Constructing Decimal Concepts in an Inquiry Classroom

A thesis presented in partial fulfilment of the requirements for the degree of Master of Education at Massey University, Palmerston North, New Zealand.

Roberta Kathleen Hunter
2002
Abstract

This study examines the construction of decimal concepts of primary aged students in the classroom. It builds on previous work which has promoted the use of percentages as a means for rational number thinking and for the enhancement of such thinking through multiple modes of representation. In this study percentages provide a foundation for rational number understanding as represented through the decimal system.

The study is set within an inquiry classroom. In this classroom the pedagogical approach maps out an alternative to customary practice by shifting the traditional teacher-student relationship to one of partnership in knowledge construction. In this classroom both student engagement with well-designed learning activities, and mathematical discussion and debate are all deemed highly important to the production of decimal understandings.

The investigation revealed that students had a wealth of informal rational number knowledge. This informal knowledge created a useful context and springboard for the development of new conceptual understandings of decimal fractions. That development was not immediate—it traced out a lengthy, unpredictable and recursive path and required students to reflect on their thinking and allowed for subtle teacher and peer reconstruction of students' misconceptions. From those findings recommendations are made for a productive approach to the teaching of decimals in primary school classrooms.
Acknowledgements

I would like to acknowledge and thank the many people who made this study possible. Most importantly I wish to thank the teacher, who with an open heart willingly gave of herself and her time. Her collaborative spirit and personal belief in this study was a source of strength for me sustaining my sense of focus. I would also like to thank the students in her classroom who showed such enthusiasm for mathematics and excitement at their ability to get gold—their description of their construction of decimal fraction concepts.

I wish to acknowledge and thank Dr. Glenda Anthony, my main supervisor. Glenda gave of her time so willingly, showed unstinting interest and positive support in the writing of this study and gave invaluable professional suggestions and input. My thanks extend to Dr Margaret Walshaw, my second supervisor who aided the writing process through her interest and supportive professional comments.

Finally, I must acknowledge members of my family, my mother, my ever supportive husband Les, Jodie, Gavin, and David who each in their own way gave me special support to believe in my ability to complete this project.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>iv</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background to the Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Inquiry and reform type classrooms</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Research Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Overview</td>
<td>5</td>
</tr>
<tr>
<td>Chapter 2: Literature review</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Constructing mathematical knowledge in the classroom</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1 The individual nature of learning</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 The social nature of learning</td>
<td>8</td>
</tr>
<tr>
<td>2.3 The inquiry classroom</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1 The autonomous learner in the inquiry classroom</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2 The role of the teacher in the inquiry classroom</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Collaborative interaction and classroom discourse</td>
<td>13</td>
</tr>
<tr>
<td>2.5 The social and sociomathematical norms</td>
<td>16</td>
</tr>
<tr>
<td>2.6 The construction of decimal knowledge</td>
<td>18</td>
</tr>
<tr>
<td>2.6.1 Complexities involved in constructing decimal knowledge</td>
<td>19</td>
</tr>
<tr>
<td>2.6.2 Classroom effects on construction of partial understanding</td>
<td>22</td>
</tr>
<tr>
<td>2.6.3 Decimal misconceptions as teaching tools</td>
<td>24</td>
</tr>
</tbody>
</table>
2.7 Linking instruction to the construction of decimal knowledge
 2.7.1 The need to construct qualitative concepts for decimal symbols
 2.7.2 Cognitive conflict as a context for constructing decimal knowledge
 2.7.3 Formal and informal knowledge
 2.7.4 Representations and the construction of decimal knowledge

2.8 Summary

Chapter 3: Methodology

3.1 Justification for methodology
3.2 Validity and reliability
3.3 The research setting and sample
3.4 Data collection
3.5 Data analysis
3.6 Ethics
3.7 The researcher's role
3.8 Summary

Chapter 4: Constructing mathematical concepts in an inquiry classroom

4.1 Introduction
4.2 The classroom context
 4.2.1 The structure of the learning sessions
 4.2.2 Elaborating the setting for a task and the importance of context
 4.2.3 Active engagement in mathematical activity
4.3 Guiding productive discourse
4.4 Patterns of collaborative discourse
4.5 Mathematical explanations, justification and argumentation
- 4.5.1 Recording of student explanation 65
- 4.5.2 Revoicing of student explanation 69
- 4.5.3 Mathematical difference 70

4.6 Errors in strategies and solutions 71

4.7 Summary 72

Chapter 5: Classroom activity: Constructing decimal Concepts

5.1 Introduction 73
5.2 Informal rational number knowledge 73
5.3 Percentages and proportional reasoning 74
5.4 Proportional representation on a number line 76
5.5 Translating between equivalent representations 77
5.6 Decimal notation symbols, their referents and quantitative value 78
5.7 Understanding decimal numbers as referent units 79
5.8 The number line as a concrete representation 81
5.9 Translations between modes of representations 85
5.10 Mathematical tasks and cognitive conflict as tools to support the development of decimal concepts 87
5.11 Operating on decimal quantities 91
5.12 Summary 92
Chapter 6: Case studies

6.1 Introduction

6.2 Eric
 6.2.1 Informal knowledge of decimal concepts and a summary of the first interview
 6.2.2 The construction of partial understandings
 6.2.3 Summary of the second and third interview

6.3 Fay
 6.3.1 Informal knowledge of decimal concepts and a summary of the first interview
 6.3.2 The construction of partial understandings
 6.3.3 Summary of the second and third interview

6.4 Jane
 6.4.1 Informal knowledge of decimal concepts and a summary of the first interview
 6.4.2 The construction of partial understandings
 6.4.3 Summary of the second and third interview

6.5 Sara
 6.5.1 Informal knowledge of decimal concepts and a summary of the first interview
 6.5.2 The construction of partial understandings
 6.5.3 Summary of the second and third interview

6.6 Summary of case studies

Chapter 7: Discussion and conclusion

7.2 Constructing decimal fraction concepts

7.3 Classroom mathematical activity

7.4 Classroom practice: Collaborative discourse and the social and sociomathematical norms

7.5 Implications for the classroom

7.6 Opportunities for further research

7.7 Concluding thoughts: The point of it all
References

Appendices

Appendix A: First interview questions
Appendix B: Class concept map of the informal knowledge of decimal concepts
Appendix C: Contextualised two-place decimal problems
Appendix D: Contextualised problems—decimal numbers between 1.36 and 1.37
Appendix E: Contextualised problems—ordering decimal fraction
Appendix F: Contextualised problems involving addition, subtraction and multiplication
Appendix G: Additional interview questions
Appendix H: The number lines drawn by Eric and Fay
Appendix I: Information sheet for Board of Trustees
Appendix J: Information sheet for the teacher
Appendix K: Information sheet for parents of students
Appendix L: Information sheet for students

List of figures

Figure 1: Lesh translation model (1979)