Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
GLOBAL POSITIONING SYSTEM (GPS): HUMAN FACTORS ASPECTS FOR GENERAL AVIATION PILOTS

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Psychology at Massey University, Palmerston North, New Zealand

Michael Dean Nendick

1996
I certify that the substance of this thesis has not already been submitted for any degrees and is not being currently submitted for any other degrees.

I certify that to the best of my knowledge, any help received in the preparation of this thesis, and all sources used, have been acknowledged in this thesis.

Michael D. Nendick
ABSTRACT

The allied disciplines of psychology and human factors within aviation are well established. Moreover, the benefits that their research efforts have brought to the underlying theoretical and practical application of technology within aviation are well documented. The introduction of the Global Positioning System (GPS) is a new technology in this context that has not yet received much attention in terms of its human factors implications. GPS is a satellite based navigation system, available as a non-standardised “add-on” navigation system for General Aviation (GA) aircraft. While GPS has been established within the military environment for some time it has only recently been made available to the civil aviation market. To date there has been little human factors research conducted on its use by pilots, especially in the GA industry where it has rapidly become an extremely popular navigation aid. This study aimed to utilise the fundamental principles of psychology and human factors to examine GA pilots’ use of GPS. Particular reference was made to the equipment design ergonomics, the psychological attitudes and behaviours displayed when using GPS, and the implications GPS has for flight safety. The study sought information to determine whether formal training was required and to suggest the format for such training. A survey of 172 GA pilots using GPS in New Zealand was carried out to investigate five research questions proposed to provide a basis for future research. The results found that GPS was rated highly for its design and ease of use, however specific areas of GPS design needing improvement were identified. GPS was rated in a similar fashion by pilots irrespective of their individual demographic sub-groupings. While the majority of pilots were found to have positive attitudes and behaviours using GPS, some users had developed negative attitudes previously associated with automation such as over-confidence, reliance, and complacency. This had resulted in certain inappropriate behaviours. These included operating without backup means, discarding standard navigation procedures such as maintaining reference to maps and charts, and navigating with GPS before gaining an acceptable level of knowledge and competency with its use. The results appeared to be generalisable to the wider pilot population. The results suggest that formalised training incorporating human factors was required for operators to use GPS to its full potential and to avoid committing errors with possible hazardous consequences.
ACKNOWLEDGEMENTS

I would like to acknowledge my supervisor, Dr. Ross St. George, for his encouragement and enthusiasm during the course of my Masters study.

I would like to thank the pilots who responded to the survey, Ross Macpherson and NZ Wings, Don Goodhue and Airways Corporation, Gary Butler and CAA, Andrew Harrall from Crystal Electronics, and Bruce Lister from South Pacific Avionics for their support with this research.
Table of Contents

Abstract ... (iii)

Acknowledgements .. (iv)

List of Tables .. (viii)

List of Figures .. (ix)

CHAPTER 1 HUMAN FACTORS OF GPS USE

Human Factors In GPS Design 1
 Design principles for GPS .. 2
 GPS design .. 4
 Evaluating GPS design ... 7

Human Factors In GPS Operation 20
 GPS operation ... 20
 GPS functions ... 21
 Automation and navigation with GPS 23
 Cognitive demands of automation and navigation 31
 GPS training ... 40

Flight Safety Implications ... 44

Research Questions .. 44

Proposed study ... 45

CHAPTER 2 DEVELOPMENT OF THE SURVEY INSTRUMENT

Survey Design .. 46
 Identification of the data requirements 47
 Determination of the population characteristics 47
 Instrument development .. 48
 Formulating the questionnaire 54
 Instrument pretesting and revision 55

Survey Instrument .. 55

Sample And Setting .. 56
 Sample size determination 56
 Administrative procedure 56

Measurement .. 57
 Questionnaire reliability ... 57
CHAPTER 3	METHOD	...	59
Respondents	...	59	
Instrument	...	60	
Procedure	...	60	
Data collection	...	60	
Data Analysis And Management	...	61	
CHAPTER 4	SURVEY RESULTS	...	62
Data Reduction	...	62	
Sample Demographics And Representation	...	63	
GPS Control And Display Design Features	...	64	
GPS model popularity	...	64	
Physical mounting of GPS in the cockpit	...	64	
GPS control design	...	66	
GPS display design	...	69	
Power sources	...	72	
Design features: Exploratory factor analysis	...	72	
Pilots’ Attitudes Towards GPS	...	73	
Confidence in GPS	...	73	
Pilot Attitudes and GPS: Exploratory factor analysis	...	75	
Pilots’ Behaviour Using GPS	...	76	
GPS functions	...	76	
Data input errors	...	77	
Misreading errors	...	79	
In-flight behaviour	...	81	
GPS as a navigation aid	...	82	
Using GPS instead of a map or chart	...	83	
Monitoring behaviour	...	83	
Pilot Behaviours and GPS: Exploratory factor analysis	...	84	
Training	...	85	
Reference to the user manual and user knowledge	...	87	
Flight Safety	...	87	
Difficulties using GPS	...	88	
CHAPTER 5	DISCUSSION	...	92
GPS Design Features And Human Factors Principles	...	92	
General principles	...	92	
Standardisation	...	93	
Reception ... 94
Power ... 94
Positioning ... 95
Controls ... 95
Displays ... 96
Design dimensions ... 97
GA Pilots' Attitudes Towards GPS 99
Attitude dimensions ... 99
GA Pilots Behaviour Using GPS 101
GPS functions ... 101
In-flight behaviour .. 102
Behaviour dimensions ... 106
Training Requirements For GA Pilots To Safely Use GPS 107
Learning considerations for GPS training 109
Developing a GPS training course 113
Flight Safety Hazards Associated With GA Pilots Use Of GPS 113
Implications Of This Research 115
Limitations Of This Research 116
Suggestions For Further Research 116
Conclusion .. 117
REFERENCES .. 119
 Appendix A: Definitions Of Abbreviations 128
 Appendix B: GPS User Survey .. 129
 Appendix C: GPS Survey Information Sheet 143
 Appendix D: GPS Survey Critique Sheet 145
 Appendix E: GPS Survey Advertisement Card 147
 Appendix F: GPS Survey Reminder Letter 148
 Appendix G: User Comments On The Physical Mounting Of GPS 149
 Appendix H: Data and Statistical analysis files 154
 Appendix I: User Comments On Checks And Errors Using GPS 155
 Appendix J: User Comments On GPS Training Requirements ... 162
 Appendix K: User Comments On Difficulties And Possible Hazards Using GPS 169
 Appendix L: Conference papers and publications from this study 183
LIST OF TABLES

TABLE 1.1 TRADEOFF BETWEEN KNOWLEDGE IN THE HEAD AND IN THE WORLD........... 6
TABLE 1.2 GPS MODELS AND THEIR FEATURES ... 10
TABLE 1.3 A CLASSIFICATION OF CONTROLS BY FUNCTION 13
TABLE 1.4 KEY DESIGN RECOMMENDATIONS .. 14
TABLE 2.1 DEGREES OF FREQUENCY... 53
TABLE 2.2 A SET OF RESPONSE ALTERNATIVES SELECTED SO PHRASES ARE AT LEAST ONE
STANDARD DEVIATION APART AND HAVE PARALLEL WORDING 54
TABLE 3.1 FLIGHT EXPERIENCE IN HOURS .. 59
TABLE 4.1 GPS USAGE BY MODEL AND TYPE .. 65
TABLE 4.3 GPS GROUPING BY CONTROL TYPE ... 67
TABLE 4.4 GPS CONTROL CHARACTERISTIC RATINGS 68
TABLE 4.5 GPS KEY DIMENSIONS .. 69
TABLE 4.6 GPS GROUPING BY DISPLAY TYPE .. 70
TABLE 4.7 GPS DISPLAY CHARACTERISTIC RATINGS 70
TABLE 4.8 COMPARISON BETWEEN GPS DISPLAY TYPE RATINGS 71
TABLE 4.9 GPS DESIGN FACTOR VARIABLE RATINGS 73
TABLE 4.10 MEAN RATINGS OF CONFIDENCE IN GPS 74
TABLE 4.11 GPS ATTITUDE FACTOR VARIABLE RATINGS 75
TABLE 4.12 GPS FEATURE USAGE RATINGS ... 76
TABLE 4.13 GPS FEATURE HELPFULNESS RATINGS .. 77
TABLE 4.14 EXAMPLES OF INPUT ERRORS REPORTED BY GPS USERS 78
TABLE 4.15 INCIDENTS OCCURRING DUE TO INPUT ERRORS 79
TABLE 4.16 EXAMPLES OF MISREADING ERRORS REPORTED BY GPS USERS 80
TABLE 4.17 INCIDENTS OCCURRING DUE TO MISREADING ERRORS 80
TABLE 4.18 BEHAVIOUR CHANGES WHEN USING GPS 81
TABLE 4.19 GPS HELPFULNESS FOR DIFFERENT TYPES OF FLIGHTS 82
TABLE 4.20 EXAMPLES OF TYPICAL ERROR CHECKS PERFORMED BY GPS USERS 83
TABLE 4.21 GPS DESIGN FACTOR VARIABLE RATINGS 84
TABLE 4.22 TRAINING ON GPS .. 86
LIST OF FIGURES

FIGURE 1.1 MODEL OF A PERSON-MACHINE SYSTEM .. 3
FIGURE 1.2 EXAMPLES OF GPS MODELS .. 9
FIGURE 1.3 KEYPHONE VERSUS CALCULATOR LAYOUT 12