Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Effects of dietary caprine milk oligosaccharides enriched fraction on maternal large intestine and the consequences for the development of the offspring

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Massey University,
Palmerston North, New Zealand.

Caroline Thum

2015
Abstract

The colonisation of the neonate gastrointestinal tract by health-promoting microbiota is likely to improve the overall health of the infant and may also have health benefits in later life. Initial development and maturation of the foetal/neonatal gastrointestinal tract is heavily influenced by the \textit{in utero} environment which itself, may be altered by the maternal diet and gastrointestinal tract microbiota composition. The maternal gastrointestinal tract microbiota can be altered by supplementation with synthetic oligosaccharides; however, positive effects on the health and well-being of the offspring have not been adequately established. Human milk contains natural oligosaccharides known to improve the gastrointestinal tract colonisation and the development and maturation of the infant gastrointestinal tract. Among domestic farm animals, caprine milk has oligosaccharides structurally similar to human milk and potentially similar beneficial effects for the infant. We hypothesised that feeding caprine milk oligosaccharide enriched product to pregnant and lactating mice would induce changes in the maternal large intestine microbiota and milk composition, accelerating the development and maturation of the offspring’s large intestine tissue and altering the gastrointestinal tract microbiota composition. The aim of this project was to obtain bifidobacteria from the faeces of breast-fed human infants and determine which were capable fermenting caprine milk oligosaccharide enriched product. Subsequently, the effects of the best strains on the morphology and metabolic pathways of the colonic mucosa of germ-free and conventionally raised mice, supplemented with dietary caprine milk oligosaccharide enriched product.

The present study is the first to report New Zealand Saanen caprine colostrum, milk and whey. An enrichment method previously described was used to produce a caprine milk oligosaccharide enriched product for \textit{in vitro} and \textit{in vivo} assessment of its health effects. Caprine milk oligosaccharide enriched product was shown to differentially stimulate the growth of bifidobacteria, commonly found in the gastrointestinal tract of breast-fed infants.
Among the bifidobacterial species tested, *Bifidobacterium bifidum* utilised caprine milk oligosaccharide enriched product most efficiently when compared to *Bifidobacterium breve* and *Bifidobacterium longum* subsp. *longum*. *B. bifidum* (AGR2166) was shown to ferment the sialyloligosaccharides, 3'- and 6'-sialyl-lactose present in caprine milk oligosaccharide enriched product through cell-associated sialidase expression. Augmented microbial biomass associated with enhanced growth and *in vitro* fermentation of caprine milk oligosaccharide enriched product, increased the production of microbial fermentation end products such as acetate and lactate. These findings indicate that *in vivo* caprine milk oligosaccharide enriched product may stimulate the growth and fermentation of bifidobacteria within the gastrointestinal tract.

Germ-free mice or mice mono-associated with *B. bifidum* (AGR2166) were used to test the *in vivo* effects of maternal caprine milk oligosaccharide enriched product consumption during pregnancy and the effects on the foetus. Caprine milk oligosaccharide enriched product diet showed no effects on maternal gastrointestinal tract or foetal growth regardless of microbial status. Mice inoculated with *B. bifidum* (AGR2166) and fed caprine milk oligosaccharide enriched product diet, however, showed an increased bacterial translocation from maternal gastrointestinal tract to organs and placenta (inferred by the presence of the bifidobacteria 16S rRNA gene in the maternal organs). Increased translocation of commensal bacteria from maternal gastrointestinal tract to the foetus may have important effects on foetal immunological programming.

The consumption of caprine milk oligosaccharide enriched product, during gestation and lactation were also tested in conventional rodents and it had no effects on maternal gastrointestinal tract microbiota and morphology. Changes on maternal lipid metabolism and increased maternal milk protein, however, were observed. These modifications may have positively affected the development of the pups, relative abundance of gastrointestinal tract bifidobacteria and butyric acid production at weaning. Important changes in the plasma and
urine metabolites involved in bile acid and fatty acid metabolism were also observed in the pups as a consequence of maternal caprine milk oligosaccharide-enriched diet. The effects of maternal caprine milk oligosaccharide enriched product diet on pups, were no longer apparent after 30 days of consuming a control diet post-weaning, however, detrimental physiological characteristics such as an increased body fat were observed. Further studies, are needed to understand the physiological effects of caprine milk oligosaccharides on the maternal/infant pair.
Acknowledgements

It is with immense gratitude that I acknowledge the guidance and support of my supervisors and mentors: Prof Warren McNabb, Associate Professor Nicole Roy, Dr Adrian Cookson, Dr Don Otter, Dr Alison Hodgkinson, Dr Jolon Dyer and Prof Paul Moughan for always being available to answer my questions and for your unwavering support. A huge thank-you to Nicole and Warren, for being more than supervisors, for being my friends and part of my New Zealand family. I have truly appreciated all your wisdom, knowledge and kindness which was the "push" I needed to continue to do the best work I could for all these years. A special thank you to Adrian, for sharing your wisdom and enthusiasm, and imparting some of your expertise to me, it was my privilege to have you as a supervisor. I also want to acknowledge AgResearch and the Riddet Institute, a Centre of Research Excellence, for funding my PhD fellowship, and taking me under your wing and making me very proud to be part of your research institutes.

I would like to acknowledge Prof Kikuji Itoh for hosting me and the Food Nutrition & Health Team at the University of Tokyo and for allowing us to develop excellent collaborative work. A special thank you to Dr Wayne Young for being the best company and colleague during the experiments in Japan. Thank you also for helping me during the animal experiments in New Zealand and with the RAPD and 454 sequencing analysis.

I am indebted to many people for helping with the experimental work presented here. Thanks to Leigh Ryan, Hetty Kleinjan and Stacey Burton for help to develop and complete the animal experiments. Your happiness and enthusiasm made the journey much easier. Thanks to Ric Broadhurst (AgResearch Ruakura, Hamilton, New Zealand) for assistance with the time-course experiment and the training in mouse blood and milk sampling – you are an amazing teacher. Thank you to Karl Fraser and Linda Samuelsson for your guidance, during the metabolomics analysis. SCFA and mineral analysis were planned and completed with the much appreciated help of Bruce Sinclair, John Rounce and Scott Knowles. Thank
you Bruce, for the restless questioning of all our methodology, always with the intention to make us better scientists. Statistical analysis of mouse experiments were performed with assistance from Dr John Koolaard, a big thank you for your time. Thank you also to Denise Martin, whose help has been invaluable in carrying out many of the tasks and activities along the road to completing this thesis.

Thanks to all my colleagues in the student office at AgResearch – we went through this journey together, supporting each other and being more than colleagues but friends. Thank you for all the amusing conversations at “our table” on matters (not) related to work, you made the lunch times much more fun.

Most of all, thank you to my husband Rafael Cardoso, for all your love and support, and the sacrifices you made to create opportunities for me to keep on going in the right direction. Thank you for keeping me grounded, and thank you for giving me the best present I could ever have, our son Davi, during my journey on this PhD.

Last, but not least, I would like to thank my parents and my brother for no matter how much we miss each other, you never stopped encouraging me. You always believe that I can go further, and this dissertation is a testament to your unyielding faith in me during my PhD journey.
Table of contents

Abstract .. i
Acknowledgements .. iv
Table of contents ... vi
List of figures .. x
List of tables ... xv
List of abbreviations ... xix
Chapter 1 General Introduction ... 1
Chapter 1 .. 2
 1.1 Introduction .. 2
 1.2 Gastrointestinal tract development and maturation ... 3
 1.2.1 Epithelium ... 4
 1.2.2 Neural system .. 5
 1.2.3 Immune system .. 9
 1.3 Microbiota .. 13
 1.3.1 Prepartum .. 14
 1.3.2 Partum .. 16
 1.3.3 Postpartum ... 17
 1.4 Breast milk ... 18
 1.4.1 Nutritive components .. 18
 1.4.2 Macronutrients and micronutrients ... 19
 1.4.3 Non-nutritive components ... 21
 1.5 Maternal nutritional supplementation .. 28
 1.5.1 Probiotics .. 30
 1.5.2 Prebiotics .. 33
 1.5.3 Synbiotics .. 34
 1.5.4 Alternative sources of milk oligosaccharides for the mother/infant 35
 1.6 Conclusion and future perspectives ... 38
 1.7 Hypotheses and Aims .. 39
Chapter 2 Composition and enrichment of caprine milk oligosaccharides from caprine whey .. 44
Chapter 2 .. 45
 2.1 Introduction .. 45
 2.2 Hypothesis and Aims .. 46
 2.3 Materials and methods ... 47
 2.3.1 Milk and whey origin and chemical characterisation ... 47
 2.3.2 Proximate composition ... 47
 2.3.3 High performance liquid chromatography .. 48
 2.3.4 Liquid chromatography–mass spectrometry .. 49
 2.3.5 Caprine whey oligosaccharide enrichment process ... 50
 2.4 Results .. 54
2.4.1 Source of caprine milk oligosaccharides .. 54
2.4.2 Whey processing and solid phase extraction ... 54
2.4.3 Liquid chromatography–mass spectrometry analysis ... 58
2.5 Discussion .. 62
2.5.1 Caprine whey processing ... 62
2.5.2 Oligosaccharide characterisation and quantification .. 63
2.5.3 Sialyloligosaccharides prevalence and health effects ... 64
2.6 Conclusions ... 65

Chapter 3 In vitro fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants ... 67

Chapter 3 .. 68

3.1 Introduction .. 68
3.2 Hypothesis and Aims ... 70
3.3 Material and methods ... 70
3.3.1 Isolation of bifidobacteria ... 70
3.3.2 Bifidobacterial characterisation ... 71
3.3.3 Randomly amplified polymorphic DNA .. 72
3.3.4 Amplified ribosomal DNA restriction analysis (ARDRA) of Bifidobacterium longum subsp longum versus Bifidobacterium longum subsp longum infantis. 73
3.3.5 In vitro carbohydrate fermentation and short chain fatty acid analysis of isolated bifidobacterial strains ... 73
3.3.6 Utilisation of caprine milk oligosaccharide enriched fraction by bifidobacteria. 74
3.3.7 Bifidobacterial exo-α-sialidase genes ... 75
3.3.8 In vitro sialidase assay ... 75
3.3.9 Statistical analysis ... 78
3.4 Results ... 78
3.4.1 Genetic characterisation of bifidobacterial strains .. 78
3.4.2 In vitro fermentation profile and short chain fatty acids analysis 80
3.4.3 In vitro bifidobacterial catabolism of oligosaccharides from caprine milk oligosaccharides enriched fraction ... 83
3.4.4 Identification of genes encoding for exo-α-sialidase and associated sialidase activity 86
3.5 Discussion .. 89
3.6 Conclusions ... 93

Chapter 4 Effects of dietary caprine milk oligosaccharides during pregnancy on mice mono-associated with Bifidobacterium bifidum (AGR2166) ... 94

Chapter 4 .. 95

4.1 Introduction .. 95
4.2 Hypothesis and Aims ... 97
4.3 Material and methods ... 98
4.3.1 Mice ... 98
4.3.2 Housing .. 98
4.3.3 Diet 98 ... 98
4.3.4 Study design ... 100
4.4 Sampling ... 104
4.4.1 Faecal sampling .. 104
4.4.2 Tissue samples .. 104
4.5 Sample analyses .. 105
Table of contents

5.1 Introduction ... 130
5.2 Hypothesis and Aims ... 131
5.3 Material and methods... 132
 5.3.1 Mice .. 132
 5.3.2 Housing ... 133
 5.3.3 Diet 133
 5.3.4 Study design... 135
5.4 Sampling .. 138
 5.4.1 Milk samples ... 138
 5.4.2 Urine samples ... 140
 5.4.3 Plasma and serum samples 140
 5.4.4 Tissue samples .. 140
5.5 Sample analysis ... 141
 5.5.1 Diet composition .. 141
 5.5.2 Histology .. 142
 5.5.3 Caecal short chain fatty acids 142
 5.5.4 Plasma glucose concentration 144
 5.5.5 Serum leptin concentration 144
 5.5.6 Milk nutrient composition 145
 5.5.7 Femur mineral composition 146
 5.5.8 Urine and plasma metabolomes 148
 5.5.9 Colonic microbiota ... 151
5.6 Statistical analysis ... 155
5.7 Results ... 156
 5.7.1 Changes in diet composition 156
 5.7.2 Dams and litters .. 158
 5.7.3 Body and organ weight and length 161
 5.7.4 Colon histology .. 166
 5.7.5 Leptin and glucose blood concentration 166
5.7.6 Milk composition .. 172
5.7.7 Femur mineral composition .. 172
5.7.8 Caecum SCFA concentrations .. 172
5.7.9 Microbiota composition of dams and pups ... 175
5.7.10 Metabolite profiles of dams and pups .. 190
5.8 Discussion .. 211
5.8.1 Diet composition .. 212
5.8.2 Pregnancy and pups development ... 213
5.8.3 Milk protein and lipid metabolism ... 214
5.8.4 Gastrointestinal microbiota modulation by diet ... 216
5.8.5 Calcium, magnesium and zinc concentrations in the femur 219
5.8.6 Metabolites .. 219
5.8.7 Conclusions .. 222

Chapter 6 General Discussion ... 223

Chapter 6 ... 224
 6.1 Background ... 224
 6.2 Summary .. 226
 6.3 Study limitations and future perspectives ... 232
 6.4 Concluding remarks ... 235

Appendices .. 237

References ... 272
List of figures

Figure 1.1 Postnatal development and maturation of the gastrointestinal tract mucosal barrier and immune system.. 6

Figure 1.2 Development of the gastrointestinal tract microbiota in infants and changes associated with health and diet, with rectangles indicating predominant bacterial groups at a particular stage in life. .. 15

Figure 1.3 Human milk oligosaccharide structures ... 23

Figure 1.4 Genetically determined variations in HMO... 24

Figure 1.5 A hypothetical model to explain how maternal microbiota and microbial products could be transferred from mother to the foetal and neonatal gastrointestinal tract...... 27

Figure 1.6 Structure of the dissertation. A flow chart describing the outline of the dissertation and its experimental Chapters... 43

Figure 2.1 Diagram of the experimental method, described in seven main steps, to produce a caprine milk product enriched with oligosaccharide... 51

Figure 2.2 Liquid chromatography-mass spectrometry extracted ion chromatograms of (A) caprine whey and (B) purified product, showing the ions with m/z 503.1 (3-galactosyl-lactose); m/z 632.3 (3’-sialyl-lactose and 6’-sialyl-lactose); m/z 648.3 (N-glycolylneuraminyl-hexosyl-lactose); 923.3 (disialyl-lactose); m/z 665.2 (galacto-oligosaccharide) and m/z 827.3 (galacto-oligosaccharide). .. 59

Figure 2.3 Mass spectrum of the product collected with a 40% acetonitrile solution from solid phase medium. ... 60

Figure 3.1 Seventeen bifidobacterial strains isolated from four exclusively breast-fed infants were identified based on their 16S rRNA gene sequences... 79

Figure 3.2 Growth profile of (a) B. bifidum AGR2166; (b) B. bifidum AGR2168 (similar to AGR2165 and AGR2167); (c) B. longum AGR2173 (similar to AGR2170, AGR2171, AGR2172 and AGR2174); (d) B. longum AGR2176; (e) B. breve AGR2177 (similar to
AGR2169, AGR2178, AGR2179, AGR2181, AGR2183); (f) *B. breve* AGR2175. Each time point is an average of three replicates and the errors bars indicate standard deviation. ... 81

Figure 3.3 Acetic and lactic acid produced by bifidobacterial strains; (a), *B. bifidum* AGR2166; (b), AGR2168; (c), *B. longum* AGR2173; (d), AGR2176; (e), *B. breve* AGR2177; and (f), AGR2175. ... 82

Figure 3.4 Change in pH associated with fermentation of caprine milk oligosaccharides enriched product by *B. bifidum* (AGR2166 and 2168), *B. longum* (AGR2173 and AGR2176) and *B. breve* (AGR2175 and AGR2177) strains. ... 84

Figure 3.5 Percentage of oligosaccharide depletion by *B. bifidum* (AGR2166 and AGR2168), *B. longum* (AGR2173 and AGR2176) and *B. breve* (AGR2175 and AGR2177) strains after 36 h of growth in semi-synthetic broth supplemented with 1% of caprine milk oligosaccharides, when compared to the uninoculated control media. 85

Figure 3.6 Total residual carbohydrate remaining in semi-synthetic media supplemented with 1% of caprine milk oligosaccharides after 36 h of fermentation by *B. bifidum* (AGR2166 and AGR2168), *B. longum* (AGR2173 and AGR2176) and *B. breve* (AGR2175 and AGR2177) strains. .. 87

Figure 3.7 Sialidase activity associated with *B. bifidum* (AGR2166, black; and AGR2168, blue), *B. longum* (AGR2173, purple; and AGR2176, orange) and *B. breve* (AGR2175, red; and AGR2177, green) strains after growth in semi-synthetic media supplemented with 1% (w/v) final concentration of combo, 3’-sialyl-lactose, 6’-sialyl-lactose and caprine milk oligosaccharides. .. 88

Figure 4.1 Distribution of mice by age and sex in the germ-free isolators. 102

Figure 4.2 Study design ... 103

Figure 4.3 Population stability of *Bifidobacterium bifidum* AGR2166 at day 1, 3, 10 and 17 of the experimental period. .. 112
Figure 4.4 *Bifidobacterium bifidum* AGR2166 DNA extracted and amplified from maternal caecal contents................................. 113

Figure 5.1 Study design... 137

Figure 5.2 Theoretical distribution of the mice across the three experimental phases (gestation, postnatal and weaning)... 139

Figure 5.3 Next generation sequencing, Roche 454 workflow. (A) DNA samples are ligated with A and B adapters specific to the 5’ and 3’ ends. (B) Ligated DNA fragments are captured on microbeads.. 153

Figure 5.4 Number of dams across the three experimental phases (mating, gestation and nursing) and distribution of pups at weaning and 30 days after weaning................. 160

Figure 5.5. Glucose concentration in dam plasma before and after being fed with caprine milk oligosaccharides (CMO), combo or control diet from mating to weaning. Values are means with their standard errors.. 170

Figure 5.6 Effect of age on caecal short chain fatty acids concentrations measured by flame ionisation detector gas chromatography... 177

Figure 5.7. PCoA plot of 16S rRNA profiles showing the distances in microbial diversity of colon digesta between dams, pups at weaning and pups 30 days. 178

Figure 5.8. PCoA plot of 16S rRNA profiles showing the distances in microbial diversity of colon digesta between treatments.. 180

Figure 5.9. PCoA plot of 16S rRNA profiles showing the distances in microbial diversity of colon digesta between dams, pups at weaning and pups 30 days from different treatments... 181

Figure 5.10 Alpha diversity analysis: Rarefaction plot of Chao1 diversity index showing bacterial diversity within samples. (A) Profile of dam (red), pup at weaning (blue) and pup 30 days after weaning (black). (B) Profile of dam (dashed line), pup at weaning (solid line) and pup 30 days after weaning (dotted line) accordingly with treatment.... 182
Figure 5.11 The partial least square discriminant analysis (PLS-DA) cross-validated score plot generated from mass spectrometry spectra of urine samples from dams before treatment. control (+), combo (x) and caprine milk oligosaccharides (Δ) diet. Samples were run in two different columns HILIC and C18 and in both positive and negative ionisation modes separately. (A) HILIC +ve; (B) HILIC -ve; (C) C18 +ve; (D) C18 –ve.

Figure 5.12 The partial least square discriminant analysis (PLS-DA) cross-validated score plot generated from mass spectrometry spectra of urine samples from dams treated with control (+), combo (x) and caprine milk oligosaccharides (Δ) diet. Samples were run in two different columns HILIC and C18 and in both positive and negative ionisation modes separately. (A) HILIC +ve; (B) HILIC -ve; (C) C18 +ve; (D) C18 –ve.

Figure 5.13 The partial least square analysis discriminant analysis (PLS-DA) cross-validated score plot generated from mass spectrometry spectra of urine samples from pups 30 days after weaning from dams treated with control (+), combo (x) and caprine milk oligosaccharides (Δ) diet. Samples were run in two different columns HILIC and C18 and in both positive and negative ionisation modes separately. (A) HILIC +ve; (B) HILIC -ve; (C) C18 +ve; (D) C18 –ve.

Figure 5.14 The partial least square analysis discriminant analysis (PLS-DA) cross-validated score plot generated from mass spectrometry spectra of plasma samples from dams treated with control (+), combo (x) and caprine milk oligosaccharides (Δ) diet. Samples were run in two different columns HILIC and C18 and in both positive and negative ionisation modes separately. (A) HILIC +ve; (B) HILIC -ve; (C) C18 +ve; (D) C18 –ve.

Figure 5.15 The partial least square analysis discriminant analysis (PLS-DA) cross-validated score plot generated from mass spectrometry spectra of plasma samples from pups at weaning from dams treated with control (+), combo (x) and caprine milk oligosaccharides (Δ) diet. Samples were run in two different columns HILIC and C18.
and in both positive and negative ionisation modes separately. (A) HILIC +ve; (B) HILIC -ve; (C) C18 +ve; (D) C18 –ve.

Figure 5.16 The partial least square analysis discriminant analysis (PLS-DA) cross-validated score plot generated from mass spectrometry spectra of plasma samples from pup 30 days after weaning from dams treated with control (+), combo (x) and caprine milk oligosaccharides (∆) diet. Samples were run in two different columns HILIC and C18 and in both positive and negative ionisation modes separately. (A) HILIC +ve; (B) HILIC -ve; (C) C18 +ve; (D) C18 –ve.
List of tables

Table 1.1 Nutritional composition of human milk in early lactation [140, 141].......................... 20
Table 1.2 Caprine milk oligosaccharides described in the literature and oligosaccharides also
reported in human* and/or bovine milk$. ... 37
Table 2.1 Optimisation of adsorption and elution conditions used for porous graphitic carbon
chromatography. .. 53
Table 2.2 Dry matter, lipid, protein and carbohydrate composition of caprine colostrum, milk
and whey. .. 55
Table 2.3 Recovery rate of lipid, protein and carbohydrate during whey ultrafiltration,
hydrolysis and solid phase extraction. Concentrations adjusted on the basis of stated
volume ... 57
Table 2.4 Oligosaccharides concentration (g/L) in caprine colostrum, milk, whey, hydrolysed
whey and final product using the liquid chromatography-mass spectrometry method and
standards ... 61
Table 3.1 Sialidase genes and primers used to screen for sialidase domains in the
bifidobacterial isolates .. 76
Table 4.1 Combo and caprine milk oligosaccharide diet composition based on AIN-76A diet
.. 99
Table 4.2 Composition of caprine milk oligosaccharide enriched product added to the
experimental AIN-76A based diet .. 101
Table 4.3 Carbohydrate composition of diets as tested at the end of the experiment.
Expected values from the diet formulation are shown in parenthesis. .. 110
Table 4.4 Absolute and normalised mean body weight, organ weight and gastrointestinal
tract length in dams among treatment groups ... 114
Table 4.5 Effect of bifidobacteria on dam absolute and normalised mean body weight, organ
weight and gastrointestinal tract length .. 116
Table 4.6 Effect of diet on dam absolute and normalised mean body weight, organ weight and gastrointestinal tract length ... 117

Table 4.7 Goblet cells number and colon crypt length in control mice and mice inoculated with bifidobacteria fed either combo or oligosaccharides diet 119

Table 4.8 Glucose and short chain fatty acids concentrations (μmol/g colon digesta) in control and inoculated dams fed either combo or caprine milk oligosaccharide diet ... 120

Table 4.9 Amplification of 16S rRNA gene of B. bifidum AGR2166 from DNA extractions of organs taken from dams post mortem ... 122

Table 5.1 Composition of caprine milk oligosaccharide enriched product (CMOP) added to the experimental diet .. 134

Table 5.2. Diet composition .. 136

Table 5.3 Nutrient composition of diets as tested at the end of the experiment. Expected values from the diet formulation are shown in brackets 157

Table 5.4 Average dams body weight at day 5, 12 and 19th after delivery among the treatments ... 159

Table 5.5 Absolute and normalised mean body and organ weight and length in dams 162

Table 5.6 Absolute and normalised mean body and organ weight and length in weaned pups from control, combo and caprine milk oligosaccharides-fed dams 164

Table 5.7 Absolute and normalised mean body and organ length and weight in pup from control, combo and caprine milk oligosaccharides-fed dams fed control diet for 30 days after weaning ... 167

Table 5.8 Colon crypt length (µm) and goblet cell numbers in dams (fed control, combo and caprine milk oligosaccharides diet), pups at weaning and pups 30 days after weaning (fed control diet) .. 169

Table 5.9 Effects of diet on serum leptin in dams and weaned pup (ng/mL) 171

Table 5.10. Milk nutritional composition (mean ± SD) of mice fed caprine milk oligosaccharides, combo or control diets ... 173
Table 5.11 Effects of diet on femur mineral composition in dams (fed control, combo and caprine milk oligosaccharides diet), pups at weaning and pups 30 days after weaning (fed control diet). .. 174
Table 5.12 Short chain fatty acids concentrations (µmol/g) in caecum digesta of dams, pups at weaning and pups 30 days after weaning. .. 176
Table 5.13 Summary of the main colonic taxa modulated by diet in dams. Values are the percentage of 16S rRNA sequences present in the colon digesta. 183
Table 5.14 Summary of the main colonic taxa modulated by diet in the pups at weaning. Values are the percentage of 16S rRNA sequences present in the colon digesta. 185
Table 5.15 Summary of the main colonic taxa modulated by diet in the pups 30 days after weaning. Values are the percentage of 16S rRNA sequences present in the colon digesta. .. 187
Table 5.16 Annotated urine metabolites from liquid chromatography-mass spectrometry analysis in HILIC and C18 columns negative and positive mode found to separate dams before treatment .. 192
Table 5.17 Summary of urine metabolites from liquid chromatography-mass spectrometry analysis in HILIC and C18 columns negative and positive mode found to separate dams after the treatment .. 194
Table 5.18 Summary of urine metabolites from liquid chromatography-mass spectrometry analysis, HILIC and C18 columns, negative and positive mode found to separate pups 30 days after weaning accordingly with dams treatment. .. 197
Table 5.19 Summary of plasma metabolites from liquid chromatography-mass spectrometry analysis, HILIC and C18 columns, negative and positive mode, found to separate dams according to the treatment .. 201
Table 5.20 Summary of plasma metabolites from liquid chromatography-mass spectrometry analysis, HILIC and C18 columns, negative and positive mode, found to separate pups at weaning according to dams treatment .. 204
Table 5.21 Summary of plasma metabolites from liquid chromatography-mass spectrometry analysis, HILIC and C18 columns, negative and positive mode, found to separate pup 30 days after weaning according to dams treatment. ... 209
List of abbreviations

afu Absolute fluorescent units
ANOVA Analysis of variance
AOAC Association of official analytical chemistry
ARDRA Amplified ribosomal DNA restriction analysis
BMI Body mass index
BMO Bovine milk oligosaccharides
CD4+ T cells T helper cells expressing the surface protein CD4

cfu Colony forming units
CMO Caprine milk oligosaccharide
CMOP Caprine milk oligosaccharide enriched product
CNS Central nervous system
CpG Cytosine phosphate guanine
CRM Certified reference material
CRAMP Cathelicidin-related antimicrobial peptide
DC Dendritic cells
DGGE Denaturing gradient gel electrophoresis
DNA Deoxyribonucleic acid
DP Degree of polymerisation
ENS Enteric nervous system
FDR False discovery rate
FL Fucosyllactose
FOS Fructo-oligosaccharides
Fuc Fucose
FUT Fucosyltransferase
GAL Galactose
GALT Gut-associated lymphoid tissue
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC-FID</td>
<td>Flame ionisation detector gas chromatography</td>
</tr>
<tr>
<td>GF</td>
<td>Germ-free</td>
</tr>
<tr>
<td>GHS</td>
<td>General health score</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>GLC</td>
<td>Glucose</td>
</tr>
<tr>
<td>GLCNac</td>
<td>N-acetyl-glucosamine</td>
</tr>
<tr>
<td>GOD</td>
<td>Glucose oxidase</td>
</tr>
<tr>
<td>GOS</td>
<td>Galactooligosaccharides</td>
</tr>
<tr>
<td>Hib</td>
<td>Haemophilus influenzae</td>
</tr>
<tr>
<td>HILIC</td>
<td>Hydrophilic interaction liquid chromatography</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>HMO</td>
<td>Human milk oligosaccharides</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>ICP-OS</td>
<td>Inductively coupled plasma atomic emission spectroscopy</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectroscopy</td>
</tr>
<tr>
<td>IECs</td>
<td>Intestinal epithelial cells</td>
</tr>
<tr>
<td>IELs</td>
<td>Intraepithelial lymphocytes</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IkB</td>
<td>Nuclear factor kappa inhibitor</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>ILFs</td>
<td>Isolated lymphoid follicles</td>
</tr>
<tr>
<td>INFγ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>LacNac</td>
<td>N-acetyllactosamine</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>LDLs</td>
<td>Lamina propria lymphocytes</td>
</tr>
<tr>
<td>Le</td>
<td>Lewis group</td>
</tr>
<tr>
<td>LNB</td>
<td>Lacto-N-biose</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>LPLs</td>
<td>Lamina propria lymphocytes</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>LTI</td>
<td>Lymphoid tissue inducer</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MLN</td>
<td>Mesenteric lymph nodes</td>
</tr>
<tr>
<td>MTPY</td>
<td>Modified TPY agar</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass to charge ratio</td>
</tr>
<tr>
<td>NCC</td>
<td>Neural crest cells</td>
</tr>
<tr>
<td>NeuAc</td>
<td>N-acetylneuraminic acid</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor Kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NGS</td>
<td>Next generation sequencing</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OTU</td>
<td>Operational taxonomic unit</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>PCoA</td>
<td>Principal coordinate analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>POD</td>
<td>Catalysis of peroxidase</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acids</td>
</tr>
<tr>
<td>RISA</td>
<td>Ribosomal intergenic spacer analysis</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal RNA</td>
</tr>
<tr>
<td>SCFA</td>
<td>Short chain fatty acids</td>
</tr>
<tr>
<td>SI</td>
<td>Small intestine</td>
</tr>
<tr>
<td>SL</td>
<td>Sialyllactose</td>
</tr>
<tr>
<td>spp.</td>
<td>Species</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor beta</td>
</tr>
<tr>
<td>Th</td>
<td>Cellular T helper</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TReg</td>
<td>Lymphocyte regulatory T cell</td>
</tr>
<tr>
<td>TTGE</td>
<td>Temperature gradient gel electrophoresis</td>
</tr>
<tr>
<td>VIP</td>
<td>Variable importance in projection</td>
</tr>
<tr>
<td>4Mu-Neu5Ac</td>
<td>4-methylumbelliferyl-a-D-N-acetylneuraminic acid</td>
</tr>
</tbody>
</table>