Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
TOWARDS AN OPERATIONAL DEFINITION OF SUSTAINABILITY IN NEW ZEALAND DAIRY FARMING

A thesis presented in partial fulfilment of the requirements for the degree of
MASTER OF PHILOSOPHY IN RESOURCE AND ENVIRONMENTAL PLANNING

Massey University
New Zealand

LEO A. LERIOS
1993
ABSTRACT

Sustainability is increasingly viewed as a desirable goal of agricultural development and environmental management. The emergence of the sustainability concept has seen a concomitant rise in the interest of its measurement. It has been suggested that through the use of sustainability indicators, the attainment of the agricultural sustainability goal can be assessed.

It is therefore the aim of this thesis to develop indicators based on the concept of agricultural sustainability. An environmental accounting model is used as the framework within which these indicators were developed and evaluated.

The agricultural sustainability concept is first examined and defined, giving significance to its economic, ecological and social dimensions. It is emphasised that the attainment of sustainability involves the balance and trade-off amongst these dimensions, which can be demonstrated through the dynamic interactions of these dimensions.

The thesis then focuses on the discussion of the methodological considerations, which are important in developing an operational framework for measuring agricultural sustainability. The ideal properties and characteristics of sustainability indicators are identified and critically examined. An evaluation of the different types of input-output models that could be used in conjunction with such indicators were discussed. Input-output models were seen to be critical in developing an operational framework, as they
are capable of representing the interactions between the economic and ecological dimensions of sustainability.

The second part of the thesis concentrates on the application of the methodology to measuring changes in sustainability of New Zealand dairy farming industry. After a brief historical survey of dairy farming, a number of sustainability indicators for the industry are identified. These indicators were then operationalised using a spreadsheet-based input-output model of the New Zealand dairy farming industry. The model consisted of an eight-sector dairy farming sub-model (based on MAF farm types), connected to a 25-sector input-output sub-model of the New Zealand economy. The model focused on selected resource inputs and pollutants.

Indicators derived from the input-output model were developed to reflect the economic, ecological and social dimensions of the sustainability concept. These indicators then were evaluated by monitoring their behaviour in different scenarios for the future of New Zealand dairy farming, by using the environmental accounting method developed earlier. It is observed that the policy goal of sustainability in dairy farming generally can not be attained to the full satisfaction of all the economic, ecological and social indicators. Along the way, trade-offs and balances among these factors have to be made. It is up to the policy and decision makers to weigh the various alternatives, with the indicators providing adequate information upon which rational choices can be based.

This thesis demonstrated the possibility of formulating sustainability indicators and using them as an evaluation tool in spite of the current state of available data and
methodological constraints. It is recommended that a baseline of agricultural sustainability parameters should be established and associated relevant expertise be developed, if operational measurement of the agricultural sustainability goal is to be pursued.
ACKNOWLEDGEMENTS

The following are gratefully acknowledged without whom this thesis will not materialise:

- Dr Murray Patterson for his supervision, guidance and critical comments on my work. Mr Peter Horsley for his invaluable reading materials and encouragement. Dr Johanna Rosier, Mr Derek Williams and all other staff of the Geography Department for their assistance.

- The Philippine Government and the Department of Agrarian Reform, in particular, for their confidence in nominating me for this scholarship grant. The Ministry for External Relations and Trade for funding this study.

- My colleagues, the Carambas and Baker families, and some overseas students who provided the support and humour during the duration of my stay here in Massey University.

- To my parents, brothers and sisters who provided support and inspiration.

- The Lord Almighty who provided courage and light during the most trying times.
List of Tables

Table 5.1 Typical Dairy Farm Production Features 61
Table 5.2 Other Key Inputs in a Dairy Farm 62
Table 6.1 Number of Cows, Total Labour per farm, Cows
Milked per Person and Milkfat Produced per Person 76
Table 6.2 Comparison of the Suggested Indicators and the
Required Qualities of an Indicator ... 87
Table 7.1 Input-Output Model for Dairy Farming and
the New Zealand Economy ... 93
Table 7.2 Quadrant I Economic Commodities in Dairy Farming 95
Table 7.3 Quadrant II Economic Commodities and the
New Zealand Economy .. 97
Table 7.4 Quadrant III Ecologic Commodities in Dairy Farming 99
Table 7.5 Quadrant IV Selected Ecologic Commodities and
the New Zealand Economy .. 100
Table 7.6 Relationship Between Quadrant I and Quadrant II 109
Table 8.1 Trends in the New Zealand Dairy Industry (1960-1990) 115
Table 8.2 Trends and the Possible Effects on the
Environmental Accounting Model ... 125
Table 8.3 Scenarios and the Sustainability Indicators 135
Table A1-1 Scenario-1A Business as Usual - to milk more
cows per person, with more milk per cow 167
Table A1-2 Scenario-1B Business as Usual - to milk more cows
with less milk per cow, without increasing the stocking rate 168
Table A1-3 Scenario-1C Business as Usual - to milk more cows
with less milk per cow, with increasing stocking rate 169
Table A1-4 Scenario-1D Business as Usual - to milk more cows
with less milk per cow, with increasing stocking rate and
farm inputs .. 170
Table A1-5 Scenario-2A Successful GATT - increasing activity of
Dairy Farming ... 171
Table A1-6 Scenario-2B Successful GATT - with Pollution Abatement
and Control ... 172
Table A1-7 Scenario-3A Energy Insufficiency and Shift to
Intensive Labour .. 173
List of Figures

Figure 1.1 The lack of adequate ecological and social information 3
Figure 4.1 The Cumberland Model .. 45
Figure 4.2 The Isard Model ... 46
Figure 4.3 The Leontief Model ... 48
Figure 4.4 The Victor Model ... 50
Figure 6.1 Amount of fertilizer applied to grassland and the number of stock units in New Zealand 67
Figure 6.2 Generalised cycle of nutrients in grazed pasture 68
Figure 6.3 Indicative relationship between labour, and mechanical & electrical energy requirements in dairy farms 77
Figure 8.1 Trend in dairy payout, cost of production (1990 $/kg MF) and farm production (kg MF/farm) 1922-1991 114
Figure A2-1 Scenario-1A Business as Usual - to milk more cows per person, with more milk per cow 175
Figure A2-2 Scenario-1B Business as Usual - to milk more cows, with less milk per cow without increasing the stocking rate 176
Figure A2-3 Scenario-1C Business as Usual - to milk many more cows, with less milk per cow with increasing stocking rate 176
Figure A2-4 Scenario-1D Business as Usual - to milk many more cows, with less milk per cow with increasing stocking rate and farm inputs .. 177
Figure A2-5 Scenario-2A Successful GATT - increasing activity of Dairy Farming ... 177
Figure A2-6 Scenario-2B Successful GATT - with Pollution Abatement and Control ... 178
Figure A2-7 Scenario-3A Energy Insufficiency and Shift to Intensive Labour .. 178
Figure A2-8 Scenario-3B Technology Development 179
Table of Contents

Abstract ... i
Acknowledgements .. iv
List of Tables ... v
List of Figures .. vi
Table of Contents ... vii

Chapter One: INTRODUCTION .. 1

1.1 Background .. 1
1.2 Thesis Goal ... 5
1.3 Thesis Objectives ... 5
1.4 Thesis Outline .. 5

Part One: THEORY AND METHODOLOGY ... 9

Chapter Two: CONCEPTUALISATION OF SUSTAINABILITY ... 10

2.1 Sustainable Development: The different Perspectives .. 10
2.1.1 The Social Concept of Sustainable Development ... 11
2.1.2 The Economic Concept of Sustainable Development ... 13
2.1.2.1 Neoclassical Economics ... 14
2.1.2.2 Ecological Economics ... 15
2.1.2.3 Economics and the Laws of Thermodynamics .. 16
2.1.3 The Ecological Concept of Sustainable Development .. 18
2.2 Sustainable Development: The concept ... 19
2.3 Sustainable Agriculture .. 21
2.3.1 Ecological Suitability ... 23
2.3.2 Economic Viability ... 25
2.3.3 Social Justice ... 26
2.3.4 Trade-Offs ... 27
2.3.5 The Meaning of Sustainable Agriculture .. 27
Chapter Three: OPERATIONALISATION OF SUSTAINABILITY MEASURES ... 29

3.1 State of Environment Reporting (SER) ... 30
3.2 Indicators .. 32
 3.2.1 The Meaning of Indicators ... 33
 3.2.2 Qualities of an Indicator .. 35

Chapter Four: ENVIRONMENTAL ACCOUNTING APPROACH ... 40

4.1 Environmental Accounting .. 40
4.2 Input-Output Analysis .. 41
 4.2.1 The Basic Theory of Input-Output Analysis ... 42
 4.2.2 Input-Output and the Environment ... 43
 4.2.2.1 The Cumberland Model ... 44
 4.2.2.2 The Isard Model .. 46
 4.2.2.3 The Daly Model .. 47
 4.2.2.4 The Leontief Model ... 48
 4.2.2.5 The Victor Model ... 50
 4.2.3 Comment on the Models ... 52

Part Two: APPLICATION TO NEW ZEALAND DAIRY FARMING 53

Chapter Five: DAIRY FARMING IN NEW ZEALAND .. 54

5.1 The Dairy Industry Development ... 54
 5.1.1 The Emergence of Cooperative Dairying ... 55
 5.1.2 The Dairy Board .. 57
 5.1.3 Present Dairy Organisations .. 58
5.2 The New Zealand Dairy Farm .. 59
 5.2.1 Farm Production .. 59
 5.2.2 Farm Costs and Return .. 61
 5.2.3 The Future of Dairy Farming .. 63
Chapter Six: IDENTIFICATION OF SUSTAINABILITY INDICATORS

6.1 Pastoral Farming and the Environment
6.1.1 Dairy Farming Inputs
6.1.1.1 Fertilizer
6.1.1.2 Pesticides
6.1.1.3 Energy
6.1.1.4 Management
6.2 Dairy Farming and the Economic and Social Environment
6.2.1 Market
6.2.2 Labour on Dairy Farms
6.3 Proposed Indicators
6.3.1 Fertilizer Productivity
6.3.2 Energy Productivity
6.3.3 Nutrient Recycling Trend
6.3.4 Renewable Energy Use Trend
6.3.5 Stocking Rate
6.3.6 Land Productivity
6.3.7 Labour Trend
6.3.8 Farm Size and Number
6.3.9 Economic Viability
6.4 Preliminary Indicator Evaluation

Chapter Seven: ENVIRONMENTAL ACCOUNTING

Model Development

7.1 Quadrant I: Economic Commodities and Dairy Farming
7.2 Quadrant II: Economic Commodities and the New Zealand Economy
7.3 Quadrant III: Ecological Commodities and Dairy Farming
7.4 Quadrant IV: Selected Ecological Commodities and the New Zealand Economy
7.5 Model Formulations
7.5.1 Algebraic Description
7.5.2 Spreadsheet Construction
7.5.2.1 Commodities and Dairy Farming
7.5.2.2 Commodities and the New Zealand Economy
7.5.3 Refinements to the Model
Chapter Eight: SUSTAINABILITY INDICATORS AND
THE ENVIRONMENTAL ACCOUNTING MODEL 113

8.1 Historical Growth of Dairy Farming 113
8.2 Possible Future Patterns of Growth 116
8.2.1 Business as Usual 117
8.2.2 Successful GATT 118
8.2.3 Emergence of a 'Green' Market 120
8.3 Other Factors That May Affect the Future of Dairy Farming .. 121
8.3.1 Energy and Dairy Farming 122
8.3.2 Climate Change 122
8.3.3 Shift to Intensive Labour 124
8.4 Scenario Results 124
8.4.1 Business as Usual 129
8.4.2 Successful GATT 132
8.4.3 Other Factors 133
8.4.3.1 High cost of Energy and shift to Manual Labour .. 133
8.4.3.2 Technology Development and Green Market 133
8.5 Sustainability Implications from the Scenario Results 134
8.5.1 Economic and Ecological Trade-offs in Sustainable Dairy Farming .. 135
8.5.2 Social Consequences in Sustainable Dairy Farming 136

Part Three: REVIEW AND CONCLUDING COMMENTS 138

Chapter Nine: DISCUSSION, CONCLUSIONS and RECOMMENDATIONS .. 139

9.1 Discussion ... 139
9.1.1 Uses and Limitations of Environmental Accounting Approach .. 140
9.1.2 Sustainability Issues and the Future of New Zealand Dairy Farming .. 146
9.2 Conclusion ... 149
9.3 Recommendations 150