Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Manipulating harvest maturity and ethylene to extend storage life of feijoa

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand

Srikanth Rupavatharam

2015
Abstract

In New Zealand feijoa (*Acca sellowiana*) are harvested by touch-picking and can be stored at 4 °C and 90% RH for up to 4 weeks with a subsequent shelf life of 5-7 d at 20 °C. Extending the storage potential of feijoa can enable export to new marketplaces through sea freight. The objective of this work was to extend the storage life of feijoa. Harvest maturity, variability within batch and ethylene all have the potential to influence postharvest storage performance.

Harvesting feijoa earlier not only makes touch-picking irrelevant but will necessitate changes to the present grading standards of feijoa. Harvesting feijoa 2 weeks prior to touch-picked maturity consistently enabled storage life extension for up to 6 weeks at 4 °C with a subsequent shelf life of 5 d at 20 °C. However, these fruit were low in SSC with high TA suggesting that their taste profiles may be altered and hence a consumer taste acceptance investigation is recommended. There is also a need to identify a ripening index for feijoa while redefining grading criteria suitable for both local and export markets.

This work demonstrates that feijoa having higher °hue (> 122) at the time of harvest possessed longer storage potential than those with lower °hue (< 122) that are ready-to-eat. Blocking ethylene responses of touch-picked or early harvested feijoa by postharvest 1-methylcyclopropene treatment had minimal effect on physiology (ethylene production and respiration rates) or quality after storage. Feijoa were also insensitive to exogenous ethylene application while CA technology stimulated surface injury. However preharvest Aminoethoxyvinyl glycine (AVG) application reduced fruit drop and delayed maturity (retaining firmness) of feijoa at the time of commercial harvest. AVG suppressed ethylene production during storage without altering quality attributes (firmness, SSC, TA
or flesh colour). A conceptual model was developed to summarise feijoa responses to ethylene manipulations. Postharvest ripening in feijoa appears to be substantially ethylene-independent.

Storage life of feijoa was extended by harvesting fruit earlier than current touch-picking maturity. Segregating feijoa by skin colour change would allow sea freight of less mature fruit. However, taste acceptance of these fruit and commercial trials of preharvest AVG are required before practical recommendations can be made to the industry.
Acknowledgements

I am grateful to the Lord God Almighty for giving me an opportunity to work in this project. I am very thankful to my chief supervisor Dr. Andrew East for his excellent advice, cherished feedback and continued support during the study. I thank my co-supervisor Professor Julian Heyes for his suggestions, guidance and encouragement during this work.

I am thankful to Peter Jeffrey, Sue Nicholson for their brilliant technical support and Jamal for analysing fruit X-rays. I thank all my colleagues at Centre for Postharvest and Refrigeration Research for their constructive appraisal on my research findings during discussion meetings.

I would like to acknowledge that the work reported was possible with financial support from Sustainable Farming Fund, New Zealand Feijoa Growers Association, Turner & Growers research grant and Helen E Akers PhD scholarship. I am thankful to AgroFresh Inc. (USA) and Nufarm ltd., New Zealand for their generous gift of chemicals. Sincere thanks to Southern Belle Orchard, Matamata for allowing me to conduct experimental trials and for the supply of fresh feijoa. I would like to thank my friends Majid, Jacob, Benhur for accompanying me during orchard visits. Part time work at Idea services as a community support work was a good learning experience.

I would like to take this opportunity to appreciate the church, my mum, daughter, sisters and friends for their unwavering support in prayer and encouragement. This work is dedicated to my father whose word is to get wisdom though it cost all you have. It is the glory of God to conceal a matter, to search out a matter is the glory of kings (Proverbs, Holy Bible).
Table of Contents

Abstract... i
Acknowledgements ... iii
List of Tables .. xii
List of Figures ... xiv
List of Abbreviations and Symbols ... xvii

1 Introduction ... 1

2 Literature review .. 5
 2.1 Background ... 5
 2.2 Feijoa .. 6
 2.2.1 Origins ... 6
 2.2.2 Botany .. 6
 2.2.3 Cultivars .. 8
 2.2.4 Pollination and fruit set ... 10
 2.2.5 Fruit growth and ripening ... 11
 2.2.6 Fruit composition ... 13
 2.3 Feijoa maturity .. 13
 2.3.1 Harvest maturity ... 13
 2.3.2 Maturity index ... 16
 2.3.3 Postharvest storage .. 18
 2.3.4 Chilling injury .. 19
 2.3.5 Modified atmosphere conditions ... 20
 2.4 Grading of feijoa .. 21
2.4.1 Non-destructive grading ... 23
 2.4.1.1 Background colour ... 23
 2.4.1.2 Firmness assessment .. 24
 2.4.1.3 Other grading technologies .. 25

2.5 Ethylene ... 28
 2.5.1 Ethylene perception ... 32
 2.5.2 Inhibitors of ethylene ... 34
 2.5.3 1-Methylcyclopropene (1-MCP) .. 35
 2.5.3.1 Effects of 1-MCP on ripening ... 37
 2.5.3.2 Combining postharvest 1-MCP and CA 40
 2.5.4 Aminoethoxyvinylglycine (AVG) ... 40
 2.5.4.1 Effects of AVG on yields .. 41
 2.5.4.2 AVG effects on maturity and storage 42

2.6 Summary .. 46

2.7 Thesis overview ... 46

3 Combined effects of pre-storage 1-methylcyclopropene application and controlled atmosphere storage on ‘Unique’ feijoa quality 49

 3.1 Introduction .. 49
 3.2 Materials and Method .. 52
 3.2.1 Fruit sample .. 52
 3.2.2 1-MCP treatment ... 53
 3.2.3 Controlled atmosphere storage ... 53
 3.2.4 Respiration rate .. 54
 3.2.5 Gas analysis ... 55
 3.2.6 Fruit quality measures ... 55
4.3.3.3 Skin colour .. 84
4.3.3.4 Flesh colour .. 84
4.4 Discussion .. 87
 4.4.1 Effects of harvest timing .. 87
 4.4.2 Effects of ethylene manipulation ... 88
4.5 Conclusion ... 91

5 Preharvest application of
Aminoethoxyvinylglycine (AVG) to delay harvest maturity and extend storage life of ‘Unique’ feijoa
... 93

5.1 Introduction... 93
5.2 Materials and Method ... 96
 5.2.1 Experiment design .. 96
 5.2.2 AVG application .. 97
 5.2.3 Fruit sampling.. 97
 5.2.4 Respiration rate and ethylene production.. 99
 5.2.5 Fruit quality.. 100
 5.2.6 Data analysis... 100
5.3 Results ... 101
 5.3.1 At harvest attributes .. 101
 5.3.2 Performance in storage ... 105
 5.3.2.1 Fruit physiology ... 105
 5.3.2.2 Quality... 108
5.4 Discussion .. 111
 5.4.1 Harvest time effects .. 112
 5.4.2 AVG effects ... 113
6 Using skin colour to segregate feijoa by maturity at harvest 121

6.1 Introduction .. 121

6.2 Materials and Methods .. 123

6.2.1 Fruit sample .. 123

6.2.2 Respiration and ethylene production .. 124

6.2.3 Quality ... 125

6.2.4 Data analysis .. 125

6.3 Results and discussion ... 126

6.3.1 Maturity at harvest ... 126

6.3.2 Storage quality .. 129

6.3.3 Post hoc analysis .. 133

6.3.4 Skin colour (°hue) based segregation effects .. 134

6.3.5 Reflectance spectra ... 137

6.3.6 Feijoa segregation ... 139

6.4 Conclusion .. 140

7 Overall discussion and recommendations ... 141

7.1 Summary of findings ... 141

7.1.1 Storage life extension .. 141

7.1.1.1 Controlled atmosphere storage .. 141

7.1.1.2 Harvest timing ... 142
7.1.1.3 Postharvest 1-MCP treatment ... 144
7.1.1.4 Preharvest AVG .. 147

7.2 Maturity grading of feijoa .. 148
7.2.1 X-ray computed tomography (CT) ... 151
 7.2.1.1 Methods .. 152
 7.2.1.2 Results .. 152

7.3 Ethylene in feijoa .. 154
 7.3.1 Biosynthesis of ethylene ... 154
 7.3.2 Ethylene during fruit maturation .. 157
 7.3.3 Postharvest 1-MCP responses .. 158
 7.3.4 Exogenous ethylene on feijoa ... 161
 7.3.5 Conceptual model of ethylene’s role in feijoa 162

7.4 Unexplored opportunities ... 165
 7.4.1 Role of polyamines.. 165
 7.4.2 Other pre or postharvest treatments ... 166
 7.4.3 Other non-destructive grading ... 167
 7.4.4 Ripening index .. 168
 7.4.5 Other cultivars of feijoa .. 168
 7.4.6 Genetically modified feijoa .. 169

7.5 Thesis conclusion ... 169

7.6 Recommendations ... 170
 7.6.1 Sensory analysis ... 170
 7.6.2 Commercial trial of preharvest AVG .. 171
 7.6.3 Multiple 1-MCP treatments .. 171
 7.6.4 Developing maturity and ripening index of feijoa 171
 7.6.5 Studies on other cultivars ... 172
 7.6.6 Non-destructive techniques ... 172
List of Tables

Table 2.1 Commercial feijoa cultivars common in New Zealand 9
Table 2.2 Maturity indices of selected fruits summarised 17
Table 2.3 Summary of AVG effects in some fruit crops 44
Table 3.1 Contingency table showing effects of storage atmospheres on surface injury incidence of ’Unique’ feijoa at 4 °C .. 62
Table 4.1 Average at harvest attributes of feijoa as influenced by harvest timing ... 78
Table 4.2 Contingency table of internal ripening scale of ’Unique’ feijoa assessed at two week intervals after storage and a subsequent 5 d at 20 °C .. 85
Table 5.1 Experiment matrix showing AVG treatment combination as influenced by AVG application and harvest timing ... 97
Table 5.2 Total preharvest fruit drops at commercial touch picking maturity (T) in ’Unique’ feijoa trees treated with AVG₄ (4 weeks before commercial harvest) and AVG₂ (2 weeks before commercial harvest) .. 102
Table 5.3 Mean attributes of ’Unique’ feijoa treated with AVG and harvested early (E) at 2 weeks and (T) at 0 weeks before touch picking maturity 103
Table 5.4 Contingency table of internal ripening ranking of ’Unique’ feijoa treated with AVG and stored at 4 °C ... 110
Table 6.1 Mean attributes at-harvest time of ’Unique’ feijoa 128
Table 6.2 Mean attributes at-harvest of ’Unique’ feijoa after post-hoc segregation as (A) STR (>122 °hue) and (B) R2E (<122 °hue) 135
Table 6.3 Resulting grading outcomes of feijoa segregated at-harvest by skin colour (R2E and STR) and storing at 4 °C ... 137
List of Figures

Fig. 2.1 Cross section of feijoa fruit ... 7

Fig. 2.2 Ethylene production rates of a mature feijoa after harvest 12

Fig. 2.3 Internal maturity rating scale .. 15

Fig. 2.4 Schematic diagram of ethylene biosynthesis and signalling pathway .. 29

Fig. 3.1 Scale used to rate severity of external skin injury 57

Fig. 3.2 Effect of oxygen partial pressure on respiration rate of ‘Unique’ feijoa stored at 4 °C ... 58

Fig. 3.3 Effect of atmosphere on compression firmness of ‘Unique’ feijoa at 4 °C and assessed after storage (solid symbols) and a subsequently 7 d at 20 °C (hollow symbols) ... 60

Fig. 3.4 Effect of atmosphere on titratable acidity of ‘Unique’ at 4 °C and assessed after storage (solid symbols) and a subsequent 7 d at 20 °C (hollow symbols) ... 61

Fig. 3.5 Effect of storage atmospheres on flesh colour (°hue) of ‘Unique’ stored at 4 °C ... 63

Fig. 4.1 Scanned images after equatorial halving of ‘Unique’ feijoa at harvest time before treatments ... 79

Fig. 4.2 Average respiration rate of ‘Unique’ feijoa after storage at 4 °C as influenced by (A) harvest timing and treatment and (B) time in storage and harvest timing ... 80

Fig. 4.3 Average ethylene production rates of ‘Unique’ feijoa after storage at 4 °C as influenced by (A) harvest timing and treatment, (B) storage time 81

Fig. 4.4 Average compression firmness, SSC, TA and flesh colour of ‘Unique’ feijoa stored at 4 °C as influenced by (A-D) harvest timing and treatment; and (E-H) storage time and harvest timing ... 83

Fig. 4.5 Scanned images after equatorial halving of ‘Unique’ feijoa stored at 4 °C ... 86

Fig. 5.1 At harvest scanned images after equatorial halving of ‘Unique’ feijoa harvested 2 weeks before (A-B) and at commercial touch-picking time (C-E). ... 104
Fig. 5.2 Ethylene production rates of ‘Unique’ feijoa stored for 8 weeks and assessed (A) at 4 °C and (B) after removal (solid symbols) and a subsequent 5 d (hollow symbols) at 20 °C ... 106

Fig. 5.3 Effects of AVG treatment (A) and storage time (B) on respiration rates of ‘Unique’ feijoa stored at 4 °C for 8 weeks and assessed after removal fortnightly from 4 weeks and subsequently after 5 days at 20 °C 107

Fig. 5.4 Compression firmness (A), soluble solids content (B), titratable acidity (C) and flesh colour (“hue”) of ‘Unique’ feijoa stored at 4 °C for 8 weeks and assessed fortnightly after removal (solid symbols) and subsequently on d 5 (hollow symbols) at 20 °C ... 109

Fig. 5.5 Scanned images after equatorial halving of ‘Unique’ feijoa stored at 4 °C and assessed after 6 or 8 weeks of storage and a subsequent 5 d at 20 °C .. 111

Fig. 6.1 Distribution of skin colour attributes of ‘Unique’ feijoas harvested at three different times ... 127

Fig. 6.2 At harvest scanned images after equatorial halving of ‘Unique’ feijoa harvested at different times ... 128

Fig. 6.3 After storage quality attributes of (A) skin colour (B) SSC (C) flesh colour (D) internal ripening (E) titratable acidity and (F) firmness of ‘Unique’ feijoa harvested at H2, H1 and H0 ... 130

Fig. 6.4 Scanned images after equatorial halving of ‘Unique’ feijoa stored at 4 °C and a subsequent 4 d at 20 °C ... 131

Fig. 6.5 Correlations between at-harvest skin colour (“hue and L”) of feijoa with compression firmness (A,C) and ripening (B,D) after storage (8 weeks) 132

Fig. 6.6 Feijoa segregation results using different thresholds of skin colour (“hue) into two groups (R2E) and (STR) at-harvest .. 134

Fig. 6.7 Quality attributes of (A) compression firmness (B) SSC (C) flesh colour (D) internal ripening index (E) titratable acidity and (F) skin colour of ‘Unique’ feijoa graded as STR (>122 °hue) and R2E (<122 °hue))......................... 136

Fig. 6.8 Mean reflectance spectra of ‘Unique’ feijoa (A) harvested at different times ... 138

Fig. 7.1 Distribution of feijoa population harvested at 4 different times 150

Fig. 7.2 X-ray CT scan image of feijoa (transverse slice) using Philips six slice helical CT scanner ... 153
Fig. 7.3 X-ray CT scan image of a mature feijoa (transverse slice on left) processed using Matlab™ software ... 154

Fig. 7.4 Effect of 1-MCP, AVG and exogenous ethylene treatments on ethylene production of feijoa .. 156

Fig. 7.5 Schematic chart showing ethylene interactions during maturation and ripening of feijoa ... 165
List of Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>aminocyclopropane-1-carboxylic acid</td>
</tr>
<tr>
<td>ACO</td>
<td>ACC oxidase</td>
</tr>
<tr>
<td>ACS</td>
<td>ACC synthase</td>
</tr>
<tr>
<td>Ag</td>
<td>silver</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>silver nitrate</td>
</tr>
<tr>
<td>AIN</td>
<td>ACC insensitive</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AOA</td>
<td>aminooxyacetic acid</td>
</tr>
<tr>
<td>Au</td>
<td>gold</td>
</tr>
<tr>
<td>AVG</td>
<td>aminoethoxyvinylglycine</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>C</td>
<td>carbon</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>ethylene</td>
</tr>
<tr>
<td>CA</td>
<td>controlled atmosphere</td>
</tr>
<tr>
<td>cnr</td>
<td>colourless non-ripening</td>
</tr>
<tr>
<td>CNT</td>
<td>controls</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CoCl₂</td>
<td>cobalt chloride</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>d</td>
<td>day (s)</td>
</tr>
<tr>
<td>DACP</td>
<td>diazocyclopentadiene</td>
</tr>
<tr>
<td>DMCP</td>
<td>3,3-dimethylcyclopropene</td>
</tr>
<tr>
<td>DNP</td>
<td>2,4-dinitrophenol</td>
</tr>
</tbody>
</table>
EIN ethylene insensitive
ERS ethylene response sensor
ETO ethylene overproducing
ETR ethylene receptor
FDP fruit development period
g grams
GDD growing degree days
GLM general linear model
H hydrogen
h hour
H₀ harvest at touch-picking maturity
H₁ harvest at one week before touch-picked maturity
H₂ harvest at two weeks before touch-picked maturity
H₄ harvest at four weeks before touch-picked maturity
HCN hydrogen cyanide
HP hewlett packard
HU hounsfield unit
I_AD interactance spectrum
kg kilogram
kPa kilo Pascal
L litre
µL micro-litre
L* lightness
lb pound force
LEACS Lycopersicon esculentum ACS
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP</td>
<td>1-methylcyclopropene</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MTA</td>
<td>5'-methylthioadenosine</td>
</tr>
<tr>
<td>N</td>
<td>newton</td>
</tr>
<tr>
<td>N₂</td>
<td>nitrogen</td>
</tr>
<tr>
<td>NAI</td>
<td>normalised anthocyanin index</td>
</tr>
<tr>
<td>NBD</td>
<td>2,5-norbornadiene</td>
</tr>
<tr>
<td>NDVI</td>
<td>normalised difference vegetation index</td>
</tr>
<tr>
<td>NE</td>
<td>no effect</td>
</tr>
<tr>
<td>Ni</td>
<td>nickel</td>
</tr>
<tr>
<td>NIR</td>
<td>near infrared</td>
</tr>
<tr>
<td>nL</td>
<td>nano-litre</td>
</tr>
<tr>
<td>nmol</td>
<td>nano-mole</td>
</tr>
<tr>
<td>nor</td>
<td>non ripening</td>
</tr>
<tr>
<td>NS</td>
<td>not significant</td>
</tr>
<tr>
<td>NZFGA</td>
<td>New Zealand Feijoa Growers Association</td>
</tr>
<tr>
<td>O₂</td>
<td>oxygen</td>
</tr>
<tr>
<td>PAL</td>
<td>Phenylalanine ammonia-lyase</td>
</tr>
<tr>
<td>PLP</td>
<td>pyridoxal-5'-phosphate</td>
</tr>
<tr>
<td>pmol</td>
<td>pico-mole</td>
</tr>
<tr>
<td>POD</td>
<td>peroxidase</td>
</tr>
<tr>
<td>PPO</td>
<td>polyphenol oxidase</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinylchloride</td>
</tr>
</tbody>
</table>
R2E ready to eat
(r_{co_2}) carbon dioxide production rate
RH relative humidity
rin ripening inhibitor
s second
SAM S-adenosylmethionine
SRS space resolved spectroscopy
SSC soluble solids content
STR storage
STS silverthiosulphate
TA titratable acidity
TRS time resolved spectroscopy
UK United Kingdom
USA United States of America
v/v volume / volume
w/w weight / weight
% percent