due to the lack of data on the nature of farm dairy wastewater, no information was available on the application of UV to dairy effluents.

Wastewater samples were collected from farm dairies and analysed for characteristics relative to UV disinfection. Suspended solids (SS) contributed to nearly half the COD and 80% of the turbidity of the pond treated wastewater. Colloidal material in the 0.22 to 1.0 micron range constituted nearly 18% of the COD and 15% of the turbidity of the raw pond effluent.

Farm dairy wastewater quality changed with season. With the commencing of milking season, wastewater suspended solids, COD, and turbidity increased sharply due to the increased influent loading. However, wastewater BOD was similar over the monitoring period. With the exception of temperature and pH, wastewater quality parameters monitored showed great variation among different sites. These variations may be due to the difference in farm operation and management.

Pond treated farm dairy wastewater could not be directly disinfected by UV due to the high suspended solids (317 mg/l), COD (809 mg/l) concentration, high turbidity (450 NTU) and low UV transmittance (0%/cm). Filtration through 1.2, 0.45, and 0.22 micron filter removed all suspended solids and most of the turbidity, but UV transmittance
remained lower than 1%/cm. Alum coagulation followed by 0.45 micron filtration removed most of the colloidal material and improved UV transmittance up to 29%/cm. The dissolved organic matter was successfully removed by 0.5 g/l activated carbon (AC) adsorption following aluminium sulphate coagulation treatment. To reach 60%/cm UV transmittance, AC dose of 5 g/l was required for raw pond effluent. Bark and zeolite treatment removed ammonium from farm dairy wastewater. Bark and zeolite treatment did not greatly improve raw pond effluent UV transmittance at 254 nm. Ultracentrifugation at 10,500 g for one hour did not significantly improve UV transmission through alum coagulated farm dairy wastewater. Hydrogen peroxide was found not helpful in improving UV penetration. Strong correlation existed between UV absorbance and COD concentration. UV absorbance may be used as a parameter for estimating wastewater COD level.

Keywords: Farm dairy wastewater, ultraviolet (UV), disinfection, dilution, filtration, alum coagulation, hydrogen peroxide, activated carbon, UV transmittance.
ACKNOWLEDGEMENTS

It is a great pleasure to express my sincere thanks, heartfelt gratitude and appreciation to the following people for their contributions towards the completion of this thesis.

Firstly my supervisor Ian Mason for his invaluable guidance, encouragement, patience and constructive criticism during the completion of the project.

The Agricultural Engineering Department (especially Professor Gavin L. Wall) for providing the opportunity to study at Massey University. The professors, lecturers, secretaries, technicians for their encouragement and help.

Associated Professor Roger D. Reeves at Department of Chemistry for teaching and allowing me the use of the scanning spectrophotometer and valuable suggestions concerning the scope of the experimental work.

Associated Professor John W. Tweedie at Department of Biochemistry for helping the use of ultracentrifuge facilities and discussions about the removal of particulates from wastewaters.

Dr. Nanthi S. Bolan and Dr. David R. Scotter at Department of Soil Science for their valuable suggestions, encouragement and friendship. Dr. Bolan also supplied the bark and zeolite reagents and related information.

Mr. Dexter O. McGhie for his help in arranging laboratory instruments, reagents, and discussions about the experimental work.

All my fellow post-graduate students both in Ag-Eng building and the TVL Lab for their help and friendship.
The six farm dairies for allowing the collection of wastewater samples from their properties and supplying information about their farms.

In particular, I must express my indebtedness to my wife, Wenjuan, for her understanding, support, love and sacrifice. Finally, my son Yang is acknowledged for his understanding and all the happiness he has brought into our lives.

Above all, I present all the praises and glory to Jesus, the Christ.
TABLE OF CONTENTS

LIST OF FIGURES xi
LIST OF TABLES xiv

CHAPTER ONE INTRODUCTION 1
The Expanding New Zealand Dairy Farming Industry 1
The Impacts of Dairy Farming on Water Resources 1
The Need for Farm Dairy Wastewater Disinfection 2
Ultraviolet Radiation for Farm Dairy Wastewater Disinfection 3

CHAPTER TWO LITERATURE REVIEW 5

2.0 INTRODUCTION 5

2.1 HISTORICAL DEVELOPMENT 5

2.2 FUNDAMENTALS 6

2.2.1 Ultraviolet Radiation Spectra for Disinfection 6
2.2.2 UV Disinfection Mechanisms 9
2.2.3 Possible Recovery From Inactivation 12
2.2.3.1 Photoreactivation 12
2.2.3.2 Dark repair 14
2.2.3.3 The significance of repair mechanisms 14

2.3 FACTORS AFFECTING UV DISINFECTION 16

2.3.1 The Emission Spectrum of the UV Source 16
2.3.2 UV Dose for Microorganism Inactivation 18
2.3.2.1 Sensitivity of microorganisms to UV inactivation 18
2.3.2.2 UV irradiation intensity 19
2.3.2.3 Exposure duration for effective disinfection 21
2.3.2.4 UV dose requirement for wastewater disinfection 22
2.3.3 The Performance of UV Reactors 24
2.3.3.1 Current ultraviolet equipment 25
2.3.3.2 The ageing of UV lamps 29
2.3.3.3 Fouling and cleaning of UV lamp jackets 30
2.3.3.4 The hydraulic behaviour of the UV reactor 31
2.3.3.5 Estimation of the average intensity in a UV reactor 31
2.3.3.6 Predicting or modelling the reactor performance 35
2.3.4 The Quality of Wastewater for Disinfection 37
2.3.4.1 Suspended solids and turbidity 37
2.3.4.2 UV transmittance 39
2.3.4.3 Other wastewater quality parameters
2.3.4.4 Water quality requirement for effective UV disinfection

2.4 GENERAL CONSIDERATIONS IN ADOPTING UV DISINFECTION

2.4.1 Advantages and Disadvantages of UV Disinfection of Wastewater
2.4.2 Economics of UV Disinfection
2.4.3 System Design

2.5 FARM DAIRY EFFLUENT QUALITY FOR UV DISINFECTION

2.6 SUMMARY OF LITERATURE REVIEW

2.7 JUSTIFICATION AND OBJECTIVES OF THIS STUDY

CHAPTER THREE MATERIALS AND METHODS

3.0 INTRODUCTION

3.1 SOURCES OF FARM DAIRY WASTEWATER

3.1.1 Massey No. 4 Dairy Farm
3.1.2 Other Dairy Farms

3.2 SAMPLING OF FARM DAIRY WASTEWATER

3.2.1 Massey No. 4 Dairy Farm
3.2.2 Other Dairy Farms

3.3 ANALYSIS OF FARM DAIRY WASTEWATER

3.3.1 Temperature
3.3.2 pH
3.3.3 Electrical Conductivity (EC)
3.3.4 Turbidity
3.3.5 Suspended Solids (SS)
3.3.6 Biological Oxygen Demand (BOD)
3.3.7 Chemical Oxygen Demand (COD)
3.3.8 UV Transmittance and Absorbance
3.3.9 Absorbance Spectra

3.4 TREATMENT OF FARM DAIRY WASTEWATER

3.4.1 Filtration
3.4.2 Dilution
CHAPTER FOUR RESULTS

4.0 INTRODUCTION

4.1 CHARACTERISTICS OF FARM DAIRY WASTEWATERS

4.1.1 Wastewater from Massey No. 4 Dairy Farm
4.1.2 Wastewater from Other Farm Dairies

4.2 FARM DAIRY WASTEWATER TREATMENT

4.2.1 Dilution
4.2.2 Filtration
4.2.3 Coagulation Followed by Filtration
4.2.4 Centrifugation
4.2.5 Adsorption
4.2.6 Oxidation

4.3 WASTEWATER ABSORBANCE SPECTRA

4.3.1 Absorbance Spectra of Raw and Filtered Pond Effluent
4.3.2 Absorbance Spectra of Raw and Coagulated-Filtered Pond Effluent
4.3.3 Absorbance Spectra of Raw and Carbon Adsorbed Pond Effluent
4.3.3.1 Absorbance spectra of alum coagulated and carbon adsorbed wastewaters
4.3.3.2 Absorbance spectra of raw and carbon treated pond effluent
4.3.4 Absorbance Spectra of Wastewaters Treated by Bark and Zeolite
4.3.5 Summary of the Absorbance Spectra

CHAPTER FIVE DISCUSSION

5.0 INTRODUCTION

5.1 CHARACTERISTICS OF POND TREATED FARM DAIRY WASTEWATERS
5.1.1 Seasonal Variability of Farm Dairy Wastewaters 95
5.1.2 Site Differences of Farm Dairy Wastewaters 96
5.1.3 Feasibility of UV Disinfection of Raw Farm Dairy Wastewater 97
5.1.4 Trend in Farm Dairy Pond Effluent Quality 97

5.2 CHARACTERISTICS OF FARM DAIRY WASTEWATER AFTER TREATMENT 98
5.2.1 Dilution Treatment 98
5.2.2 Filtration Treatment 99
5.2.3 Coagulation Followed by (0.45 µm) Filtration 100
5.2.4 Ultracentrifugation 103
5.2.5 Oxidation by Hydrogen Peroxide 104
5.2.6 Adsorption 104
 5.2.6.1 Activated carbon (AC) treatment 104
 5.2.6.2 Bark treatment 105
 5.2.6.3 Zeolite treatment 105
 5.2.6.4 Reaction time and dose in adsorption treatment 106

5.3 ABSORBANCE SPECTRA OF WASTEWATERS 106
5.3.1 Raw Farm Dairy Wastewaters 106
5.3.2 Aluminium Sulphate Coagulated Farm Dairy Wastewaters 107
5.3.3 Activated Carbon (AC) Treated Farm Dairy Wastewaters 107
5.3.4 Bark and Zeolite Treated Farm Dairy Wastewaters 107

5.4 RESEARCH LIMITATION AND FURTHER RESEARCH 110

CHAPTER SIX CONCLUSIONS 111

REFERENCES 114

APPENDICES 121 - 141
LIST OF FIGURES

Figure 1-1 Trends in herd number and size in New Zealand (LIC, 1997) 2
Figure 2-1 Electromagnetic spectrum (adapted from Stover et al., 1986) 7
Figure 2-2 Relative germicidal effectiveness as a function of wavelength (Oda, 1969) 9
Figure 2-3 Relative abiotic effects of UV on E. coli compared to relative absorption of ribose nucleic acid (Loofbourow, 1948) 10
Figure 2-4 Examples of DNA and UV damage to DNA (Stover et al., 1986) 11
Figure 2-5 Hypothesized photoreactivation reaction mechanism (Harm, 1975, and Lindenauer and Darby, 1994) 13
Figure 2-6 Radiant power output spectra from (a) low-pressure and (b) medium-pressure mercury arc (Meulemans, 1987) 17
Figure 2-7 Schematic illustration of open-channel ultraviolet disinfection system. Top, horizontal lamp configuration; bottom, vertical lamp configuration (Bierck et al., 1986). 27
Figure 2-8 Typical ultraviolet lamp output as a function of time (Bierck et al., 1996) 29
Figure 2-9 Lamp geometry for point source summation (PSS) approximation of intensity (adapted from Stover et al., 1986) 34
Figure 2-10 Effect of particulates on UV disinfection efficiency 38
Figure 4-1 Changes in pond effluent quality over the monitoring period 62
Figure 4-2 BOD of pond treated wastewaters from Massey No. 4 Dairy Farm 63
Figure 4-3 Measured and predicted BOD of pond effluent from Massey No. 4 Farm Dairy (combined data sets) 64
Figure 4-4 Pond treated farm dairy wastewater BOD 66
Figure 4-5 Wastewater UV transmittance effected by dilution 67
Figure 4-6 UV Absorbance as a function of dilution 68
Figure 4-7 Effect of dilution on Wastewater UV absorbance 70
Figure 4-8 Effect of dilution on wastewater COD 71
Figure 4-9 Effect of dilution on wastewater turbidity 71
Figure 4-10 Effect of filtration on wastewater quality 73
Figure 4-11 Wastewater turbidity as function of filtration and dilution 74
Figure 4-12 Wastewater COD as function of filtration and dilution 76
Figure 4-13 Wastewater COD and turbidity as function of UV absorbance with dilution and filtration treatment 76
Figure 4-14 UV transmittance of pond treated wastewater after alum coagulation followed by 0.45 micron filtration 77
Figure 4-15 Effect of stirring and settling time on UV transmission 78
Figure 4-16 Effect of settling time on UV transmission through wastewaters 79
Figure 4-17 Relationship between turbidity and UV absorbance after 200 - 1600 mg/l alum coagulation treatment 80
Figure 4-18 Relationship between turbidity and COD after alum coagulation treatment 80
Figure 4-19 UV transmittance of alum coagulated wastewater before and after ultracentrifugation treatment 82
Figure 4-20 UV transmittance of wastewater after activated carbon adsorption treatment 83
Figure 4-21 UV transmittance of wastewater affected by bark adsorption treatment 84
Figure 4-22 UV transmittance of wastewater affected by zeolite adsorption treatment 84
Figure 4-23 Effect of activated carbon dose and reaction time 85
Figure 4-24 Effect of hydrogen peroxide dose and reaction time 86
Figure 4-25	Absorbance reduction of pond treated wastewaters after filtration treatment	88
Figure 4-26	Absorbance reduction of pond treated wastewaters after alum coagulation and 0.45 micron filtration treatment	89
Figure 4-27	Absorbance reduction of 1600 mg/l alum coagulated wastewaters after activated carbon (AC) treatment	90
Figure 4-28	Absorbance reduction in pond treated effluent after activated carbon (AC) treatment	92
Figure 4-29	Absorbance reduction in pond treated wastewaters after bark and zeolite treatment	93
Figure 5-1	Absorbance spectra of (15 mg/l) nitrate and (95 mg/l) ammonium as well as the combined spectrum by (15 mg/l) nitrate and (95 mg/l) ammonium	109
LIST OF TABLES

Table 2-1 Bond energy of importance in microbiological systems (March, 1985) 8
Table 2-2 Approximate dose requirement to achieve a survival ratio of 0.1 at 253.7 nm (Meulemans, 1987) 19
Table 2-3 Water quality parameter values reported for effective UV disinfection 42
Table 2-4 Summary of effluent characteristics for domestic sewage oxidation ponds and dairy shed oxidation ponds (adopted from Hickey et al., 1989a and 1989b) 46
Table 4-1 Characteristics of pond treated wastewater from Massey No. 4 Dairy Farm 61
Table 4-2 Biochemical oxygen demand (BOD) properties of pond treated wastewater from Massey No. 4 Dairy Farm (calculated by the Fujimoto Method, Metcalf & Eddy, 1991) 63
Table 4-3 Correlation coefficient (R) of the BOD data sets for Massey No. 4 Dairy Farm pond effluent 64
Table 4-4 Quality parameters of pond effluents from Massey No. 4 and six other farm dairies 65
Table 4-5 Correlation coefficient (R) between dilutions (a) UV absorbance (b) COD (c) Turbidity 69
Table 4-6 Characteristics of raw and filtered wastewater from Massey No. 4 Dairy Farm pond 72
Table 4-7 Coagulation effectiveness by (773 mg/l) alum (Al₂(SO₄)₃·18H₂O) and (1000 mg/l) zinc sulphate (ZnSO₄·7H₂O) solution 77
Table 4-8 Correlation coefficient (R) among alum dose, turbidity, UV absorbance and COD 80
Table 4-9 Grouping of absorbance spectra (200 - 800 nm) of wastewaters coagulated by 1600 mg/l alum and treated by activated carbon (AC) adsorption. 91
Table 4-10 Grouping of absorbance spectra (200 - 800 nm) of pond treated wastewaters treated by activated carbon (AC) adsorption