Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Collaborative Learning
and
Peer-tutoring
in Mathematics

Kathryn Joy Rowe

A thesis presented in partial fulfilment of requirements for
Master of Educational Studies (Mathematics)
Massey University
2002
Abstract

This study sought to promote learning by enhancing the level of higher order cognitive talk among collaborative groups engaged on mathematical tasks. An intervention, designed to utilise structures such as listening, multiple retelling, questioning, elaboration, and justification to promote high-level discourse, was trialled and refined using an action research classroom study.

The collaborative skills training programme was based on Medcalf's peer-tutoring model (1997) and adapted to incorporate features of Lyman's Think-Pair-Share collaborative model (1992). The teacher's role was seen as crucial to the development of collaborative group practices which establish the structures for high-level discourse. Collaborative group practices were reinforced in follow-up class discussions where the teacher facilitated student reflection on the mathematical strategies and the collaborative group strategies. It was also seen as important for the teacher to select appropriately levelled tasks which maintained the learner in his/her Zone of Proximal Development.

Findings indicated that the structured intervention enhanced the level of higher order discourse between students and that it was an effective procedure to mediate learning. Several patterns of discourse were also identified that could provide useful indicators of higher level discourse to teachers during daily classroom observations.
Acknowledgements

I would like to extend heart-felt thanks to my supervisors Dr. Glenda Anthony and Brenda Bicknell at Massey University for their direction, critique and encouragement. Thank you too to the school staff and Board of Trustees for their continued support and encouragement both in my teaching practice and during the research study.

Thank you to the Ministry of Education for providing a four week study award in which to complete the practical aspects of the research. I cannot commend the value of the award scheme enough for allowing teachers time to focus on their studies and the rewards this brings back to classroom practice.

Thank you also to my family and friends who have put up with the stresses and strains of a life which is only work and study. Shortly a human being will return to your midst.

A final thanks to all the students who have passed through my care, you continue to be my inspiration, and your success, my greatest joy.

Kathryn Rowe

November 2002
Table of Contents

Abstract (ii)
Acknowledgements (iii)
Table of Contents (iv)
List of Figures (vi)
List of Tables (vi)

Chapter 1: Introduction

1.1 Background 7
1.2 Teaching Reforms and Collaborative Learning 10
1.3 Definition of Terms 13
1.4 Research Questions 13
1.5 Overview 14

Chapter 2: Literature Review

2.1 Introduction 16
2.2 Learning Theories and Discourse 17
 2.2.1 Individual Development of Thought 17
 2.2.2 Social Development of Thought 19
2.3 Structuring Discourse in the Classroom 21
 2.3.1 Teachers and Students as a Mathematical Community 21
 2.3.2 Authority 23
 2.3.3 Transparency 25
2.4 Collaborative Learning 27
 2.4.1 Cooperative Model 30
 2.4.2 Think-Pair-Share Model 32
2.5 Peer-tutoring 34
 2.5.1 ‘Pause, Prompt, and Praise’ Model 36
 2.5.2 ‘ASK to THINK-TEL WHY’ Model 37
 2.5.3 Multiple Retelling Model 38
2.6 Analysis of Classroom Discourse 39
2.7 Literature review summary 42

Chapter 3: Methodology

3.1 Introduction 43
3.2 Action Research Design 43
3.3 Setting 46
3.4 Profile of the Sample Group 47
3.5 Timeline 47
3.6 Developing the Instructional Strategies 48
 3.6.1 Development of the Training Programme Through Cycles 1 and 2 51
 3.6.2 Cycle 2- The Main Study 56
3.7 Data Collection 60
3.8 Data Analysis 63
3.9 Ethical Considerations 65
Chapter 4: Results

4.1 Introduction
4.2 Transcript Data
4.3 Academic Data
4.4 Identification of 'Oral Flags'
4.5 Questionnaire Data
 4.5.1 Student Preferences for Group-work
 4.5.2 Authority
 4.5.3 Group Processes
 4.5.4 Mathematical Identity
4.6 Teachers' Anecdotal Observations

5. Discussion and Conclusion

5.1 Effects of Peer-tutoring
5.2 Oral 'flags' which identify higher order cognitive thinking
5.3 Students' Perceptions
5.4 Teacher Perceptions
5.5 Limitations of the Study
5.6 Concluding Thoughts and Implications for Future Research

References

Appendices

1: Ebbutt's (1985) table of broad classification of a range of insider activity currently occurring in schools.
2: Information sheet for students and caregivers.
3: Student and caregiver consent form.
4: Teacher consent form.
5: Student response questionnaire.
6: Fravillig, Murphy & Fuson's (1999, p. 155) examples of instructional strategies employed to elicit, support and extend children's mathematical thinking.
7: Example of coded transcript.
8: Example of problem-solving task.
9: NUMP stages and behaviour indicators for operational strategies for addition and subtraction and fractional knowledge.
List of Figures:

1: Thomas' model of talk (1994). 41
2: Kemmis' and McTaggart's action research planner (1981). 45
3: Cycle 1 of this action research study. 49
4: Cycle 2, the pilot study. 52
5: Cycle 3, the main study. 56
6: Classifications of collaborative group talk. 63
7: Summary of the mean percentage of talk for the sample group before and after the intervention. 67
8: Mean percentages of talk before and after the intervention. 68
9: Summary of the relationship between the mean percentages of talk. 68
10: Mean percentage of task-related talk before and after the intervention according to grouping. 70
11: Percentage of cognitive talk before and after the intervention. 74
12: Mean percentage of cognitive talk before and after the intervention according to grouping. 75
13: Mean percentage of higher order cognitive talk before and after the intervention according to grouping. 77
14: Academic outcomes for fractional knowledge before and after the intervention. 79

List of Tables:

1: Daily Group Rotation During Mathematics. 48
2: Percentages of Task-related and Non-task-related Talk Before and After the Intervention. 69
3: Mean Percentage of Task-related Talk Before and After the Intervention According to Grouping. 70
4: Percentage of Talk Contributed to the Group. 71
5: Mean Deviation from Equal Talk Before and After the Intervention. 72
6: Percentages of Task-related Talk Subcategorised as Cognitive and Social Talk Before and After the Intervention. 73
7: Mean Percentage of Cognitive Talk Before and After the Intervention According to Grouping. 74
8: Mean Percentage of Task-related Social Talk According to Grouping. 75
9: Cognitive Talk Subcategorised as Higher and Lower Order Cognitive Talk Before and After the Intervention. 76
10: Mean Percentage of Higher Order Cognitive Talk Before and After the Intervention According to Grouping. 77
11: NUMP Diagnostic Interview Levels to Show Academic Outcomes Before and After the Intervention. 78
12: Mean academic Outcomes Before and After the Intervention Using the NUMP Diagnostic Interview to the Nearest Level. 79
13: Percentage of Class Who Preferred Working Alone, in a Group or Both Ways. 84
14: Group Skills Level Indicated by Questionnaire Response. 85