Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Microflora of Raw Milk and the Impact of Milk on their Survival at Low pH

A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of
Doctorate of Philosophy
in
Food Technology
at
Massey University,
Palmerston North, New Zealand.

Piet de Vegt
27 May 2015
Abstract

Milk is an excellent food source as it contains a plentiful supply of nutrients and minerals. Although normally consumed after pasteurisation, there is growing evidence that raw milk provides health benefits beyond nutrition alone. Epidemiological studies of children have shown that those who regularly consume raw milk appear to have a lower incidence of asthma and non-specific allergy than those who consume processed commercial milk. The gastrointestinal tract is a key location for immune development as interaction with microflora can occur at the mucosal surface. Milk may have a role to play in the early stages of this process either due to the microbes it harbours or to the physical and chemical properties of milk itself.

The aim of this study was to identify bacterial isolates unique to raw milk, that would not survive pasteurisation; and to determine whether milk allowed for a greater survival of these bacteria during ingestion. Bacterial isolates were cultured from either raw or pasteurised milk and tested for their ability to survive pasteurisation. A subset of thermosensitive isolates were identified for further analysis representing those species likely to be present in raw milk but not processed. This thermosensitive subset was challenged for their ability to tolerate acid conditions (pH 2.5) both in the presence and absence of milk to determine the likelihood of their survival during ingestion. A high throughput acid tolerance test was developed to screen raw milk bacteria for acid tolerance. Data supports the hypothesis that milk significantly increased the survival of raw milk bacteria exposed to pH 2.5 and that specific components found specifically in milk were, at least in part responsible for this effect. In conclusion, a unique subset of bacteria found only in raw bovine milk, and not in processed milk, has been identified that when ingested with milk are able to come through an acid challenge not dissimilar to that of the stomach and survive. This opens the possibility that these bacteria present in raw milk are able to enter the lower GI tract and interact with the immune system via Peyers patches.
Acknowledgements

I would like to extend my deepest appreciation to my PhD supervisors, Dr Helen Withers and Assoc. Prof. Steve Flint for their support during this project. In particular, Dr Withers has taught me a much about what is required as a top scientist, and push me towards becoming one also. Assoc. Prof. Flint has been great support, and believed in me throughout the project, and helped motivate me when times were difficult. Without both their help and determination, this project would not have been possible. I consider myself extremely fortunate to have such a well-suited and highly regarded supervisory panel.

The work in this thesis was primarily conducted in the Food Assurance and Meat Quality team at Agresearch in Palmerston North. I have had a lot of assistance, and support from this team, both past and present members. It is these workmates that help out in the hard times, or be the ones to start cultures, or remove agar plates from the incubator when I was not able. Their help is very appreciated. I also wish to extend my gratitude to those that I have worked with outside of our team. To the other members of the Hopkirk Institute (with whom I worked at the completion), as well as the members of the former MIRINZ Institute in Hamilton (with whom I worked when I started this project) there are too many to name, I will miss your camaraderie. To John Koolaard, of the Bioinformatics and Statistics team, Agresearch was most helpful in helping me through the statistical analysis required for the high-throughput sequencing work. Also, the team at the Manawatu Microscopy and Imaging Centre, who performed the Electron microscopy work and provided an insightful microscopy course. And, to the members of the New Zealand Microbiological Society, thank-you for listening to my presentations and given their feedback at the yearly conferences in the past three years.

Finally, I would not be where I am today without the help, support from my friends and family, especially from my wife, Elizabeth, who has only ever known me as a PhD student. She has pushed me when I needed it and her drive and work ethic is a strong positive influence on me.
Table of Contents

Abstract ... i

Acknowledgements ... ii

Table of Contents .. iii

List of Presentations ... vii

List of Figures .. viii

List of Tables .. x

Abbreviations .. xii

1. Introduction .. 1

1.1 Overview of Allergic Disease ... 2

1.1.1 The Background of Immune Dysfunction Leading to Allergic Disorder 2

1.1.2 Regulation of the Immune Response: The T_{H1}/T_{H2} Balance ... 4

1.1.3 The Impact of the Hygiene Hypothesis on Immune Stimulation .. 5

1.2 The Impact of Bacterial Exposure at the Gastrointestinal (GI) Tract on Immune Development ... 6

1.2.1 Influence of Lower GI Tract Microflora on Allergic Disease ... 6

1.2.2 Mechanisms of Bacterial Immune Stimulation ... 8

1.3 Bacterial Survival at Low pH ... 10

1.3.1 Regulation of the Acid Tolerance Response in Bacteria .. 10

1.3.2 Bacterial Acid Tolerance Responses ... 11

1.3.3 Bacterial Survival in the Stomach and the Role of Food ... 16

1.4 Milk Components That May Affect the Incidence of Allergic Disease 17

1.4.1 The Impact of Raw Milk on Reducing Rates of Asthma and Atopic Allergy 17

1.4.2 Components of Milk Capable of Immune Modulation .. 19

1.5 The Microflora of Raw and Processed Milk .. 21

1.5.1 The Microflora of Raw Milk ... 21

1.5.2 Sources of Bacteria Entering Raw Milk ... 29

1.5.3 The Processing and the Microflora of Processed Milk .. 32

1.6 Aims and Hypothesis .. 35

2. Methods .. 36

2.1 Bacterial Isolation, Growth, and Characterisation ... 36

2.1.1 Bacteria and Growth Conditions ... 36
2.1.2 Sources of Milk Used in this Study ... 36
2.1.3 Storage Trial and Bacterial Isolation .. 38
2.1.4 Bacterial Characterisation ... 38
2.2 Molecular Biology ... 39
 2.2.1 DNA Extraction ... 39
 2.2.2 Polymerase Chain Reactions ... 40
 2.2.3 Extraction of Total Bacterial Genomic DNA from Milk 41
 2.2.4 Culture Independent 16S rDNA Analysis Using a Plasmid Cloning Kit 41
 2.2.5 Culture Independent 16S rDNA Analysis by Sequencing of PCR products 43
2.3 Thermotolerance Assays .. 44
 2.3.1 Heat Transfer Modelling ... 44
 2.3.2 Validation and Calibration of Probes ... 44
 2.3.3 Alkaline Phosphatase Assay ... 44
 2.3.4 Thermotolerance Assays ... 45
2.4 Acid Tolerance Assays ... 47
 2.4.1 Quantification of Acid Tolerance in TSB Broth .. 47
 2.4.2 Quantifying Acid Tolerance in TSB and Milk Component Mixtures 47
 2.4.3 Milk and Milk Components Used in Acid Tolerance Assays 48
 2.4.4 Bacterial Isolation from Acidified Raw Milk .. 49
 2.4.5 High-Throughput Acid Tolerance Assays ... 50
2.5 Microscopy ... 51
 2.5.1 Light Microscopy ... 51
 2.5.2 Electron Microscopy ... 51
2.6 Statistics ... 52
3. Microbial Characterisation of Raw and Processed Milk 53
 3.1 Isolation and Characterisation of Milk Bacteria ... 54
 3.1.1 Quantification of Microbial Flora of Raw and Processed Milk 54
 3.1.2 Characterisation of Bacterial Isolates ... 58
 3.2. Thermotolerance of Raw and Pasteurised Milk Isolates 67
 3.2.1 Thermotolerance of Raw Milk Isolates .. 67
 3.3 Identification of Raw and Processed Milk Isolates ... 70
 3.3.1 Partial r16S Ribosomal DNA Sequencing of Milk Isolates 70
 3.3.2 Culture-Independent Analysis of Milk ... 74
 3.4 Discussion ... 77
4. Acid Tolerance of Bacteria Isolated from Raw Milk ... 82
4.1 Acid tolerance of the Waikato Bacteria Subset ... 82
4.2 Isolation and Characterisation of Manawatu Bacterial Isolates............................. 87
 4.2.1 Isolation of Bacteria from Raw Milk Obtained from Massey University Research
 Farms .. 87
 4.2.2 Determination of Growth Times... 90
4.3 High-Throughput Acid Tolerance Assays... 92
 4.3.1 High-Throughput Analysis.. 92
 4.3.2 Statistical Analysis... 94
 4.3.3 Identification of Strains Protected by Milk at Low pH................................. 96
4.4 Discussion.. 98

5. Mechanisms of Increased Bacterial Acid Tolerance in Milk 101
 5.1 – Does Milk Extend the Range of Acid Tolerance Exhibited by Raw Milk
 Microflora? .. 101
 5.2 – How Milk Protects Bacteria in Acidic Conditions ... 104
 5.2.1 Survival of Two Bacterial Isolates in Standard, Skim and Soymilk at pH 2.5 .. 104
 5.2.2 Interaction between the Bacterial Cells and the Casein Micelles............... 112
 5.2.3 The Effect of Pre-Incubation of Bacteria in Casein Micelle Preparations on Acid
 Tolerance.. 114
 5.3 Protective Mechanisms of Ionic Milk Constituents ... 116
 5.3.1 Acid Tolerance of Individual Salts that Comprise Casein Micelles 116
 5.3.2 Acid Tolerance with CaCl2 and Dose Response of K2HPO4....................... 118
 5.3.3 Acid Tolerance with CaCl2 and Dose Response of KCl.............................. 120
 5.4 High-Throughput Acid Tolerance in Salts ... 122
 5.5 Discussion.. 125

6. General Discussion ... 129
 6.1 Discussion... 129
 6.2 Future Directions.. 134

Bibliography ... 135

Appendices ... 159
 Appendix 1 – Bacterial Species Commonly Associated with Milk 159
 Appendix 2 – Characterisation of Waikato Isolates, September 2009 162
 Appendix 2 - Calibration and Validation of Pasteurisation Protocol 166
 Appendix 3 - Validation of Thermocouple Probe ... 167
 Appendix 4 - Alkaline Phosphatase Test ... 169
 Appendix 5 – High Throughput Acid Tolerance Assay - Raw Data 171
Appendix 6 – Statistical Output for High Throughput Acid Tolerance Tests184

Chapter Four Statistical Analysis (n = 363) .. 184
Chapter Five Statistical Analysis (n = 275) .. 185

Appendix 7 – BLAST and Seqmatch Results, Chapter Five ...186
List of Presentations

List of Figures

Figure 1 - The development of atopy. ..3

Figure 2 - Experimental design of Hungate tube fitted with thermocouple temperature
sensors.. 46

Figure 3 - Aerobic plate counts of raw milk (●) and processed milk (○) during incubation
for ten days at 10 °C enumerated on PCA agar (A), APT agar (B) and MacConkey agar
(C).. 57

Figure 4 - Temperature profiles of pasteurisation experiments comparing the mean
temperature predicted by heat transfer modelling with the average temperature of
the top, middle and bottom thermocouple probes of three independent
pasteurisation experiments.. 68

Figure 5 - Survival of 20 raw milk bacterial isolates exposed to pH 2.5 for 2 h in TSB....... 85

Figure 6 - Survival of 20 raw milk bacterial isolates exposed to pH 2.5 for 2 h in TSB with
UHT skim milk. .. 86

Figure 7 - Bacterial concentration in untreated raw milk (solid) and acidified raw milk
(striped) at pH 2.5. .. 89

Figure 8 – The number of bacterial isolates sorted into sets according to the time required
to reach an OD₅₉₀ of 0.500. .. 91

Figure 9 - Mean proportion of isolates from raw milk or acidified raw milk that are acid
tolerant at pH 2.5 for 2 h in TSB (■), or TSB with milk (□). ... 95

Figure 10 – Recovery of six raw milk isolates after incubation in TSB in a range of pH
values for 2 h. .. 102

Figure 11 - Survival of six raw milk isolates in TSB and TSB with milk at a pH beyond their
maximum.. 103

Figure 12 – Survival of S. aureus (28) (A) and S. flexneri (66) (B) in TSB mixed with
standard UHT milk, skim UHT milk and trim soymilk at the initiation of the experiment (■), and after incubation for 2 h at pH 7 (■) and pH 2.5 (■). 105
Figure 13 – Survival of *S. aureus* (28) (A) and *S. flexneri* (66) (B) after acid challenge in TSB mixed with equal proportions of Na-caseinate (37 g / L) or hydrolysed casein (37 g / L) after 2 hour acid challenge at pH 2.5.. 107

Figure 14 – Survival of *S. aureus* (28) (A) and *S. flexneri* (66) (B) after acid challenge in TSB mixed with equal proportions of 3.7 % and 0.6 % Whey Protein Concentrate (WPC) at the initiation of the experiment (■), and after incubation for 2 h at pH 7 (■) and pH 2.5 (■).. 109

Figure 15 – Survival of *S. aureus* (28) (A) and *S. flexneri* (66) (B) during an acid challenge at pH 2.5 in the presence of UHT milk, an artificial casein micelle preparation and mixture of salts used to create the casein micelle preparation. ... 111

Figure 16 – *E. coli* (32) in reconstituted casein micelles at pH 7 (A) and in a cross-section of a curdled casein particle at pH 2.5 (B), imaged by transmission electron microscopy. .. 113

Figure 17 – Survival of *S. aureus* (28) (A) and *S. flexneri* (66) (B) pre-incubated in the micelle preparation for 5 minutes prior to acidification (○) and pre-incubated in the micelle prep for 60 minutes prior to acidification (●). ... 115

Figure 18 – Survival of *S. aureus* (28) (A) and *S. flexneri* (66) (B) in 0.5X TSB broth supplemented with 20 mM CaCl₂, 11 mM K₂HPO₄ or 5 mM K₃citrate after incubation at pH 2.5 for 2 h.. 117

Figure 19 - Acid tolerance of *S. aureus* (28) (A) and *S. flexneri* (66) (B) as a function of K⁺ from K₂HPO₄ (○) and K₂HPO₄ with 20 mM CaCl₂ (×)... 119

Figure 20 – Survival of *S. aureus* (28) (A) and *S. flexneri* (66) (B) as a function of K⁺ from KCl (○) and KCl with 20 mM CaCl₂ (×) after incubation at pH 2.5 for 2 hours........... 121

Figure 21 - Back-transformed mean proportion of isolates from raw milk or acidified raw milk that are acid tolerant at pH 2.5 for 2 h in TSB (●), or TSB with salts (○).......... 124
List of Tables

Table 1 - Compilation of known bacterial acid tolerance mechanisms.. 15
Table 2 - Studies that link raw milk consumption to reduced rates of asthma and allergic disease... 18
Table 3 – Bacterial populations detected in raw cows’ milk using culture-dependent* diversity studies.. 25
Table 4 - Microbial genera found in raw milk based on two independent 16S clone libraries.. 28
Table 5 – Raw Milk Sources used in this study. .. 37
Table 6 - Primer names and sequences used in this study. ... 39
Table 7 – The relative frequencies of colony morphologies of bacterial isolates from raw milk (n = 79). .. 60
Table 8 - The relative frequencies of colony morphologies of bacterial isolates from processed milk (n = 19). ... 61
Table 9 – Ecological diversity indices of bacteria isolated raw milk and processed milk... 61
Table 10 - Cell morphologies of bacteria isolated from raw and processed milk......................... 63
Table 11 – Catalase and oxidase reactivity of bacterial isolates from raw and processed milk... 64
Table 12 – Microbial groups isolated from raw milk and processed milk based on cell morphology and catalase/oxidase reactivity... 66
Table 13 – Thermotolerance of raw and processed milk bacterial isolates................................. 69
Table 14 - Closest known relatives of strains isolated from raw and pasteurised milk identified by partial 16S rRNA gene sequencing using PA forward primer.............................. 72
Table 15 - Closest known relatives of strains isolated from raw and pasteurised milk identified by partial 16S rRNA gene sequencing using PH* reverse primer............................ 73
Table 16 - Microbial strains detected in pasteurised milk... 75

Table 17 - Microbial strains detected in abused pasteurised milk incubated at room temperature for 24 h. .. 76

Table 18 - Subset of thermosensitive bacteria originating from raw milk obtained from a Waikato dairy farm.. 83

Table 19 - Number of bacterial isolates that survived exposure at pH 2.5 for two hours TSB and TSB with Milk. Bacterial isolates were assayed in at least duplicate experiments. .. 93

Table 20 - The closest known match of Gram-positive bacteria isolated from the Manawatu dairy farms that show an improved acid tolerance in the presence of milk. .. 97

Table 21 - The closest known match of Gram-negative bacteria isolated from the Manawatu dairy farms that show an improved acid tolerance in the presence of milk. .. 97

Table 22 - Acid tolerance of 275 isolates in TSB, and TSB supplemented with 20 mM CaCl₂, 11 mM K₂HPO₄ and 5 mM K₃citrate.. 123
Abbreviations

aOR adjusted Odds Ratio
APC Antigen Presenting Cell
APT All Purpose Tween
CFU Colony Forming Units
CI Confidence Interval
CM Casein Micelle
DC Dendritic Cell
DGGE Denaturing Gradient Gel Electrophoresis
EDTA Ethylenediaminetetraacetic acid
GAD glutamic acid decarboxylate
GI Gastrointestinal
GLMM Generalised Linear Mixed Model
Ig immunoglobulin
IL Interleukin
IFN-α Interferon-alpha
LB Luria Bertani
LSD Least Significant Difference
M Molar (mol / L)
M-PCA Milk-Plate Count Agar
mM milli-Molar
MRD Maximum Recovery Diluent
OR Odds Ratio
PCA Plate Count Agar
r16S ribosomal 16S
SD Standard Deviation
SSCP Single Strand Conformational Polymorphism
T_H1 T-Helper type 1
T_H2 T-Helper type 2
TSA Tryptic Soy Agar
TSB Tryptic Soy Broth
UHT Ultra-high Temperature
WPC Whey Protein Concentrate